# Kalman Filtering



## The goal

Estimate the state of a system (presumably its model is known), given knowledge of the statistics of past inputs and outputs

Method: least squares estimation (innovation method!)

System model: 
$$\begin{cases} x_{i+1} = A_i x_i + B_i u_i \\ y_i = C_i x_i + v_i \end{cases}$$

The goal: find estimate  $\hat{X}_i$  for  $X_i$  given observations  $y_0, y_1, \dots, y_{i-1}$  and  $\Pi_0 = \mathbf{E} x_0 x_0'$ 

Second order statistics:

- $u_i$ ,  $v_i$  noise vectors with positive def. covariances  $Eu_iu_i' = Q_i$ ,  $Ev_iv_i' = R_i$
- all are uncorrelated over all time:  $Eu_iu_i' = 0$ ,  $Ev_iv_i' = 0$  for  $i \neq j$ ,  $Eu_iv_i' = 0$  all i,j

Note: matrix correlations:

$$Exy' = E \begin{bmatrix} x_1 \\ \vdots \\ x_m \end{bmatrix} \begin{bmatrix} y_1 & \cdots & y_n \end{bmatrix} = \begin{bmatrix} Ex_i y_j \end{bmatrix}$$

#### The Kalman solution

$$\hat{x}_{i+1} = A_i \hat{x}_i + K_{p,i} \left( y_i - C_i \hat{x}_i \right)$$

where the "Kalman Gain"  $\,K_{p,i}\,$ 

is found by the following recurrence:

$$K_{p,i} = K_i R_{e,i}^{-1}, R_{e,i} = R_i + C_i P_i C_i', K_i = A_i P_i C_i'$$

$$P_{i+1} = A_i P_i A_i' + B_i Q_i B_i' - K_{p,i} R_{e,i} K_{p,i}'$$

herein: 
$$\begin{cases} e_{x,i} = x_i - \hat{x}_i & \text{the state innovation} \\ P_i = \mathrm{E} e_{x,i} e'_{x,i} \ , R_{e,i} = \mathrm{E} e_{y,i} e'_{y,i} = R_i + C_i P_i C'_i \end{cases}$$

state and innovation covariances

Initial conditions:  $\hat{x}_0 = 0$ ,  $P_0 = \Pi_0$ 

Criticism: quadratic recursion, numerically unstable!

#### Working with innovations and Proof

The "Wiener Principle": the innovations should be orthogonal on the observed data.

#### **Step from** *i* **to** *i***+1**:

Simplification:  $e_{x,i} = x_i - \hat{x}_i$  is already orthogonal on  $y_0, \dots, y_{i-1}$ . Strategy: let's try to use only the most recent known data (linear combination):

$$\hat{x}_{i+1} = X_i \hat{x}_i + Y_i y_i$$

for some  $X_i$  and  $Y_i$ , and let us request that the new innovation is orthogonal just on  $\hat{x}_i$  (a linear combination of past data) and the new data (we'll check that this is sufficient):

$$Ee_{x,i+1}\hat{x}_i' = 0 \implies X_i = A_i - Y_iC_i$$

and

$$Ee_{x,i+1}y'_i = 0 \implies Y_i(R_i + C_iP_iC'_i) = A_iP_iC'_i$$

now identify  $K_{p,i} := Y_i$  and  $R_{e,i} := R_i + C_i P_i C_i'$  and observe moreover (with  $e_{y,i} := y_i - \hat{y}_i$ )

$$e_{x,i+1} + K_{p,i}e_{y,i} = A_ie_{x,i} + B_iu_i \Rightarrow P_{i+1} + K_{p,i}R_{e,i}K'_{p,i} = A_iP_iA'_i + B_iQ_iB'_i$$

to reproduce the Kalman formulas

## Orthogonality check

Filling out the expressions for  $x_i$  and  $\hat{x}_i$  we obtain:

$$e_{x,i+1} = (A_i - K_{p,i}C_i)e_{x,i} + B_iu_i - K_{p,i}v_i$$

(a useful expression for the innovation!)

Let now j < i. We should check that also  $Ee_{x,i+1}y'_j = 0$ !

Given the hypothesis on the noise, this will be the case if already  $Ee_{x,i}y'_j = 0$ . For i=j+1 this is true by construction. It will hence also be true for i=j+2 etc... and hence for all i>j recursively.

## The square root algorithm

Instead of working with the covariances, we work with their "square roots":

write 
$$P_i=R_i^{1/2}R_i^{'/2}$$
 with  $R_i^{1/2}$  lower triangular, and similarly  $P_{e,i}=R_{e,i}^{1/2}R_{e,i}^{'/2}$  
$$(R_i^{'/2}=(R_i^{1/2})')!$$

The Kalman formulas then produce the LQ square root algorithm (starting with the first row – and with  $\overline{K}_{p,i} = K_{p,i} R_{e,i}^{1/2}$ ):

$$\begin{bmatrix} C_i P_i^{1/2} & R_i^{1/2} & 0 \\ A_i P_i^{1/2} & 0 & B_i Q_i^{1/2} \end{bmatrix} U_i = \begin{bmatrix} R_{e,i}^{1/2} & 0 & 0 \\ \overline{K}_{p,i} & P_{i+1}^{1/2} & 0 \end{bmatrix}$$

This formula is due to Kailath. Linear and numerically stable!



#### Connection to Inner-outer

The square root recursion is nothing else than an outer-inner factorization of the original filter:



$$\begin{bmatrix} C_{i}Y_{i} & R_{i}^{1/2} & 0 \\ A_{i}Y_{i} & 0 & B_{i}Q_{i}^{1/2} \end{bmatrix} U_{i} = \begin{bmatrix} R_{e,i}^{1/2} & 0 & 0 \\ \overline{K}_{p,i} & Y_{i+1} & 0 \end{bmatrix}$$

(inputs are normalized white noise)

Outer filter:



Inverse (estimation and innovation) filter:



### Outer-inner interpretation

We can view the first i stages of the original system as an operator  $T^{(i)}$ :



The outer-inner factorization gives globally:

$$T^{(i)} = T_o^{(i)} U^{(i)}$$

with  $T_o^{(i)}$  causally invertible. Hence the overall covariance:

$$Ey^{(i)}y^{(i)} = T^{(i)}T^{(i)} = T_o^{(i)}T_o^{(i)}$$

and  $\left[T_o^{(i)}\right]^{-1}y^{(i)}$  is the overall innovation (a causal filter computing the innovation from the given data).

#### **Extensions**

1. Smoothing

Estimate the state at time point *i* using data up to *i+k* (happens often in telecommunications, e.g. GSM)

- 2. Non-linear systems: use differentials
- 3. Is it possible to estimate the system?

Not a well-conditioned problem in general, two solutions:

- 1. parametrized model estimation, using a learning sequence
- 2. model reduction on a high order model

If that does not work, estimate some characteristics, and use appropriate statistics (spectral estimation, principal components, independent components). This is more an art than a science!

Main application of Kalman filtering: model based control.