Kalman Filtering




The goal

Estimate the state of a system (presumably its model is known), given knowledge
of the statistics of past inputs and outputs

Method: least squares estimation (innovation method!)

x.,.=Ax.+Bu.
System model: { i+l i ii

y; =Cx; +v,

The goal: find estimate 5\61. for X given observations Y,V;s.--5Y, 4
and II, = Ex x|

Second order statistics:
- u;,V; noise vectors with positive def. covariances Euu; = Q,,Evy, =R,

- all'are uncorrelated over all time: Euu/, =0,Evy, =0for i = j,Euy’, =0 all i, j
Note: matrix correlations: -
X
Exy'=E|| : [Y1 yn] =[Exiyj]




The Kalman solution
1= Ai';ci +Kp,i(yi _Ci'%i)

where the “Kalman Gain” Kp ;

is found by the following recurrence:

K —KR R —Ri+CiPiC;aKi =A1P1C:

e’

—_ / ! !
Pi+1 — AiPiAi + BiQiBi - Kp,iRe,iKp,i
16 T X X the state innovation
herein:
!
P, =FEe e ,R,;=Ee e =R +CPC(

state and innovation covariances

Initial conditions: x, =0, P, =11,

Criticism: quadratic recursion, numerically unstable!



Working with innovations and Proof

The “Wiener Principle”: the innovations should be orthogonal on the observed data.
Step fromitoi+1:

Simplification: €..=X,—X;is already orthogonal on Yos 'Y
Strategy: let’s try to use only the most recent known data (linear combination):

X =X X, +Y,y,

forsome X.and Y,, and let us request that the new innovation is orthogonal just on
)Acl. (a linear combination of past data) and the new data (we’ll check that this is

sufficient): A
Eex,i+1xi =0 = Xi = Ai _YiCi
and

Eex,i+1y; =0 = Y(R +CPC) =AP(]

now identify K ,:=Y; and R,,:=R,+C,PC; and observe moreover (withe,;:=y,- ;)

—_— !/ — / /
€rin1 T Kp,iey,i =Ae.+Bu, =P+ Kp,iRe,iKp.i = A,PA; + B,Q.B,

to reproduce the Kalman formulas



Orthogonality check

Filling out the expressions for X; and X, we obtain:
Crivl = (Ai - Kp,ici)ex,i + Biui - Kp,ivi
(a useful expression for the innovation!)
Let now j<i. We should check that also Ee,,,y’; =0!
Given the hypothesis on the noise, this will be the case if already Ee, ;y’ =0.

For i=j+1 this is true by construction. It will hence also be true for
i=j+2 etc... and hence for all i>j recursively.



The square root algorithm

Instead of working with the covariances, we work with their “square roots”:
) 1/2 p'/12 . 1/2 1/2 p'/2
write Pl = Ri Ri with Ri lower triangular, and similarly P = ReiRe.l.
12 pli2y
(R” = (RI"))!

The Kalman formulas then produce the LQ square root algorithm (starting with
the first row —and with K,, =k, .R?):

CP'> R 0 - R 0 0
AR 0 BOZ[T |K,, PO

This formula is due to Kailath. Linear and numerically stable!




Connection to Inner-outer

The square root recursion is nothing else than an outer-inner factorization of
the original filter:

X.
i 1/2
v cy, R 0 R? 0 0
L R C 12 |Yi T |
AiYi 0 BiQi Kp,i Yi+l 0
Vi
U, = B.QW A
(inputs are normalized white noise)
¢xi+1
Inverse (estimation and innovation) filter:
Outer filter:
\L,)AC \L/)Aci
C, _ _C,
e Rl/? i v, e R_l-/z i ‘
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Outer-inner interpretation

We can view the first i stages of the original system as an operator T(:

Xo

all normalized white noise [

T(i)

II: yi=y,.

i+1

The outer-inner factorization gives globally:

(D) _ pyrtin
T =TU

with To(i) causally invertible. Hence the
overall covariance:

Ey(i)y(i)v _ T(i)T(i)| _ TO(i)TO(i)v

O N0
and [TO ] ¥y is the overall innovation
(a causal filter computing the innovation
from the given data).



Extensions

1. Smoothing
Estimate the state at time point i using data up to i+k
(happens often in telecommunications, e.g. GSM)
2. Non-linear systems: use differentials
3. Is it possible to estimate the system?
Not a well-conditioned problem in general, two solutions:
1. parametrized model estimation, using a learning sequence
2. model reduction on a high order model
If that does not work, estimate some characteristics, and use appropriate
statistics (spectral estimation, principal components, independent
components). This is more an art than a science!

Main application of Kalman filtering: model based control.



