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A quick introduction to stochastic state
estimation



The basic estimation principle

A very general, universally applicable principle for signal estimation of an unknown
stochastic vector x, given measurements contained in another stochastic vector y is

x = x|y

in words: the estimate is the (a posteriori) estimate vector "x given y "

This property is perfectly general, whatever the distributions are, but there is a central
resulting property:

Theorem: X is such that the estimation error is uncorrelated with the observations:
E(x—T)y' =0

in the case of zero-mean processes, this also results in minimization of the quadratic
. . e . / /

estimation error: T = arg Mmin,,_ & (x - w)(x —w )] —to bg worked

out further (when Eyy is non-singular, and a linear solution w = Ky is sought,

this results in /X = (5$y/)(5yy/)_i.)

In the case of zero-mean Gaussian processes, this is also the maximum likelihood
estimate, and it also determines the statistics of the estimate.



The classical Kalman filter starts out with knowledge of a (given)
linear and time-varying system model, driven by stochastic inputs:

r
X = AX, + B,

Given are: A,, B,, C, (system model), starting at k=0, u, is "system noise" on the

system state x,, and v, is "output noise" — We assume statistics of these signals known

(actually: we shall only need second order statistics). Moreover: statistics of the
input state x, are assumed known as well, and we assume all these signals to be independent

from each other.

Therefore, let the expectations: 5UI<;U/:; = Qk, gl/kl/é = Ry, 1lg = 53701176
for all i Euiu; =0, Syil/j’ = 0, and for all 7.5: Euiuj’ =0

Asked is an (optimal) estimate Tk+1of the (unknown) state Lk+1, given the measurements
Yo, Y1, Yk



Applying the principle to the Kalman filter

Preliminary remarks:
- we shall want to find recursive solutions, using the already available data at stage
k to move to stage k+1.
- all processes so far are "vector" processes, correlations are matrices:
Exy’li; = Elway;]

- the estimate x|y is itself a stochastic vector



Preparatory step: normalize

r

u
X1 = Akxk+ BkQI/Z ][ k]

< Ve
Yk = Cixx+ - 0 RL/Z ] |: tlk ]
\ ) Vi

where now the Uk and Uk are fully uncorrelated with unit variance.
Let also P, be the correlation of the innovation (P,=/1, is given):

Pk = E(xk — /x\k)(xk — fB\k)/

Yk




Estimation as Outer-Inner filtering



First step: estimate x,

Perform an RN fartarizatinn [firct ctean nf the Niiter-lnner aloarithm)-

- - - —

AcPy® BoQy® 0 | =] 0 M Boo Vo
1/2 1/2
s COPO 0 Ro i O 0 DO,O |

—

(we need to ask that P, Q, R, are non-singular, as well as [Ao Bo]

(minimal realization)
in that case D, , and M, are sniiare nan-cinaular [full hases). Apply the inputs and put

€1 Xo
€2 = VO Uy
€3 Vo

in which V, is unitary (it ic the "0") Recauice of thic the encilans gre uncorrelated and
we have: X = M] €+ Bo,0€3
Yo = Coxo+vo=Dope;3

in which only €3 depends on the measurement y,. It follows:

x1 = Bo.oes, ex1 = Meg, Py = M,



the result of the first step

becomes:




The Kalman filter for the first step

inverse of outer filter:

AO Kp OR_1/2C K R—1/2
Ry (1)/2C R;,(l)/Z



The recursive step for x, .,

Again, an outer-inner factorization. Assume M, known, calculate the kth inner
and outer factors (recursive RQ):

AMic BQ/* 0 | _ |10 Mg Bog |,
CkMk 0 RL/Z 0 0 Do,k ‘

Again, V, takes care of the necessary orthogonalization, and the factor model
looks as follows (soon to be proven):

-1/2 A
J(Pk €, x X
— -1/2 =

e— 7 R'? Cy
1/2 yk y K —
— — > - !

B
T ‘l K Pk Ak

-1/2 -
JPA’H e.t.k+l xk+1

0




The Kalman estimation filter

Is the inverse of the outer factor:

n Old estimate
X
output innovation
-1/2
_ Re’k

€y
R e
Normalized Kalman gain |




An instructive proof!

Idea: calculate the first k steps, as if they were the first step (bundling), then show that
they unbundle as a recursion going from step k-1 to step k. Let's write this bundled step

with index [k]:

An B

with:

[k-1]

A B..=[AB. . B]C D Pric
A=Ay By =[AByy B JCh= Cody [ 11

C.B,.y D

(and for which all original assumptions are still valid!)



Proof (cnt'd)

Hence, when an RQ at stage [k] looks as follows:

AR B0 0] [0 My By
1/2 12|~ [k]
C[k]PO 0) R[k] 0 0) Do,[k]

in which, as before, Vi, is unitary, and we have to assume the noises to be non-singular
as well as the reachability matrix [A[k] B[k]], which is achieved by requesting minimality
of the model. This will result in a square, non-singular M,,,, and all the other results as
before, in particular that x, - X, = Mk+léx,k+1'

Although this step looks global, it just summarizes the results of the local forward
recursion globally.



Outer-inner recurses nicely!

Wehave A, M, B Ay B, A[k‘l]MO B[k—l]
(K]0 k]| _ i C M. D
CaM, D| (=110 H 1]
[£] [£] c, D, | I
and the Outer-Inner reduction then proceeds as follows:
| .y [Vg’;_l] .
first post-multiply with I to obtain
-Ak Bk"O Mk Bo,[k—l] 0 0 AkMk AkBo,[k—l] Bk
I 0 O DO,[k—l] = O O DO,[k—l] O
C, Do o 0 I] |0 ¢M, CB,, D,
7 ]
and then post-multiply with VZU Vk*,21 -
I/
Vk*,12 Vk*,22_




Outer-inner recursion

to finally get
0
[A[k]M o Bl _Ig
(k] —
CraMo Dy, 0
[ ]
V
as it should, with V[k] = ol
Vk,21
-AkA{k—l] .
C

and TO’[k] —

M

k+1

0
0

Vi 22

AkBo,[k—l
Do,[k—l]

AkBo,[k—l

]

D

B

0.k

0

(k1]
_CkA[k_l] CkDo,[k—l] Do,k_

o[ k-1]

CkDo,[k—l] Do,k_

Bo,k -
0

]

Vear V[k_l]
1

causally invertible!
(global Kalman filter)



The situation generalizes to propagation of probabilities even in the non-

linear case:

rxk+1 = F(x,,u,)

Ve =G(x,,v,)

We assume u and v independent processes (not only uncorrelated), and

let us now propagate probabilities (Pr), rather than expectancies.
Let

non-linear model: 3

Y; = collyo,y1, -, ¥i]

AN

r, — Iy

Yi_1> fz — X4|Y;

then we show the recursive relations (see Kitagawa, 1996 — 7) is probability):

Trr1 = F(fe,ur)

\ P 7, )P(x

(




