Special role for "inner" operators

Definition: V is inner when causal, unitary (respect. conjugate inner)

Property: operators with state representations $\begin{bmatrix} A & B \\ C & D \end{bmatrix}$ such that

- (1) spectral radius $\sigma(AZ) < 1$ hence bounded inverse (*I-AZ*)⁻¹
- (2) $\begin{bmatrix} A & B \\ C & D \end{bmatrix}$ unitary

are inner (spectral radius of AZ is $\lim_{n\to\infty} ||(ZA)^n||^{1/n}$)

- For "uniformly exponential stable systems" (i.e. systems with $\sigma(AZ) < 1$) we have a special role for inner operators:
- (1) Put T in output normal form, then there exists an inner V such that T'V is causal actually, a realization for V is found by unitary completion of the observability data: $V \approx \begin{bmatrix} A & B_V \\ C & D_V \end{bmatrix}$
- (2) [Square root algorithm] Given T with ker(T)=0, then there exists an inner V, such that $T = V \begin{bmatrix} T_o \\ 0 \end{bmatrix}$, V inner and T_o outer (i.e. has causal inverse)

Inner-outer factorization

The LTI (Linear time invariant) case for stable transfer functions

Example:

$$T(z) = \frac{3-z}{1-\frac{1}{2}z} = \frac{3-z}{1-\frac{1}{3}z} \frac{1-\frac{1}{3}z}{1-\frac{1}{2}z}$$
inner outer

General property (Beurling): $T(z) = U(z)T_o(z)$ with U(z) causal unitary and $T_o(z)$ causally invertible

This generalizes to TV (Time-varying) systems: $T = UT_{o,r}$ with U causal isometric and $T_{o,r}$ causally right-invertible to get invertibility, one needs also a right factorization: $T_{o,r} = T_oV$ now, V is co-isometric and T_o causally invertible (compare with ULV factorization: same thing!)

Factorizations are found with the square root algorithm (see further)!

Geometric interpretation

```
Scalar LTI systems (Hardy theory)!
     General input space: \mathcal{L}_2 = time series that are square summable,
                                  "causal series": \mathcal{L}_2(0,+\infty)
     Fourier transform: H_2 = functions analytic in the unit disc, uniformly square
                                  integrable on circles of the type re^{j\vartheta} with r \le 1
                                  are Fourier Transforms of causal series
     Causal system: TH_2 is contained in H_2, Beurling shows: TH_2 = UH_2
                                  for some inner U (pure phase function)
                                  (the upper bar means "closure" = "take limits")
                                  Hence: \overline{U'TH_2} = H_2 \Rightarrow U'T = T_o is causally invertible
                 TH_2 = UH_2
past
                                         future (H_2)
```

The TV case

No more Fourier transforms, zeros or poles! What then?

When
$$\begin{bmatrix} A & B \\ C & D \end{bmatrix}$$
 is isometric, then $T \approx \begin{bmatrix} A & B \\ C & D \end{bmatrix}$ is isometric as well!
The realization can be completed to unitary: $\begin{bmatrix} A & B & B_W \\ C & D & D_W \end{bmatrix}$

then
$$\begin{bmatrix} U & W \end{bmatrix} \approx \begin{bmatrix} A & B & B_W \\ C & D & D_W \end{bmatrix}$$
 will be inner iff spectral radius $\sigma(AZ) < 1$ (otherwise just isometric still!)

Generalized Beurling theorem: $T = UT_{o.r.}$

with U isometric and $T_{o,r}$ right causally invertible (because $\overline{T_{ox}}$ "future" = "future"!)

inner-outer = square root algo.

$$T_{o,r} = U'T$$
 tries to take out the isometric part

$$\begin{split} T_{o,r} &= U'T & \text{tries to take out the isometric part} \\ T_{o,r} &= \left[D_U' + B_U' (I - Z'A_U')^{-1} Z'C_U' \right] \left[D + CZ(I - AZ)^{-1} B \right] = \\ &= D_U'D + B_U' (I - Z'A_U')^{-1} Z'C_U'D + D_U'CZ(I - AZ)^{-1} B + \\ &+ B_U' \left\{ (I - Z'A_U')^{-1} Z'C_U'CZ(I - AZ)^{-1} \right\} B \\ &= (I - Z'A_U')^{-1} Z'A_U'Y + Y + YAZ(I - AZ)^{-1} & \text{partial fraction! Dichotomy!} \\ & \text{where } ZYZ' = C_U'C + A_U'YA \end{split}$$

Require upper part to be zero: $C'_{IJ}D + A'_{IJ}YB = 0!$

Produces:
$$T_{o,r} = (D_U'D + B_U'YB) + (D_U'C + B_U'YA)Z(I - AZ)^{-1}B := D_o + C_oZ(I - AZ)^{-1}B$$

Component-wise backward square root QR-algorithm computes the matrices:

$$\begin{bmatrix} Y_k B_k & Y_k A_k \\ D_k & C_k \end{bmatrix} = \begin{bmatrix} B_{U,k} & A_{U,k} & B_{W,k} \\ D_{U,k} & C_{U,k} & D_{W,k} \end{bmatrix} \begin{bmatrix} D_{o,k} & C_{o,k} \\ 0 & Y_{k-1} \\ 0 & 0 \end{bmatrix} \quad \text{QR-factorization} \quad \text{(note: } \ker(\bullet D_{o,k}) = \ker(\bullet Y_{k+1}) = 0\text{)}$$
 Result:
$$T = \begin{bmatrix} U & W \end{bmatrix} \begin{bmatrix} T_o \\ 0 \end{bmatrix}, T_o \approx \begin{bmatrix} A & B \\ C_o & D_o \end{bmatrix}, \begin{bmatrix} U & W \end{bmatrix} = \begin{bmatrix} D_U & D_W \end{bmatrix} + C_U Z (I - A_U Z)^{-1} \begin{bmatrix} B_U & B_W \end{bmatrix}$$