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Overview

e Fast recap on systems and identification

* [sometric, co-isometric and unitary inners
 Numerics: RQ-factorization

e External canonical forms

e QOuter-inner factorization

* A'simple" numerical example

 What shall be next?



Dynamical System Theory: a definition?

The theory that describes the evolution of a
system as time progresses

Key notion #1: the STATE of the system: "what
the system remembers from its past”

Key notion #2: the EVOLUTION of the state (i.e.
its dynamics)

Key notion #3: the BEHAVIOR of the system (i.e.
how the system looks from the outside)



Basic notions
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* the STATE: a time dependent vector
* the EVOLUTION of the state: a difference equation

* REACHABILITY: how a state can be reached by past
inputs (important for control)

* OBSERVABILITY: how one can estimate the state of a
system by observing it (important for estimation)

* MINIMALITY: no superfluous states!



the input-output operator (causal)
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input-output anti-causal




Representations

U(2)=-+u 2" +u, +uz+...
Linear Time-Invariant: Y(2)=---+ y_lz—l + Y+ YT+
T(z)=D+C(I -zA)"'zB

Time-variant: define block d/agonal operators

instantaneous:
A, B,
N B etc...
Al Bl
shifts, causal: | . anti-causal: | -. - |
' 0 I
_ r
| , -
I 0 |

7 Resulting transfer operators:

N\ T=D+C(I-ZA)"'ZB T=D+CUI—-Z'A)"'Z'B
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Stability?

The state evolves as:

(I-ZA) "' =1+ZA+ZAZA +---

Define diagonal shifts: 4 (+1) _ 7 77 t (forward)

(I—ZA) ' =T+ ZA+Z2A0VA+ 2342 A0 A

example of unstable: .
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Past-present-future: the Hankel operator

the causal case: H, maps past inputs up to k-7 to future outputs

from k on:
PAST I[\l FUTURE OUT
| ‘ | || ‘ | ' .
| | k-1k ‘ | t
CkAk—lBk—Z CkBk—l Dk
Ck+1AkAk—lBk—2 Ck+1AkBk—1 K T;‘(’k_l Tk,k—2
Ck+2Ak+lAkAk—1Bk—2 Ck+2Ak+1AkBk—1
: : : Hk= Tk+1,k-1 ];<+1,k—2
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the (causal) Hankel operator:
maps “past” to “future”

"t P




System identification: factoring the Hankel
operator

Given T, what is a minimal realization {A, B, C,D}?

The answer: it is given by a minimal factorization of each Hankel operator Hyy:

(generalized Kronecker theorem)

Ck
Crr1Ag
Hry = | CrioAnit Ak | o+ Ap_1Ag_oBr_3 Ap_1Bi_o Bp_1 |

reachability

observability operator R, at
operator O, at k

maps to state

state

maps to output

=

IAGme N minimal factorization = choosing complementary bases



ldentification (2) and normal forms

C

Ok—l—lAk ] ) Rk — [ Ak—le—l Bk—l }

Remark: Oy = [

hence: C = |Oklr, Br = [Rii1le, A = O:Jrl[ok]m—l:oo

Input normal form: choose an orthonormal basis for all R,
then [Ak Bk] is co-isometric: A A, + BB, =1

Output normal form: choose an orthonormal basis for all O,

A
then [ ‘| will be isometric: A; Ay, + C/C, = 1

k

Change of basis (causal case -- notice: R, is very different from R, !):
Ak Bk Rl;l-lAkRk Rl;-ll-lBk
C, D, C.R, D,

”‘/‘4\\ x, =Rx, = [
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How to obtain a normalized from any minimal

factorization?

Solve an RQ factorizstion for the base transformation to obtain the Output

Normal Form -- this is called a Lyapunov-Stein equation:

Ry Ry = AxRyR[ A, + By B}, (aforward recursion)

Best method: R-Q factorization (square root algorithm):

| AkRp Bi | =0 Rpp |Qy
Compress matrix

columns
1/-/2
/4«/ 21 3] [o =2 22 L3
- = =1/~
(ZHR example: | o | {|7lo0 o -2 .

/2 -1/2]
1/2  -1/2
1/-/2 l/\@_




An algebraic approach to canonical forms

The start: isometric, co-isometric and unitary operators
(an alternative theory works with polynomials, see later)

T is isometric if 7' = I (some care needed with infinite matrices!)
We consider quasi-separable T's (i.e., having realizations.)

Central property: an isometric T has a u.e.s. isometric realization
and conversely Al O A, B /
B/ D, C., D |

Caution: "u.e.s." is essential in the statement in case of infinitely
| indexed systems (u.e.s. = uniformly exponentially)
stafile)



isometries (ctn'd)

An isometric realization of an isometry is in Output Normal Form ONF)

a co-isometric realization of a co-isometry is in Input Normal Form (INF)

a unitary quasi-separable operator has a unitary realization
that is also u.e.s and conversely,
however:

unitary realizations may not correspond to unitary operators!
Example, when e.g. for large k>0:

| — -

A, B, _ k* k enerqgy disappears
) C. D, 1 - iz at infinity!

A Kk k™|
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the basic ingredient: R-Q factorization

The situation: suppose a matrix T . U — yl @ yZ

1
15

and we wish a basis for the range (columns) of- T, first, and then
generate a full basis for T:

T =

O Rll R12 Ql
T = |0,
0 0 R,
0;.




an elementary algorithm

use Jacobi (Givens) rotations:

[a b1=[0 +Ja?+b7]s ‘V“‘ o e ‘*‘b
«/a\ \b \| \+\b

and a Gentlemen-Kung array, processing the rows

In sequence: i

AS B (and there are nice alternatives!)




External factorization
(characterizes the dynamics - poles)

We start out with a realization in input normal form:

A B . , ,
TNC[C D] with AA"+ BB’ ' =1

and assume the system to be u.e.s. as well. Let

A B

Vo~ [ Cv Dy ] be a unitary completion of [A  B]

consider TV’ = A’, then

H
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Lemma: partial fraction decomposition

A’ D+C(I—ZA)"'ZB][D{,+B'Z'(I1-A'Z")~'C}]
1

DDy, +CCY,|+ |DB'+CA"|Z'(I - A'Z")~

because

(I—ZA)"1ZBB'Z'(I-A'Z) Y= (I-ZA) 'ZA+I+A'Z'I—-A'Z")"1

H
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External factorization (2)

hence a canonical factorization: 7 = A’V = A/(V/)~1

interpretation: V characterizes the dynamics of T (in the
LTl-case, the poles)
LTI example: z-2  _z-2, z-3
1-(1/3)z z-3 1-(/3)z

.. | A B I C’
State space formula: A =, [ C D ] [ 0 D ]

This was a "right" factorization, there is of course also a "left"
factorization, based on the observability data:

T =AV, =V,A]

’ﬂ
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dynamics of the inverse system?

T‘l, even when it exists, is not necessarily causal
In first instance, we look at the anti-causal dynamics

The trick is: outer-inner factorization 7'= 1V,
in which V' is co-isometric and T, left invertible

V’is the largest (anti-causal) isometry that can be applied
to 1" without destroying causality

Geometric interpretation: generalized "Beurling-Lax theorem"
to be discussed in a further lecture.

,ﬂ Let's determine V algebraically!
M\



Outer-Inner by a square-root algorithm

We want TV’ still causal, with V maximal (the bigger V, the more

more it pushes 1 back into the past). Let

V ~ Ay Bv | pe a co-isometric realization for V
“| Cv Dy

then
TV' =D+ C(I—-ZA) ' ZB|[D{, + B{;Z'(I — A{,Z")~1C{,]
causal terms: DD| +C(I — ZA)"'ZBDjy,
mixed term: C(I - ZA)"'ZBB{,Z'(I - A{,Z")~1C{,
anti-causal term: DB/, Z'(I — A],Z")~1

a partial fraction decomposition is needed!
This is provided by a generalized partial fraction decomposition:

’ﬂ
“\\
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Lemma: partial fraction decomposition again

C(I — ZA)'ZBB{Z'(I — AL, Z')~'CY, =
C(I-ZA)T\ZAY +Y + YA Z'(I - A, Z")7'CY,

in which the new Y satisfies the Lyapunov-Stein equation
Z'YZ = BBy, + AY A,
i.e., Yiy1 = |[BBy, + AYA"/]k

a forward equation, which always has a unique
solution provided A is u.e.s.

IAS i
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outer-inner sq.r. algorithm (2)

require the anti-causal terms to add up to zero:
CYA!, + DB/, =0
and define the remainder:
T, =|CYC{, + DD{,| + ClsZ)"'[AY C{, + BD{,]

A B, ] B [ A BD| + AYCY, ]

hence:
TONC[C D, | | ¢ DD/ +CYCY

Putting the four equations together:

AY B A‘// C‘// . Yk—l—l Bok
cy D| |B, D], ~| 0 D

invertible



the square-root algorithm (3)

(complete RQ-factorization: embed the isometry)

[AY B] [0 Yirs Bok] D
— Vv Vv
ey D, " 10 0 Dul|cripy |

iInterpretations: - V characterizes the anti-causal
dynamics of T
- W=D, +C,(I—-ZAy)"'ZBy defines the
kernel of "T acting on causal signals”
- D, and Y,,, are compressed to left invertible

- Y is the cross-correlation between the
//‘,‘ s
H. reachability ops. of T and V
IAS B - Proofs are based on ranges and kernels



some more remarks on O-1 (4)

AY Bl [0 Yi1 B i” g’”
CY D 0 0 D, Vo2V

_CV DV-k

k

- the outer factor T, is causally left-invertible

-Y can disappear completely (when T is already outer)
the algorithm can be used to show whether a
transfer function is indeed causally invertible

-T, as obtained from the algorithm is not necessarily

minimal (e.g. when T is already inner)



Applications

In the following talks | shall show:

- how the Kalman estimation filter is nothing but an
outer-inner factorization, and how this insight gives
an easy and simple proof

- how outer-inner succeeds in providing a stable algorithm
for LU or spectral factorization

- how outer-inner and inner-outer succeeds in computing
the Moore-Penrose inverse of semi-separable systems

- how outer-inner or inner-outer can be used in control
applications (aside from the Kalman filter)

- how the theory generalizes to non-linear, and which
consequences that has

H
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A simple example

Let's try to compute the Moore-Penrose inverse of
in ]
-2 1

T=1"0% —2 1

T is not invertible, co-kernel: span[1_1/2 1/4 -]

it has a left inverse: [ 0] —1/2 —1/4 —1/8 -
0 —1/2 —1/4 °
0o —1/2 -

0

but this is not the Moore-l5enrose Inverse.
AR,
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Moore-Penrose inverse (2)

What is then the Moore-Penrose inverse?
(definition: 1Ty = min{arg min, |[|Tv — yl/2}

typically used in principal component analysis)
As T has a left inverse, it is already left outer. What about
the right side? To convert T to fully outer, we need to find
an inner-outer factorization: T=UT,. The corresponding

square root algorithm is:

IUON “O"
YxAx  YiBx B Aux Bux v 0
Cx Dy Dok Cux Dux c‘;k‘ i

(it is a backward recursion now). As the system is LTI in the
far future, this provides for a starting point of the recursion

A
4ANS



Moore-Penrose inverse (3)

A realization for T is easily found (e.g. INF):
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Moore-Penrose (4)

Running the square root algorithm produces:

U ~. diag '| I- - 1/2 V3/2 1/2 V3,2
° P -v32 12 [P =EE |
I ENe 0 1)
To ~c dlag R : 2],!_] ) ,...)
and finally 15
—3/4 1,2 ]
U= -3/8 —3/4 1/2 1 -3/2 -3/4 -3/8 -..
: ] 1/2 1/4 -15/8 —15/16 ---
2] 1 Tt:i 1/4 1/8 1/16 —63/32 ...
-1 2 1/8 1/16 1/32  1/64 :
/ To = o -1 2 . . . .
m’ﬁ«\ L
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Envoy

We are now going to use
our new knowledge on
stochastic state estimation
(Kalman filtering)!



