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Overview

* Dynamical System Theory as a discipline

* The basic notions

* System identification and realization

* The main system operations

* Whatis it all good for?

* The connection between systems and matrices
* Numerics

°* Envoy
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What is a discipline?

e a consistent body of theory and practice
e characterized by some key notions

* having a specific methodology and main
results

e created by some "patriarchs”
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Examples

Signal Processing [Fourier, Wiener]

Control [Bode, Nyquist]
Information Theory [Shannon]

Electromagnetism [Maxwell, Herz]

Solid State Physics [Schottky, Shockley]

Electronics [Noyce, Kilby]
Computer Science [von Neumann]

etc...




Dynamical System Theory: a definition?

The theory that describes the evolution of a
system as time progresses

Key notion #1: the STATE of the system: "what
the system remembers from its past”

Key notion #2: the EVOLUTION of the state (i.e.
the dynamics)

Key notion #3: the BEHAVIOR of the system (i.e.
how the system looks from the outside)
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A bit of history

* the roots are definitely in Mechanics: Newton
recognized that the state of a mechanical
system consists of positions and velocities

* a new impetus came when Kalman recognized
that to control a system, one needs knowledge
of its state: the state had to be estimated

 this lead to dynamical system theory as a new
discipline in applied mathematics
A
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The approach here

We shall approach the topic from an input-
output point of view — there exists a "purer”
approach, in which an input-output map is not
assumed (Willems: behavioral system theory).

Static view:

%* Behavior: the resulting map from inputs to outputs
[RS8



the output produced by a state and
a given (future) input
past inputs that produce a given state

tim>e t

In equation: continuous time: [ x(r) = f(x(t),u(t),t)
[y = gx(@.uto).1)
discrete time: (x(k +1) = £, (x(k),u(k))
| ¥ = g xRk

practical consideration: there is no harm to replace continuous time by
discrete time — it makes the discussions much easier!
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the EVOLUTION of the state: a difference equation

REACHABILITY: how a state can be reached by past
inputs (important for control)

OBSERVABILITY: how one can estimate the state of a
system by observing it (important for estimation)

MINIMALITY: no superfluous states!



#

the state?

Mechanical system: position and velocity

Computer: relevant memory (data storage,
switches)

Automaton: control states, routing states

Airplane: position, velocity, roll, yaw and pitch,
angles and velocities

Process plant: pressure, temperature,

concentrations
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the analysis is easier for linear systems...

X = A, + By,
9 ("causal” system)

Ve =Cx, + Doy,

|:xk+1:|=|:Ak Bkak}
Vi C. D, |lu

REACHABILITY: can any state (at each time point)
be reached by some past inputs?

OBSERVABILITY: is every state characterized by
the resulting response?

.

let's develop the algebra...
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the input-output operator (causal)




input-output anti-causal
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Representations

U(2)=-+u 2" +u, +uz+...
Linear Time-Invariant: Y(2)=---+ y_lz—l + Y+ YT+
T(z)=D+C(I -zA)"'zB

Time-variant: define block d/agonal operators

instantaneous:
A B,
a B etc...
Al Bl
shifts, causal. . | anti-causal: [ |
' , 0 I
I 0 .
/// Resulting transfer operators:

N\ T=D+C(I-ZA)'ZB T=D+CI—-Z'A)~'Z'B
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Stability?

The state evolves as:

(I-ZA) "' =1+ZA+ZAZA +---

Define diagonal shifts: 4 (+1) _ 7 77 t (forward)

(I—-ZA) P =T+ZA+Z2AV A+ Z3AC2AED A ...

example of unstable: .
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reconciling matrices and systems

Linear time-invariant systems have doubly infinite Toeplitz input-output operators:

TE) T—l T—2
T=". T @ T,
T, . T,
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zero dimensions: a necessary extension of

matrix

One row, no column:  [|]
One column, no row: [—]
No row, no column:  []
Multiplication rules: [|][—] = [0]; |
Unit of zero dimension: |-

(why? because [ - ][ - ]

Note: extends to more columns and row,
often abbreviated, asin[ —— — ] ~ [ —

N\
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theory

-] (dimensions must match)

=[-11

]!

embedding:




Past-present-future: the Hankel operator

the causal case: H, maps past inputs up to k-7 to future outputs from k on:

PAST IN FUTURE OUT

(present is part of future!)

past in ,
CkAk—lBk—Z CkBk—l Dk i
CinAAi By CinAiBi S Tk —1 Tk L2
Ck+2Ak+1AkAk—1Bk-2 Ck+2Ak+1AkBk—1 , ,
. : : Hk = Tlvc+l,k—1 Tk+1,k—2
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System identification: factoring the Hankel
operator

Given T, what is a minimal realization {A, B, C,D}?

The answer: it is given by a minimal factorization of each Hankel operator Hyy:

(generalized Kronecker theorem)

Ck
Crr1Ag
Hry = | CrioAnit Ak | o+ Ap_1Ag_oBr_3 Ap_1Bi_o Bp_1 |

reachability

observability operator R, at
operator O, at k

maps to state

state

maps to output

”A
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ldentification (2) and normal forms

C

Ok—l—lAk ] ) Rk — [ Ak—le—l Bk—l }

Remark: Oy = [

hence: C = |Oklr, Br = [Rii1le, A = O:Jrl[ok]m—l:oo

Input normal form: choose an orthonormal basis for all R,
then [Ak Bk] is co-isometric: A A, + BB, =1

Output normal form: choose an orthonormal basis for all O,

A
then [ ‘| will be isometric: A; Ay, + C/C, = 1

k

Change of basis (causal case):
Ak Bk

C. Dy

R.,AR, R.B,
CkRk D k

H x, =RXx, =
/‘“ﬂ“ k= Xy [
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Normalized from any minimal?

Solve a recursive Lyapunov-Stein equation:
e.g. to obtain the Output Normal Form

Rk_|_1ng_|_1 — AkRkRéAé -+ BkBé

(forward recursion)

Best method: R-Q factorization (square root algorithm):

ARy, Bl =0 Rpiq1]Qy
= =
Compress columns

1/-2 172 -1/2]

/ 21 3] Jo -2 222]
H, example: | o 1 117 lo o 3 -1/-/2  1/2  -=1/2
IAS ™ s \‘ \ O 1 / . E 1 / \E_



Institute for Advanced Study

Use a parallel processor:
(Gentleman-Kung array)

[Ak-Rk; Bk] Jacobi/Givens

rotations

Q (forward calculation,
stable when the system is stable)



What are the main system operations?

e System inversion!
— signal/system estimation (Kalman filter e.g.)

— stable system control

e System approximation!
— system simulation
— model order reduction
e System's eigenmodi!
* (needs system inversion)
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the main issue is...

how to invert a system in a stable way
very much related to the inversion of systems of equations: we'll
discover some new methods based on reachability and observability!

u
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C(I-ZA)'ZB.+D+C,(I-7ZA)"'ZB,
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with additional properties:

—

—

U Y
— —

inverse? or Moore-Penrose inverse?

- low quasi-separable complexity
- numerically stable operations (orthogonal transformations)
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warm up examples

half infinite systems:

1

-1/2

1
-1/2

1




examples (cnt'd)

easy to check:

L I
“1/2 1
“1/2 1

but
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but remark...

0 -1/2 -1/4

0 -1/2
0

(Toeplitz case...)

so what?



example (cnt'd)

1]
-2 1 . . .
is not invertible! Co-kernel: [1 1/2 1/4 ]
-2 1
0 -1/2 -1/4

It d h left i ;

oes have a left inverse 0 177

0

what is its right Moore-Penrose inverse?
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the solution?

To solve these problems, we need a new type of factorization:

oufer-inner factorization

. [
Causally co-

Causally left isometric
invertible

Causal case:

Toeplitz case: move zeros to outside the unit disc!

v T =U'RI

IAS \
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how to compute U and R from T?
A B
.

the "square-root algorithm" again... let 1T ~. [

A, B, A B

then U ~, and R~ can be computed by a
C, D, C D,

0 Y B

o

O O D

o

0

(forward) recursive R-Q factorization: [

AY C
BY D

in which Y'is a recursive intermediate diagonal with left inverse,

Q decomposes as 'Cn D, |
O=\4, By
Cy Dy

D, also has a left inverse, and the causal kernel of T is given by

P, D +C (I-ZA,)"'ZB,

IAS B



remarks on the sq. roots algorithm

* numerically stable (only orthogonal
transformations)

» the intermediate Yis actually Y = R,Ry, (i.e. the

cross-correlation between the reachabilities of A
and U).

* the algorithm goes forward, needs starting data
(empty for finite matrices)
* the outer factor may not be minimal.
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Which problems does this solve?

 the Kalman filter

e spectral factorization, the Wiener filter

e LU-factorization

e optimal control

 Moore-Penrose inversion of matrices

* the computation of kernels and ranges

* low complexity system inversion

/“/ﬁ \ fo be covered in the next lectures...
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Numerical issues

numerical conditioning of a problem: a system is badly conditioned, when
small perturbations in the input data causes large perturbations in the
output (assuming infinite precision).

forward stability of an algorithm: an algorithm is forward stable when
numerical errors in the computation cause only small errors in the result.

backward stability of an algorithm: an algorithm is backward stable, when
numerical errors in the computation can be corrected by small variations in
the input data (and exact mapping to the result).

many physical problems are inherently ill-conditioned — that is the
essence of scientific discovery! — will
allow good results when sufficient numerical accuracy is used.
The square-root algorithm is backward stable!

Traditionally, the problems detailed so far are solved via a Riccati

7PN\ equation: this is intrinsically numerically unstable.
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The simplest possible example of ill-
conditioning?

7 [smasinp [
sin(ax+ ) 0

IAS
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A concrete telecom example of a typical quasi-

separable case
The blind decorrelating Rake receiver for long-word WCDMA (Tong, vdVeen, PD)

decorrelating
matched filter to user 1
user 1
U optimal . code structure T's, with s the signal:
yin] comhxml:lllg ] — _?‘ —
Fubspace Dy
space § T
lestimatior / in
N \| /
A N
= to user K - § §
§ \' L‘ - l
N \
N N
X \ =
X
L

/.%
<
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structure of the code matrix and efficient
least-squares inversion

L
[“l] N Y1
L |
(] \! -
T —| || I ) o ) ‘ o
LN P T=Qnx--QiRxy- Ry T =8y -5, Q1 i
AA \ -
. — n R Q s
B —1 [ug} . = \ va o l \ Y1 y1 QF -
: R Q | S
Ad \‘. " " - y y QY o
us Rs - Qs - b £ ys ,Q”Ar Ss - = u3
A A 3
ys A
4 Qs Qr 2 L ya ’Q”A’ = - W
A A 4 i
= = Yo
g = L ys Ve lQr >
74
H much better than the traditional matched filter, both in accuracy and
7PN\

IAS i in complexity!



Envoy

it's a two way street:
matrices for systems
system theory for matrices
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