
Large-Scale Linear Computations With Dedicated Real-Time

Architectures

Patrick Dewilde and Klaus Diepold
Technische Universität München

Abstract

Signal processing algorithms are intimately related with numerical linear algebra. The ef-
ficient implementation of such algorithms on dedicated real-time architectures requires a good
understanding of the interplay between algorithms and architectures. The family of algorithms
based on the QR decomposition of a coefficient matrix serves as a key example to review this
interplay. We demonstrate how the technical requirements of efficient computing architectures
influences the choice of algorithmic options as well as the algorithmic properties have an in-
fluence on the specifics of computing architectures. We discuss application examples, which
benefit from the interplay between algorithms and real-time architectures. The presented QR-
based computational framework also allows to present an elegant way to formulate the Kalman
filtering approach starting with a computational viewpoint. Although the paper may present
original or not so well known viewpoints, it is mostly of a tutorial nature.

1 Introduction

Understanding the connection between algorithms and solvers for large scale systems on the one
hand, and appropriate architectures that execute them efficiently on the other is key to the effective
design of modern signal processing applications. This trend has started with the emergence of digital
media, large scale signal processing for image coding and analysis, digital mobile telephony and
digital processing in medical imaging. In many cases dedicated, hardware or software dominated
methods on a single processor have been used, only in recent times more generic methods based on
general purpose array architectures, either dedicated to media processing or for general computing
have become realizable. Massive use of parallelism becomes attractive and should, in the future,
allow us to tackle large scale problems in a streamlined fashion. It is no exaggeration to state that
this trend was started a long time ago when Georg Färber proposed parallel processing schemes
for signal processing and control using coprocessors on standard busses and proceeded to prove his
ideas in practice, thereby creating a company that set a standard in the field [7] - he was clearly
many decades ahead of the field!

In this contribution to this volume to honor the attainment of the status of ’Professor Emeritus’ by
Georg Färber, we review a number of what we consider very attractive cases where the connection
between algorithm and executing architecture proves to be very effective. Luckily, these cases handle

1

some of the most important algorithms in numerical linear algebra. The resulting combination
algorithms-architectures brings the fields of signal processing and linear algebra together, a dream
that has been somewhat elusive over the years, because programming paradigms and hardware
design methods were not well adapted to each other. Work has to be done, both at the side of the
choice of algorithm and at the side of the architectural design. Although we cannot go into the
details of neither the most sophisticated algorithms nor the details of the design methodology, we
can easily illustrate the principles. Essential is the combination of the choice of algorithm with the
architectural consequences, the designer handles algorithm and architecture at the same time, to
achieve a result in which both sides are optimally adapted on each other.

An important issue in signal processing is numerical stability and robustness of the algorithms used.
The system designer should not deteriorate the numerical properties of his problem by introducing
computational steps that degrade the conditioning and hence the quality of the computed results.
The conditioning of a problem is defined as a measure of the sensitivity of the result to variations of
the input data, or more precisely, how much errors in the input data are propagated to the output
by the implemented mathematical function.

Jacobi’s QR factorization is one of the numerical algorithms, which exhibits very favorable nu-
merical properties, which it combines with great opportunities for parallelization [17]. The QR
factorization sits at the core of solutions for many important technical problems: the solution of
linear equations, channel estimation and signal identification in telecommunication, Kalman fil-
tering (in the square root version) and H-infinity control. It also represents a core function in an
iterative loop for computing eigenvalue and singular value decompositions (abbreviated as EVD and
SVD, respectively). Although the QR factorization is used a lot, often hidden in embedded soft-
ware, it is not as well known as it deserves. To honor Jacobi, we start the paper with a description
of the algorithm, and an account of its main applications.

The matrices associated with real technical problems exhibit often special structural properties.
These properties are exploited by an alternative class of algorithms for improved performance or
for reduced computational complexity. Foremost for large system solvers are the iterative algorithms
used to handle e.g. sparse matrices. We give an account of some of the major methods and the
resulting architectures. Structure also plays a role in direct solvers. A very important type of
structure is called ’semi-separable’ or ’quasi-separable’ (the terminology has not stabilized.) Here,
both direct and iterative methods play a role, we give a brief account.

To connect algorithms to architectures, we make systematic use of ’data flow graphs’, sometimes
called dependence or precedence graphs. These are actually generalizations of the signal flow graphs
classically used in the signal processing literature. They have been adopted in commercial design
packages [2] and give the designer a convenient way to control the parallelization process without
having to resort to complicated and often wieldy design tools.

2

2 Algorithms and Architectures

2.1 Technical Applications of Numerical Linear Algebra

Solving linear systems of equations or computing a least squares solution for an overdetermined
system of equations belong to the most common computational tasks in science and engineering.
Engineered products and services are relying on the capability of real-time systems to solve such
problems fast, accurate and in a robust way. Examples for this statement are Kalman-filtering [20],
rake-receivers in mobile communications [38], adaptive channel equalizers, adaptive beamforming
[34], in stereo vision systems [19], to name just a few. Another set of applications using linear
systems of equations originates from CAD tools and circuit simulators [9], structural analysis using
finite element methods or partial differential equations [37].

Researchers in the domain of Numerical Linear Algebra have worked since the dawn of the modern
computer on devising effective numerical methods for solving systems of equations of ever increasing
dimension. Therefore, we suffer no shortage of published results and practical implementations of
system solvers, which are readily available and widely used in terms of highly optimized software
packages such as the LINPACK, LaPACK or IMSL libraries, as well as in software packages like
Matlab, Mathematica, Octave, or Scilab.

2.2 Dense Matrices and Direct Algorithms

Direct solution schemes use factorizations of the coefficient matrix, which allow to map the original
problem on a problem involving a triangular matrix. Examples are the LU factorization T = L ·U
for a square coefficient matrix T and the lower and upper triangular factors L and U , respectively.
For a symmetric positive definite coefficient matrix (prime indicates transpose) T = T ′, T > 0 we
can compute the Cholesky factorization T = R ′ · R, where R is upper triangular. Note that both
factorizations require pivoting schemes to achieve numerical stability [17]. Pivoting is an effective
method to improve numerics, but it destroys the regular data flow because of additional control
structures and branching.

Factorization algorithms, which are based on orthogonal elementary operations, such as the QR
decomposition, satisfy the need for numerically reliable computations without resorting to pivoting
[17]. A solution strategy which computes the QR-decomposition of the coefficient matrix using
elementary Jacobi (Givens) rotations has the added benefits to be amenable for parallelization on
highly local and regular architectures.

Solving dense systems of linear equations takes O(n3) operations [17], where n denotes the size of
the coefficient matrix. This computational effort may be overwhelming in case of large n. In many
signal processing applications the matrices involved may have moderate values for n, for which the
computational burden may be challenging for real-time application, but they comprise ’structure’,
that is, the matrices have only O(n) parameters. The structure in the matrix allows for solution
algorithms, which require only O(n2) operations. Typical examples for such structured matrices
are diagonal matrices or Toeplitz or Hankel matrices [24].

3

2.3 Square-Root and Array Algorithms

Real-time computer systems gain additional advantages in terms of numerical robustness and reli-
ability if the implemented algorithms operate directly on the data of the coefficient matrix instead
of setting up normal equations. Computing the normal equation squares the condition number of
the problem; this leads to a dramatic loss in precision for the result, if the coefficient matrix is
badly conditioned and hence more sensitive to rounding errors and other imperfections of finite
word length computations. Algorithms which work directly on the data are often referred to as
’square-root algorithms’, because they avoid ’squaring’ the data when determining the covariance
matrices that come with approaches based on solving the normal equation. The combination of
’square-root’ approaches and orthogonal elementary transformations leads to a family of so-called
’array’ algorithms, which exploit an elementary identity known as Schur-complements and which
are highly suitable for being mapped onto parallel computer architectures [31], [25].

2.4 Algorithms and Architectures

Applications running on real-time computer systems require that computations are completed with
a pre-determined deadline, that the results are computed in a reliable way having an accuracy
that is robust against perturbations and noise. Furthermore, favorable algorithms shall provide
a high level of locality and parallelism [28]. For large scale real time architectures it would be
very attractive to dispose of a generic high level algorithm that at the same time solves major
problems, and at the other is amenable to real time realization, utilizing the available resources to
a maximum. The requirements one can put on such an algorithm are:

• parametrizable: the algorithm should be able to handle problems of any size, even though the
available resources are limited;

• numerically accurate: the algorithm should be numerically backward stable with errors close
to the conditioning of the problem;

• parallelizable: there should be a natural way to partition the algorithm in chunks that operate
in parallel and can be mapped to the underlaying architecture;

• localizable: both data transport and memory usage should be highly local, no massive storage
needed during the algorithm nor massive data transport or data manipulation;

• generic: the algorithm should be able to handle many if not most large scale computations -
much like multiplication and addition, which can handle most numerical problems as well;

• incremental: when additional data becomes available, the algorithm gracefully adapts.

3 The QR Algorithm As A Generic Method

The algorithm for computing the QR factorization was originally proposed by Jacobi and is an
excellent candidate algorithm to satisfy the requirements list given in the previous section. We

4

start with a description of the algorithm, followed by a methodology to derive attractive, real-
time architectures for it. We stop at the architectural level, but enough detail of the strategy will
transpire to allow for attractive, concrete realizations.

3.1 The QR algorithm

The most attractive way to present QR is on a very common example. Suppose T is a rectangular,
tall matrix of dimension m × n, y a given vector of dimension m and suppose we are interested
in finding a vector u of dimension n such that Tu is as close as possible to y (we assume real
arithmetic throughout. With slight modifications complex arithmetic or even finite field calculations
are possible as well but beyond our present scope.) Numerical analysts call such a problem ’solving
an overdetermined system’. It occurs in a situation where u is a set of unknown parameters, row
i of T consist of noisy data, which, when combined linearly with u produce the measured result
yi. The situation occurs very often in measurement setups, where repeated experiments are done
to reveal the unknown parameters, or in telecommunication where transmitted signals have to be
estimated from the received signals (we omit the details.) The most common measure of accuracy
is ’least squares’, for a vector u with components ui we write

‖u‖2 =

√√√√ n∑
i=1

|ui|2 (1)

There may be more than one solution to the minimization of ‖Tu− y‖2, often one is interested in
the least squares, so one tries to solve

umin = argminw‖(w = argminu‖Tu− y‖2)‖2 (2)

the actual minimum being the estimation error. The strategy is to perform a QR decomposition of
T . The matrix Q has to be an orthogonal matrix (a generalized rotation), which keeps the norm
of the vectors to which it is applied, while R should be an upper triangular matrix. Let Q ′ be the
transpose of Q, then orthogonality means Q ′Q = QQ ′ = I, Q ′ is actually the reverse rotation.
Let us just assume that Q and R can be found (see further), and let us apply Q ′ to y, to obtain
η = Q ′y, then we have QRu = y and hence Ru = Q ′y = η. R has the same dimensions as T ,
meaning that it is a tall matrix. It is also upper triangular, meaning that it has the form

R =

[
Ru
0

]
(3)

in which Ru is now n× n square and upper triangular. We find that the solution u must minimize

‖(
[
Ruu

0

]
− η)‖2. (4)

If we partition η =

[
η1
η2

]
with η1 of dimension n, we see that the minimal solutions must satisfy

the square system Ruu = η1 and that η2 certainly contributes wholly to the error, there is nothing
we can do about it. If Ru is non-singular, i.e. if the original system has a full row basis, then
the solution will be unique, i.e. u = R−1u η1 and the error will be ‖η2‖2. If that is not the case,

5

further analysis will be necessary, but the dimension of the problem is reduced to n, the number
of parameters, from m, the number of measurements (usually much larger.) It may appear that
the QR factorization step is not sufficient, it has to be followed by a ’back substitution’ to solve
Ruu = η1, but this difficulty can be circumvented (see further.) Here we want to concentrate just
on the QR step and its possible architectures.

3.2 The Basic Step: Jacobi Rotations

The elementary Jacobi matrix is a rotation over an angle θ in the 2D plane (for convenience we
define Q ′):

Q ′ =

[
cos θ sin θ
− sin θ cos θ

]
(5)

Let’s abbreviate to Q ′ =

[
c s
−s c

]
and apply the rotation to two row vectors:

[
c s
−s c

] [
a1 a2 · · · an
b1 b2 · · · bn

]
=

[√
a21 + b21 ca2 + sb2 · · ·

0 −sa2 + cb2 · · ·

]
(6)

which is achieved by choosing c = a1√
a21+b

2
1

, s = b1√
a21+b

2
1

(and hence automatically tan θ = b1
a1

.) In

this way one can treat the entries of the original matrix T row by row and create all the zeros below
the main diagonal. With a 4× 3 matrix this works as shown below. The only thing one must do is
embed the 2× 2 rotation matrices in the 4× 4 schema, so that unaffected rows remain unchanged.
We label the rotation matrices with the indices of the rows they affect - we indicate affected entries
after each step with a ?:
· · ·
· · ·
· · ·
· · ·

 Q ′
1,2−→

? ? ?
0 ? ?
· · ·
· · ·

 Q ′
1,3−→

? ? ?
0 · ·
0 ? ?
· · ·

 Q ′
1,4−→

? ? ?
0 · ·
0 · ·
0 ? ?

 Q ′
2,3−→

· · ·
0 ? ?
0 0 ?
0 · ·

 Q ′
2,4−→

· · ·
0 ? ?
0 0 ·
0 0 ?

(7)

and the final step is a Q ′3,4 which annihilates the 4, 3 entry. In each of these subsequent steps, the
first operation determines the rotation matrix and then applies it to all the entries in the respective
rows, skipping the already computed zero entries (which remain zero.) The overall rotation matrix
is then Q = Q1,2Q1,3Q1,4Q2,3Q2,4Q3,4. In most cases it need not be put in memory (and if so there
are tricks.) It turns out that this algorithm leads to a very regular computational schema, now
known as the ’Gentleman-Kung array’, which we discuss in the next section.

The result of a QR factorization need not be in strict triangular form, the actual more general
form is called an i.e., echelon form. It may happen that in the course of the algorithm, when the
processor moves from one column to the next, an actual sub-column of zeros is discovered. In that
case no rotation is necessary and the processor can move to the next sub-column, which again
might be zero etc... until a sub-column is reached with non zero elements. The result will then
have the form shown in fig. 1. The QR algorithm compresses the row data of the matrix in the
North-East corner, leaving the norm of each relevant sub-column as leftmost non zero element.
There is a dual version, called the LQ algorithm that compresses the columns in the South-West
corner, and one can of course also construct versions for the other corners (but these will not bring

6

much additional information.) One can take care of the zero or kernel structure exemplified by
the QR or LQ algorithms by testing on zero inputs when Jacobi rotations are applied, this can be
arranged for automatically, we shall henceforth just assume that these provisions have been taken.

€

0 * • • • • • •

0 0 0 0 ∗ • • •

 0 0 0 0 0 * •

 0 0
0 0 0 0 0 0 0 0

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

Figure 1: Example of an echelon form. Elements indicated with a ’?’ are strictly positive. The QR
algorithm compresses the rows to the North-Eastern corner of the matrix and generates a basis for
the rows of the matrix.

3.3 The Gentleman-Kung Array

An important step for connecting the algorithmic information with potential architectures is the
definition of a ’dependence graph’, sometimes called a ’sequencing graph’. The graph exhibits
operations as nodes and data transport as dependencies between nodes. In the case of the QR
algorithm just defined, we have two types of operations: Type 1 consists in the computation of
sine and cosine of an angle given two values (say a and b) and the subsequent rotation of these
two values to

√
a2 + b2 and 0, while the second operation just applies the rotation to subsequent

data on the same rows. The array is upper triangular, for each position (i, j) in the upper part of
the resulting matrix Ru there is one processor, the processors on the diagonal are of the first type,
while the others are of the second type. Angle information is propagated along the rows, while the
data is inputed, row by row, along the columns. It gives a precise rendition of the operation-data
dependencies in the original algorithm. From the view of a compiler, the graph represents a ’Single
Assignment Code (SAC)’ rendition of the original algorithm, there is no re-use neither of operations
nor of memory elements. Actually, the local memory in this representation is reduced to the end
result, the ri,j of the final matrix, one per processor, all other data is communicated either from
the environment to the area, or from one processor to the next. In this algorithm, some data can
actually be ’broadcast’, namely the information about the angles (ci, si), along the rows, it might
not be a bad idea to make special arrangements for this. The array shows what the architecture
designer has to know about the algorithm. If only the type of the various data is specified and the
operation in each node, he has enough information to design the architecture - we describe briefly
what the architecture designer can do next in a further section, but before doing so we show how
various standard problems can be solved with the array or interesting extensions of it.

7

r11	 r12	 r13	 r1n	

r22	 r23	 r2n	

r33	 r3n	

rnn	

...	

...	

...	

...
	

rows	 of	 T,	 one	 a0er	 the	 other	

c1,s1	

c2,s2	

c3,s3	

Figure 2: The Gentleman-Kung or Jacobi array. The squares represent ’vectorizing rotors’, they
compute the Jacobi angle information from the data and perform the first rotation, the circle are
’rotors’, they rotate a two-dimensional vector over the given angle.

4 Architecture Design Strategies For Parallelization Of The QR
Algorithm

Once a high level algorithm can be represented as a regular array, in which nodes represent op-
erations and arrows data transport, the issue arises how these operations and data can best be
mapped to an architecture consisting of actual processors, memories, busses and control. In the
following sections we shall see that (extensions) of the Gentleman-Kung array succeeds in solving
major problems of linear algebra, estimation and control. These problems may have any dimension,
they are parametrized by their size, often indicated as n. It seems logical that the most attractive
type of concrete architecture to map to would be an array itself, consisting of processing nodes
that contain provisions for the necessary operations (in our case vectorization and rotation), local
memory in each processor for intermediate results, and an infrastructure surrounding the array,
whose task it is to provide the array with data and to collect results when they become available.
Such a processor array will typically have a small dimension, e.g. 3 × 3 to mention a commercial

8

size. So the issue becomes the mapping of an arbitrarily (parametrized) SAC array onto potential,
architecturally viable sizes. When the computational array is regular, this assignment can be done
in a regular fashion as well. As data transport becomes a paramount issue in performance, it
becomes important to use local memory as much as possible. The architectural problem becomes
in the first place a problem of efficient memory usage, or, to put it more simply, to perform the
partitioning and mapping to resources of the original array in such a way that local memory is fully
used before data are sent to background memory. We can offer two general partitioning strategies
to achieve this feat, whose combination allows to first exhaust local memory and then map well
chosen remainder to background. They have been called with various names in the literature, here
we call them ’LPGS’ and ’LSGP’ - for ’Local Parallel Global Sequential’ and ’Local Sequential
Global Parallel’ [6]. We suffice here to describe these two strategies, there are many more, more
detailed ones, but these would go beyond the scope of the present paper.

In each of the two strategies, the original array will first be ’tesselated’, i.e. decomposed in tiles.
Although not strictly necessary, we shall assume our tiles to be square, just to illustrate the methods.
In a first approach, we have two choices: either we choose the tiles so big that the total array of tiles
actually equals the processor array we envisage, and then we map each tile just to one processor,
or we take tiles so large that they are exactly isomorphic to the processor array. The first strategy
is LSGP - the operations within one tile will be executed sequentially on one processor. As a
consequence of this strategy, the intermediary data that is produced by one operation either has to
be mapped to local memory (if the operation that shall use the data belongs to the same tile) or
it has to be shoveled to background memory (if the operation that shall use the data is in another
tile.) Clearly, LSGP will use a lot of local memory and only be feasible if the size of the tiles are
small enough so that all local intermediary results can also be stored locally. The opposite strategy
is LPGS. Here the size of the tile would be chosen exactly equal to the size of the processor array,
and the only local storage needed is what was already assigned to the individual nodes, all the rest
goes to the background memory. The two strategies are illustrated in fig. 3 and fig. 4 respect.

What could then be an optimal strategy? The solution is almost obvious: choose tiles so big that
LSGP is feasible on them, condensate the operations and then use LPGS on the result - LSGP by
choice followed by LPGS by necessity.

5 Solving Problems With A QR Array

5.1 One Pass Equation Solver: The Faddeev/Faddeeva Array

To obtain a direct, one pass solution for the system of linear equations Ty = u using a modification
of the Gentleman-Kung array, one just has to perform QR on the following, extended matrix (we
use · ′ to indicate the transpose of a matrix, namely T ′i,j := Tj,i) [22]:

F :=

[
T ′ I 0
−u ′ 0 1

]
(8)

Instead of having a tall matrix as in the original Gentleman-Kung array, we now have a flat one,
the only thing we must do is extend the algorithmic array with a number of rotors to the right hand

9

Figure 3: The ’Local Sequential, Global Parallel’ strategy: the array is partitioned in subarrays,
the partitions are mapped to the processor array.

side. The dimensions have also increased, it is now a processor array of dimensions (n+1)×(2n+1),
with only (n+1) vectorizing rotors on the main diagonal, but otherwise just a similar regular array
as before, now rectangular. The Q matrix will now have dimensions (n + 1) × (n + 1), and to
amplify this we partition it accordingly:

Q =

[
Q11 q12
q21 q22

]
(9)

In this representation, q12 is a tall vector of dimension n, q21 a flat vector of dimension n and
q22 just a scalar quantity. One can immediately verify that the QR factorization of this matrix
produces: [

T ′ I 0
−u ′ 0 1

]
= Q

[
R Q ′11 q ′21
0 y ′q22 q22

]
(10)

in which R is some matrix (which we do not use further), and the result appears as the pair
(y ′q22, q22). One interprets q22 as a normalizing factor, it is actually equal to 1/

√
1 + ‖y‖2 flowing

out of the array.

5.2 Channel And Signal Estimation In Telecommunications

The typical equation governing a telecommunication situation has the form

x = h ∗ s+ n. (11)

10

Figure 4: The ’Local Parallel, Global Sequential’ strategy: tiles are mapped directly on the pro-
cessor array and executed sequentially.

Herein x is the received signal, h represents the channel, s the signal to be transmitted and n
the noise. All these can be viewed as ’signals’, in the most current situation they are functions of
time. ′∗ ′ is convolution, it represents the action of a channel on an input signal, convolution being
typical for a linear, time-invariant (LTI) situation wherein the output is the sum of similar responses
modulated by the signal and shifted according to their occurrence. The technical situation is often
pretty complicated, but from a numerical point of view, relating original input sequences to the
output, the overall model can be captured by two equivalent equations:

1. The channel estimation model x = Sh+ n, in which

S =

s0
...

. . .

sK−1 s0
. . .

...
sK−1

 , h =

 h0
...

hL−1

 , (12)

2. The signal estimation model x = Hs+ n, in which

H =

h0
...

. . .

hL−1 h0
. . .

...
hL−1

 , s =

 s0
...

sK−1

 . (13)

11

s is now a sequence of original symbols that are being transmitted (we assume them to be real
numbers), h is the impulse response of the transmission medium and n is the overall ’noise’ being
added at each reception (the noise is a combination of interferences and processing noise.) The first
situation is the ’training’ part, in which we assume that s is known while h has to be estimated, the
system is adapting to the transmission situation by using a learning signal. In the second situation
knowledge about the channel is assumed and it is used to transmit information s that has to be
estimated.

Classical estimation theory provides a number of techniques, called ’Best Linear Unbiased Estimator
- BLUE’, ’Minimum Variance Unbiased Estimator - MVU’, ’Maximum Likelihood Estimator -
MLE’ and even Bayesian estimators, such as the ’Linear Minimum Mean Square Error Estimator -
LMMSE’. Most popular are BLUE and LMMSE, which we briefly pursue. In the case of the channel
estimator, assume the noise to have covariance σ2I and the signal matrix S to be sufficiently rich so
as to have full row rank, then optimization theory shows that the BLUE and least square estimators
are given by

ĥ = (S ′S)−1S ′x. (14)

(S ′S)−1S ′ is the so called Moore-Penrose inverse of S. This is precisely the situation we have
described in the section on QR-factorization. Indeed, when S = QR, then (S ′S)−1S ′ = R−1Q ′, we
have called Q ′x = η1 and we find the result ĥ = R−1η1 - exactly the algorithm presented earlier.
There is also a one-pass version, due to Jainandunsing and Deprettere [22].

The data situation is not much different. In the BLUE situation and with the white noise assump-
tion in force, the signal estimator becomes

ŝ = (H ′H)−1H ′x (15)

and a QR factorization of H will produce the result.

If a so-called Bayesian estimator is desired, then known covariance information on the the result
has to be brought into play. The formulas get to be a little more complicated, for example

ŝ = (H ′H + σ2C−1s)H ′x (16)

for the data estimator (in which Cs is the assumed known covariance of s (this may purely be belief
data!). Also in this case the QR factorization is the way to go, as H ′H = R ′R and H ′x = R ′η1
with η1 defined as before. Typically, the R matrix will be much smaller than the H matrix, the
former has the size of the data vector, while the size of the latter is determined by the number of
experiments.

5.3 The Kalman Filter

The Kalman estimation filter attempts to estimate the actual state of an unknown discrete dynam-
ical system, given noisy measurements of its output, for a general introduction see Kailath [23], see
also Kailath, Sayed and Hassibi [25], here we give a brief account to connect up with the previous
section on QR and the following section on structured matrices. The traditional set up makes a
number of assumptions, which we summarize.

12

Assumptions

1. We assume that we have a reasonably accurate model for the system whose state evolution
we try to estimate. Let xi be the evolving state at time point i - it is a vector of dimension
δi. We further assume that the system is driven by an unknown noisy, zero mean, vectorial
input ui, whose second order statistical properties we know (as in the BLUE, we work only
with zero mean processes and their variances.) We assume the dynamical system to be linear
and given by three matrices {Ai, Bi, Ci}, which describe respectively the maps from state xi
to next state xi+1, from input ui to next state xi+1 and from state xi to output yi. The latter
is contaminated by zero mean, vectorial measurement noise νi, whose second order statistics
we know also. The model has the form given by{

xi+1 = Aixi +Biui
yi = Cixi + νi

(17)

A data flow diagram of the state evolution is shown in Fig. 5. The transition matrix of this

�

xi

�

xi+1�

ui

�

yi
�

υ i

�

Ci

�

Ai

�

Bi

+	

+	 +	

Figure 5: The model filter

filter is defined as the matrix

[
Ai Bi
Ci 0

]
, it defines the map from all inputs

[
xi
ui

]
to all

outputs

[
xi+1

yi

]
.

2. Concerning the statistical properties of the driving process ui and the measurement noise νi,
we need only to define the second order statistics (the first order means is already assumed
zero, and no further assumptions are made on the higher orders). We always work on the
space of relevant, zero means stochastic variables, using “E” as the expectation operator. In
the present summary, we assume that ui and νi are uncorrelated with each other and with
any other uk, νk, k /=i, and that their covariances are given respectively by Euiu

′
i = Qi and

Eνiν
′
i = Ri, both non singular, positive definite matrices (this assumes that there is enough

noise in the system), we assume again real matrices throughout, otherwise one must use
Hermitian transposition.) On a space of scalar stochastic variables with zero mean we define
a (second order statistical) inner product as (x, y) = E(xy). This can be extended to vectors

13

by using outer products such as

Exy ′ = E

 u1

...
um

 [y1 · · · yn]
 =

Eu1y1 Eu1y2 · · · Eu1yn
Eu2y1 Eu2y2 · · · Eu2yn

...
...

. . .
...

Eumy1 Eumy2 · · · Eumyn

 . (18)

3. We also assume that the process whose state is to be estimated starts at the time point i = 0.
The initial state x0 has known covariance Ex0x

T
0 = Π0.

The Recursive Solution

We start with summarizing the classical solution, based on the ’innovations model’ pioneered by
Kailath e.a., see [23]. Let us assume that we have been able to predict xi and attempt to predict
xi+1. The least squares predictor x̂i is the one that minimizes the prediction error ex,i = xi− x̂i in
the covariance sense, assuming linear dependence on the data (the same assumptions will hold for
the next predictor). The Wiener property asserts that x̂i is a linear combination of the known data
(in our case all the yk for k = 0 · · · i− 1) and that the error, also called the state innovation, ei is
orthogonal on all the known data so far. These properties will of course be propagated to the next
stage, given the (noise contaminated) new information yi. It turns out that the only information
needed from the past of the process is precisely the estimated state x̂i, the new estimate being
given by

x̂i+1 = Aix̂i +Kp,i(yi − Cix̂i). (19)

In this formula Kp,i denotes the ’Kalman gain’, which has to be specified, and which is given by

Kp,i = KiR
−1
e,i , Re,i = Ri + CiPiC

′
i , Ki = AiPiC

′
i . (20)

In these formulas, the covariances Pi = Eex,ie
T
x,i and Re,i are used, in view of the formula for the

latter, only Pi has to be updated to the next step, and is given by

Pi+1 = AiPiA
′
i +BiQiB

′
i −Kp,iRe,iK

′
p,i (21)

The covariance Pi+1 is supposed to be positive definite for all values of i, a constraint which may
be violated at times because of numerical errors caused be the subtraction in the formula. In the
next paragraph we shall introduce the square root version of the Kalman filter, which cannot create
this type of numerically caused problems. So far we have only given summaries the known results,
we give a simple direct proof in the next paragraph. Starting values have to be determined since
this solution is recursive, and they are given by

x̂0 = 0, P0 = Π0. (22)

Proof

We give a recursive proof based on the parameters of the model at time point i. We assume
recursively that the error ei = xi − x̂i at that time point is orthogonal on the previously recorded

14

data, and that the new estimate x̂i+1 is a linear combination of the data recorded up to that
point. We first relax the orthogonality condition, and only ask ei+1 to be orthogonal on x̂i (a linear
combination of already recorded previous data) and yi, the newly recorded data at time point i.
We show that this estimator already produces an estimate that is orthogonal (of course in the
second order statistical sense) on all the previously recorded data.) From our model we know that
xi+1 = Aixi + Biui. We next ask that x̂i+1 be a linear combination of the known data x̂i and yi,
i.e. there exist matrices Xi and Yi, to be determined, such that

x̂i+1 = Xix̂i + Yiyi. (23)

Requesting second order statistical orthogonality of ei+1 on x̂i we obtain

E(xi+1 − x̂i+1)x̂
′
i = E(Aixi +Biui −Xix̂i − Yiyi)x̂ ′i = 0. (24)

We now observe that Euix̂
′
i = 0 by assumption and that Ex̂ix̂

′
i = Exix̂

′
i because Eeix̂i = 0 through

the recursive assertion. The previous equation then reduces to

(Ai −Xi − YiCi)E(xix̂
′
i) = 0, (25)

which shall certainly be satisfied when Xi = Ai − YiCi.
Next we request orthogonality on the most recent data, i.e.

Eei+1y
′
i = 0. (26)

In fact, we can ask a little less, by using the notion of ’innovation’. The optimal predictor for
yi is simply ŷi = Cix̂i, and its innovation, defined as ey,i = yi − ŷi, is ey,i = Ciei + νi. We
now just require that ei+1 is orthogonal on ey,i, as it is already orthogonal on x̂i and Eei+1y

′
i =

E[ei+1(x
′
iC
′
i + ν ′i − x̂ ′iC ′i)]. We now obtain an expression for the innovation ei+1 in term of past

innovations and the data of section i

ei+1 = Aiei +Biui − (Ai − YiCi)x̂i − Yiyi = Aiei +Biui − Yiey,i, (27)

which we now require to be orthogonal on ey,i. With Pi = Eeie
′
i , we have Eeie

′
y,i = PiC

′
i and

Eey,ie
′
y,i = CiPiC

′
i +Ri. The orthogonality condition becomes therefore

Yi(Ri + CiPiC
′
i) = AiPiA

′
i . (28)

Hence the formulas given for the Kalman filter, after identifying Kp.i = Yi and Re,i = Ri +CiPiC
′
i

(actually the covariance of ey,i.)

Concerning the propagation of the covariance of the innovation Pi, we rewrite the formula for ei+1

as (reverting back to the notation in the previous paragraph)

ei+1 +Kp,iey,i = Aiei +Biui. (29)

Remarking that the terms of the left hand side are orthogonal to each other, and those of the right
hand side as well, we obtain the equality

Pi+1 +Kp,iRe,iK
′
p,i = AiPiA

′
i +BiQiB

′
i , (30)

which shows the propagation formula for the innovation covariance.

Finally, when yk is some data collected at a time point k < i, we see that Eei+1y
T
k = E[(Aiei +

Biui−Kp,iŷi)y
′
k]. The recursion hypothesis states that ei is orthogonal to all past collected data, in

particular to yk. Hence we see that the expression is equal to zero, after working out the individual
terms.

15

The Square Root (LQ) Algorithm

The square root algorithm solves the Kalman estimation problem efficiently and in a numerical
stable way, avoiding the Riccati equation of the original formulation. It computes an LQ factoriza-
tion on the known data to produce the unknown data. An LQ factorization is the dual of the QR
factorization, rows are replaced by columns and the order of the matrices inverted, but otherwise it
is exactly the same and is done on the same architecture. Not to overload the symbol ’Q’, already
defined as a covariance, we call the orthogonal transformation matrix at step i, Ui, acting on a so
called pre-array and producing a post-array[

CiP
1/2
i R

1/2
i 0

AiP
1/2
i 0 BiQ

1/2
i

]
Ui =

[
R

1/2
e,i 0 0

K̄p,i P
1/2
i+1 0

]
. (31)

The square root algorithm gets it name because it does not handle the covariance matrices Pi and
Re,i directly, but their so called square roots, actually their Cholesky factors, where one writes,

e.g. Pi = P
1/2
i P

′/2
i assuming P

1/2
i to be lower triangular, and then P

′/2
i is its upper triangular

transpose (this notational convention is in the benefit of reducing the number of symbols used, the
exact mathematical square root is actually not used in this context.) The matrix on the left hand
side is known from the previous step, applying Ui reduces it to a lower triangular form and hence
defines all the matrices on the right hand side. Because of the assumptions on the non singularity
of Ri, Re,i shall also be a square matrix, the non-singularity of Pi+1 is not directly visible from the
equation and is in fact a more delicate affair, the discussion of which we skip here.

The right hand side of the square root algorithm actually defines a new filter with transition matrix[
Ai K̄p,i

Ci R
1/2
e,i

]
(32)

One obtains the original formulas in the recursion just by squaring the square root equations
(multiplying to the right with the respective transposes). In particular this yields AiPiA

′
i = K̄p,iR

′
e,i

and hence
K̄p,i = Kp,iR

1/2
e,i = KiR

− ′/2
e,i (33)

(different versions of the Kalman gain.) This form is called an outer filter, i.e. a filter that has a
causal inverse. The inverse can be found by arrow reversal (see Fig. 6 and it can rightfully be called
both the Kalman filter (as it produces x̂i+1) and the (normalized) innovations filter, as it produces

εi = R
−1/2
i (yi−Cix̂i), the normalized innovation of yi given the preceding data summarized in x̂i.

5.4 Solving Symmetric Positive Definite Systems With The Schur Algorithm

We consider the solution of a linear least-squares problem via the normal equation

T ′Tu = T ′y,

where the coefficient matrix C = T ′T is a symmetric positive definite matrix. We split up the
symmetric matrix according to C = U +D + U ′ ∈ Rm×m, and define the intermediate matrices

V =
1

2
(D + 2U + 1n) , W =

1

2
(D + 2U − 1n)

16

�

xi

�

xi+1
�

ui

�

yi

�

−Ci

�

Ai

�

K p,i

�

Re,i
−1/ 2

+	

+	

Figure 6: The Kalman filter, alias innovations filter

such that C can be represented as

C = V ′V −W ′W =

[
V
W

] ′
J

[
V
W

]
, J =

[
1n

−1n

]
.

The Schur-Cholesky algorithm, as presented in [8] and [21] solves this symmetric linear system
determines a J-orthogonal Θ satisfying

Θ

[
V
W

]
=

[
R
0

]
, Θ ′JΘ = J.

The matrix Θ being J-orthogonal results in the identity[
V
W

] ′
Θ ′JΘ

[
V
W

]
=

[
R
0

] ′
J

[
R
0

]
= V ′V −W ′W = R ′R,

where the matrix R is an upper triangular matrix, hence, a triangular factor of C. If we complete
this map by extending it to the orthogonal space we arrive at the full equation

Θ

[
V W ′

W V ′

]
=

[
R 0
0 L

]
, C = LL ′,

where L is supposed to be a lower triangular factor of C. Assuming that all necessary matrices are
invertible, then we can devise an expression for the transformation

Θ =

[
(R ′)−1V ′ −(R ′)−1W ′

−(L ′)−1W (L ′)−1V

]
. (34)

Similar to the approach for computing the QR decomposition using Jacobi rotations (compare
with section 3.2) we can compute the overall transformation Θ using elementary J-orthogonal or
hyperbolic rotations. The elementary hyperbolic matrix is a rotation over an angle θ in the 2D
plane (for convenience we define H ′):

H ′ =

[
ch sh
−sh ch

]
, using

ch := cosh θ
sh := sinh θ

(35)

17

Let’s apply such a rotation H ′ to two row vectors such as[
ch sh
−sh ch

] [
a1 a2 · · · an
b1 b2 · · · bn

]
=

[√
a21 − b21 cha2 + shb2 · · · chan + shbn

0 −sha2 + chb2 · · · −shan + chbn

]
(36)

which is achieved by choosing

ch =
a1√
a21 − b21

, sh =
b1√
a21 − b21

,

and hence automatically tanh θ = b1
a1

.

In this way one can treat the entries of the original matrix T row by row and create all the zeros
below the main diagonal. With a 3 × 3 matrix C this works as shown below. The only thing one
must do is embed the 2× 2 rotation matrices in the 4× 4 schema, so that unaffected rows remain
unchanged. We label the hyperbolic rotation matrices with the indices of the rows they affect

· · ·
· ·
·

· · ·
· ·
·

H ′

1,4−→

? ? ?
· ·
·

0 ? ?
· ·
·

H ′

2,5−→

· · ·
? ?
·

0 · ·
0 ?
·

H ′

3,6−→

· · ·
· ·
?

0 · ·
0 ·

0

H ′

2,4−→ (37)

H ′
2,4−→

· · ·
? ?
·

0 0 ?
0 ·

0

H ′

3,5−→

· · ·
· ·
?

0 0 ·
0 0

0

H ′

3,4−→

· · ·
· ·
?

0 0 0
0 0

0

 =

r11 r12 r13
r22 r23

r33
0 0 0

0 0
0

 (38)

The final step is a H ′3,4 which annihilates the 4, 3 entry. In each of these subsequent steps, the first
operation determines the rotation matrix and then applies it to all the entries in the respective
rows, skipping the already computed zero entries (which remain zero hence avoiding fill-ins.) The
overall J-orthogonal matrix is then determined as the product of the elementary hyperbolic rotation
Θ = H1,4H2,5H3,6H2,4H3,5H3,4. Note that rotation steps with non-overlapping row indices can
be carried out in parallel, i.e. the sequence of rotations H1,4, H2,5, and H3,6 can be executed
simultaneously on a dedicated processor array as well as the rotations H2,4 and H3,5.

After having computed the J-orthogonal matrix Θ by a sequence of hyperbolic rotations we can
take the representation of the J-orthogonal transformation as given in equation 34, and determine
the effect of applying Θ to two tacked identity matrices, i.e. we can compute

Θ

[
1n
1n

]
=

[
(R ′)−1(V ′ −W ′)
(L ′)−1(V −W)

]
=

[
(R ′)−1

(L ′)−1

]
.

This expression shows that the process of elementary elimination steps implicitly creates the inverses
of the triangular factors of the matrix C. The symmetric system of equation can be used in a straight
forward manner with appropriate back-substitution steps. However, back-substitution destroys the

18

homogenous data flow and is therefore not desirable for parallel processing hardware. Applying
the Fadeeva approach to this algorithm [21], similar to the approach used for the QR solver, allows
us to devise a purely feed forward algorithm that avoids all back-substitution steps. This version
of the algorithm is based on performing the following two stages in an elimination process that
employs hyperbolic rotations. Stage 1 executes the elimination of the matrix W by hyperbolic
rotations, as explained previously creating the matrix Θ1 according to

Θ1

 V 1n 0
W 1n 0
−b ′ 0 1

 =

 R (R ′)−1 0
0 (L ′)−1 0
−b ′ 0 1

 .
Stage 2 of the elimination process annihilates the entries of the vector −b ′ while creating the matrix
Θ2

Θ2

 R (R ′)−1 0
0 (L ′)−1 0
−b ′ 0 1

 =

 ˜
R (

˜
R ′)−1 ?

0 (L ′)−1 0
0 ku ′ k

 .
After both stages of elimination are completed, the solution vector k · u ′ can be read off from the
resulting array as well as scalar parameter k. Figure 5.4 depicts the processing array to implement
the Schur-Cholsky algorithm for solving symmetric positive systems of equations in a highly parallel
and regular way and without a need to perform back-substitution [21].

1	
c12	
c13	
c14	
1	
0	
0	
0	
0	

1	
c23	
c24	
0	
1	
0	
0	
0	

1	
c34	
0	
0	
1	
0	
0	

1	
0	
0	
0	
1	
0	

1	 	 	 	 0	 	 	 	 0	 	 	 	 0	 	 	 	 0	 	 	 -‐y4	 	 	 -‐y3	 	 	 	 -‐y2	 	 	 -‐y1	

	 	 0	 	 	 	 	 0	 	 	 	 	 0	 	 	 	 0	 	 	 1	 	 	 	 c14	 	 	 	 c13	 	 	 c12	

	 0	 	 	 	 	 0	 	 	 	 	 0	 	 	 	 1	 	 	 	 0	 	 	 c24	 	 	 	 	 c23	

	 	 0	 	 	 	 	 0	 	 	 	 	 1	 	 	 	 0	 	 	 	 0	 	 	 	 c34	

k	 	 	 ku4	 	 	 ku3	 	 ku2	 	 	 ku1	

.	

.	

.	

0	 0	 0	 0	

x	

y‘	

x‘	

x	

θ	

x '
y'

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
= coshθ sinhθ

− sinhθ coshθ

⎡

⎣
⎢

⎤

⎦
⎥ ⋅

x
y

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

Figure 7: The array for the Schur-Cholesky Algorithm

19

6 Sparse Matrices and Iterative Algorithms

Large scale linear systems, which are characterized by a coefficient matrix of enormous size are a
topic of particular interest from a practical point of view. Luckily, such matrices are mostly sparse,
which means that only a small fraction of the matrix entries are different from zero. Sparse matrices
exhibit very large values for n, but only O(n) matrix entries are different from zero. The sparsity
allows the matrices to be stored with O(n) memory locations [36]. This type of matrices originate
for example from finite-element computations, from solving partial differential or Euler-Lagrange
equations to name a few examples [36]. Applying standard matrix algebra does not preserve the
sparsity pattern, that is, it destroys the sparsity pattern when adding, multiplying and inverting
sparse matrices. For example, the inverse of a tri-band matrix is in general not a tri-band matrix,
but a full matrix. Similar statements hold if matrix factorizations and dense solvers are applied to
sparse matrices; elementary transformations tend to fill up the matrix by creating fill-ins, i.e. by
overwriting zero matrix entries with non-zero values [36],[3].

Algorithms to efficiently solve systems of equations with a sparse coefficient matrix use iterative
approaches, which are using a sequence of matrix vector multiplications of the form uk+1 = T · uk.
This way, the sparsity pattern of the coefficient matrix is preserved and the sequence of vectors uk
converges, under certain conditions to the solution vector u. Matrix-vector multiplication with a
sparse matrix T ∈ Rm×n amounts to a computational load of O(m+ n) operations and O(m+ n)
memory requirement. Iterative schemes such as a Conjugate Gradient algorithm require O(n)
iterations, resulting in an solution method with a computational complexity of O(n2) operations
overall. For a comprehensive coverage of iterative solution methods we refer the interested reader
to [36].

6.1 Sparse Matrices in Motion Analysis

For many applications in the domain of computer vision or in the field of digital video signal
processing the task of estimating the apparent motion of objects or pixels throughout a video
sequence is a fundamental task. Motion estimation is an expensive calculation, in particular when
considering to deal with standard definition resolution images (576 × 720 pixels per image) or
moving on to even handle High Definition resolutions (1080× 1920 pixels per image) [10].

Optic Flow Constraint

We discuss how to compute the optical flow according to the approach proposed by Horn & Schunck
[4]. The brightness of a pixel at point (x, y) in an image plane at time t is denoted by I(x, y, t). Let
I(x, y, t) and I(x, y, t+1) be two successive images of a video sequence. Each image is comprised of
a rectangular lattice of N = m× n pixels.Optic flow computation is based on the assumption that
the brightness of a pixel remains constant in time and that all apparent variations of the brightness
throughout a video sequence are due to spatial displacements of the pixels, which again are caused

20

by motion of objects. We denote this brightness conservation assumption as

dI

dt
= 0.

This equation is called the optical flow constraint. Using the chain rule for differentiation the optic
flow constraint is expanded into

∂I

∂x
· dx
dt

+
∂I

∂y
· dy
dt

+
∂I

∂t
= 0.

Using the shorthand notation vx = dx
dt vy = dy

dt , Ix = ∂I
∂x , Iy = ∂I

∂y , It = ∂I
∂t , the optic flow constraint

can be written as
Eof = Ix · vx + Iy · vy + It = 0. (39)

Equation (39) is only one equation for determining the two unknowns vx and vy, which denote
the horizontal and the vertical component of the motion vector at each pixel position. Hence the
optical flow equation is an underdetermined system of equation. Solving this equation in a least
squares sense only produces the motion vector component in direction of the strongest gradient for
the texture. Therefore a second constraint has to be found to regularize this ill-posed problem.

Smoothness Constraint

To overcome the underdetermined nature of the optic flow constraint, Horn & Schunck introduced
an additional smoothness constraint. Neighboring pixels of an object in a video sequence are likely
to move in a similar way. The motion vectors vx and vy are varying spatially in a smooth way.
Spatial discontinuities in the motion vector field occur only at motion boundaries between objects,
which move in different directions and which are occluding each other. Therefore, the motion
vector field to be computed is supposed to be spatially smooth. This smoothness constraint can be
formulated using the Laplacian of the motion vector field vx and vy

Esc = ∇2vx +∇2vy =
∂2vx
∂x2

+
∂2vx
∂y2

+
∂2vy
∂x2

+
∂2vy
∂y2

. (40)

The Laplacians of vx and vy can be calculated by the approximation

∇2vx ≈ vx − vx and ∇2vy ≈ vy − vy.

The term vx,y − vx,y can be computed numerically as the difference between the central pixel vx,y
and a weighted average of the values in a 2-neighborhood of the central pixel. The corresponding
2-dimensional convolution for performing this filtering operation is given as

vx(x, y)− vx(x, y) = L(x, y) ∗ vx(x, y)

vy(x, y)− vy(x, y) = L(x, y) ∗ vx(x, y),

where the convolution kernel L(x, y) is given by a 2D-filtering mask, such as

L(x, y) =

 1/12 1/6 1/12
1/6 −1 1/6
1/12 1/6 1/12

 . (41)

21

The Horn & Schunck approach uses the optic flow equation (39) along with the smoothness con-
straint (40) to express the optic flow computation as the optimization problem for the cost function

E2 = E2
of + α2 · E2

sc,

which needs to be minimized in terms of the motion vector [vxvy]
T . The parameter α is a scalar

regularization parameter, which controls the contribution of the smoothness constraint (40). The
optimization problem finally expands into the equation

E2 = (Ixvx + Iyvy + It)
2 + α2

(
(vx − vx)2 + (vy − vy)2

)
. (42)

Applying the calculus of variations to42 results in the following two equations

I2xvx + IxIyvy + IxIt − α2(vx − vx) = 0

IxIyvx + I2yvy + IyIt − α2(vy − vy) = 0,

which need to be solved for the motion vector components vx(x, y) and vy(x, y).

Linear System of Equations

Based on (39), the optic flow equation for all pixels can be written as a matrix equation [10]

[
Ix Iy

]
·
[
vx
vy

]
= −It, (43)

where Ix and Iy are diagonal matrices of size N × N and It is a vector of length N . The x- and
y-components of the motion vector field are given as the vectors vx and vy, each with the dimension
N . The effect of the convolution kernel L(x, y) on the motion vector field can be represented by a
constant and sparse N ×N band matrix L, which has Toeplitz structure. We will use the symbol
C to denote the negative Laplacian, i.e. C = −L. The specific banded structure of C is depicted
in Figure 8,which can be symbolically denoted as

C =

M U
U M U

U M U

U
. . .

. . .
. . .

. . . U
U M

.

The minimization of the cost function (42) for all pixels in the image leads to the set of regularized
linear equations, (

α2

[
C 0
0 C

]
+

[
Ix
Iy

]
·
[
Ix Iy

])
·
[
vx
vy

]
=

[
Ix
Iy

]
· It. (44)

The term in brackets of equation (44) represents a 2N × 2N band matrix, the structure of which
can be seen on the left hand side of Figure 9. This structured matrix needs to be solved efficiently

22

0 2 4 6 8 10 12 14 16

0

2

4

6

8

10

12

14

16

nz = 100

Figure 8: Structure for the Laplace Operator

0 5 10 15 20 25 30

0

5

10

15

20

25

30

nz = 232
0 5 10 15 20 25 30

0

5

10

15

20

25

30

nz = 232

Figure 9: Structure for original matrix (left) and re-ordered matrix (right)

23

for computing the motion vector fields vx and vy. We can modify the structure of the matrix
by re-ordering the variables and hence the matrix entries. In the right hand side of Figure 9 the
resulting matrix structure is shown if the the variables vx and vy are re-ordered by interleaving
them. Such a change of structure for the matrix entries has influence on the efficiency of sparse
linear system solvers [36],[3].

Lucas and Kanade proposed an alternative scheme for computing optical flow [29], which is better
suitable for implementation on parallel processors such as a Graphic Processor Unit (GPU) [14].

In [11] an approach is presented to solve the sparse linear system arising from optical flow com-
putations in an efficient way by exploiting the structure of the matrix. This structure is called
hierarchically semi-separable, a notion that will be explained in more detail in section 7.

6.2 Iterative Matrix Solvers

Iterative methods take an initial approximation of the solution vector and successively improve the
solution by continued matrix vector multiplications until an acceptable solution has been reached [3].
Since matrix-vector multiplications can be computed efficiently for sparse matrices iterative matrix
solvers are attractive. However, iterative methods may have poor robustness and often are only
applicable for a rather narrow range of applications. With view to implementing such schemes on
real-time computer systems we need to understand the convergence properties of iterative schemes,
which strongly depend on the input data. Therefore it is difficult to determine worst case deadlines
for the iterations to be completed [3].

General Approach

Iterative algorithms do not explicitly compute the term T ′T , a term that appears in the context
of normal equation, but only propagate the effects and T ′ and T in a factored form, and hence
exploit the sparsity of the coefficient matrix T . This leads to the following representation of the
standard least-squares problem

T ′ · (Tu− b) = 0.

Stationary iterative methods for solving linear systems of equations run the iteration of the form

Muk+1 = Nuk + b, k = 1, 2, 3, . . . ,

where u0 is an initial approximation for the solution vector. In this context we have the ’splitting’
of the positive definite matrix T ′T = M −N where M is assumed to be non-singular. The matrix
M should be chosen such, that solving the linear system with coefficient matrix M is easy to do.
Analyzing the equation

uk+1 = M−1Nuk +M−1b = Guk + c, k = 1, 2, 3, . . . ,

reveals that the iterative scheme is convergent if the spectral radius of the matrix G ∈ Rm×m

ρ(G) = max |λi(G)|, 1 ≤ i ≤ m

24

satisfies ρ(G) < 1. Taking the additive splitting of the coefficient matrix as

T ′T = L+D + L ′, D ≥ 0,

then we get the Jacobi method if we choose M = D, whereas the choice M = L+D will lead us to
the Gauss-Seidel iterative scheme. The Gauss-Seidel has better convergence properties when com-
pared with Jacobi-methods (one Gauss-Seidel iteration step corresponds to two Jacobi iterations).
However, Jacobi-type methods are better suited for parallel implementation [3].

For executing iterative matrix solvers on parallel computing architectures it is essential to implement
an efficient way of matrix vector multiplication. This is possible only for a predetermined sparsity
pattern. See [18] for a corresponding array to execute iterative matrix solvers.

LSQR Algorithm

An attractive alternative to Jacobi- or Gauss-Seidel-iterations is the family of quasi-iterative meth-
ods such as Conjugate Gradient techniques. One very interesting algorithm from this family is
Paige and Saunder’s LSQR algorithm for solving least squares problems [32]. The LSQR tech-
nique combines matrix-vector multiplication based steps (Lanczos and Arnoldi methods) with a
QR decomposition step. The starting point for LSQR is to compute the factorization

T = V

[
B
0

]
W ′, V ′V = 1m, W ′W = 1n,

where

B = Bn =

α1

β2 α2

β3
. . .
. . . αn

βn+1

 ∈ R(n+1)×n

is a lower bi-diagonal matrix. The orthogonal matrices V = (v1, v2, . . . , vm) andW = (w1, w2, . . . , wn)
can be computed as a product of Householder reflections or Jacobi rotations for the elimination of
the matrix entries in T . However, this process will destroy the sparsity pattern of the coefficient
matrix. For the case of sparse matrices, Golub and Kahan suggested an alternative procedure to
compute this factorization, which is based on a Lanczos process. This process is again using matrix-
vector multiplications to propagate vectors and to leave the coefficient matrix T unchanged, hence
preserving its sparsity pattern. The Lanczos process starts by setting β1w0 = 0 and αn+1wn+1 = 0.
If we initialize the process with the vector β1v1 = u ∈ Rm and α1w1 = T ′v1 then, for k = 1, 2, . . .
the recurrence relations

βk+1vk+1 = Twk − αkvk, αk+1wk+1 = T ′vk+1 − βk+1wk,

continue to produce the sequence of vectors w1, v2, w2, . . . , vm+1 and the corresponding entries in the
bi-diagonal matrix B. Note that the parameters αk+1 ≥ 0 and βk+1 ≥ 0 are determined such that
‖vk+1‖2 = ‖wk+1‖2 = 1. After k steps the algorithm produces the matrices V = (v1, v2, . . . , vk) and
W = (w1, w2, . . . , wk+1) as well as the bi-diagonal matrix Bk. We now can go for an approximate
solution vector uk ∈ Kk lying in the Krylov subspace Kk = Kk(T ′T, T ′y), where a Krylov subspace

25

is defined as Kk(T, u) = span
[
u, Tu, T 2u, . . . , T k−1u

]
. Since in the present case we have Kk =

span(Wk) it is possible to write uk = Wkψk.

For computing the vector ψk we have to determine a solution of the least-square problem

min
ψk

‖Bkψk − β1e1‖2.

The LSQR algorithm calculates this solution via the QR decomposition of Bk

QkBk =

[
Rk
0

]
, Qk(β1e1) =

[
fk
φk+1

]
,

where Rk is upper bi-diagonal

Rk =

ρ1 θ1

ρ2 θ2
. . .

. . .

ρk−1 θk−1
ρk

 ∈ Rk×k, fk =

φ1
φ2
...

φk−1
φk

 .

Notice the similarity of this approach with the algorithm described in section 3.1. The matrix Qk
is computed as a product of Jacobi rotations parametrized to eliminate the subdiagonal elements
of Bk. The solution vector ψk and the residual vector rk+1 can be determined from

Rkψk = fk, rk+1 = Q ′k

[
0

φk+1

]
.

The iterative solution uk is then computed via

uk =
(
WkR

−1
k

)
fk = Zkfk,

where the matrix Zk satisfies the lower triangular system R ′kZ
′
k = V ′k such that we can computed

the column vectors (z1, z2, . . . , zk) by forward substitution. With z0 = u0 = 0 the process proceeds
as

zk =
1

ρk
(wk − θkzk−1) , uk = uk−1 + φkzk.

The LSQR algorithm produces the same sequence of intermediate solution vectors uk as the Con-
jugate Gradient Least Squares algorithm [3]. The algorithm only accesses the coefficient matrix
T only to produce the matrix-vector products Twk and T ′vk and exhibits preferable numerical
properties, in particular for ill-conditioned matrices T [32].

Iterative Algorithms and Memory Bandwidth

An efficient design of an numerical algorithm strives to minimize the amount of arithmetic op-
erations along with the amount of memory space needed to store the data. Besides those two
important design criteria we have to consider the amount of data that needs to be moved in and
out of main memory during the execution of an algorithm; this is denoted as memory bandwidth.

26

Even a modern real-time computer system may be challenged to provide excessive sustained mem-
ory bandwidth if it executes an iterative matrix solver for very large and sparse matrices. The
challenge originates from iterating the solution vector, that is, from moving a potentially very
large vector in and out of main memory for each iteration as it will not fit into the cache memory
anymore.

For calculating a simple example we consider a problem where the solution vector u has length n.
Each vector entry is represented by a double precision floating point number using a word length
of B = 64 bits. We assume that the iterative algorithm requires N iterations until convergence.
Hence, the algorithm needs to move n · N · B bits of data between the CPU and Memory. In a
real-time application such as in video signal processing (deconvolution, motion estimation, scan
conversion, etc.) the algorithm has to complete its calculations within a time interval of T seconds,
which leads to a required memory bandwidth of n·N ·B

T bits per second. For a modern HDTV
application (1920 × 1080 pixels per frame) with a frame rate of 25 Hz, the necessary memory
bandwidth amounts to over 41 GByte/sec, if we assume that the computation for one system of
equation converges after N = 100 iterations. Even under these optimistic assumptions for the
number of iterations the memory bandwidth becomes the critical element [33].

If the real-time computer system employs modern Graphical Processing Units (GPU), which offer
high computational performance, this big amount of data needs to be transported over a bus
between CPU and GPU [27],[5]. Hence, the data transport becomes a bottleneck to achieve the
required system performance. Furthermore, the internal structure of a GPU, i.e. the shader does
not support iterative computations very well. Taking all this together leads us to reconsider the
use of direct solution methods for large scale systems as the pure operation count is not the most
restricting factor [14]. If there are direct solution methods, which can take advantage of special
structures in the coefficient matrix, such as sparsity, then this is beneficial.

7 Structure In Matrices

The classical QR algorithm on an n × n matrix T has computational complexity of order O(n3).
Better computational complexity, at the cost of numerical stability, is offered by Strassens’ method,
but is certainly not advisable in the context of embedded processing, where numerical complexity
plays only a minor role as compared to data transport and where good numerical properties are
of paramount importance. There is, however, another much more promising possibility, which
consists in exploiting intrinsic structure of the matrix. In the literature, many diverse types of
matrix structure have been considered, such as Toeplitz or Hankel, in the present discussion we
shall only consider the semi-separable or time-varying structure as it connects up nicely with QR
factorization and is very important from an applications point of view. In our discussion on the
Kalman filter, we were given a model for the system to be considered. That meant that the overall
covariance matrix of the output data is not arbitrary, although the system parameters vary from
one time point to the next. As a result, the Kalman filter in its square root version allowed state
estimation on the basis not of the overall covariance data, but just on the basis of properties local
to each point in time. The computational complexity was therefore determined, not by the size of
the overall system, but by the dimension of the local state representation (called δi.)

27

The structure we encountered implicitly in the Kalman filter is known by various terms, depending
on the relevant literature, semi-separable systems, time-varying systems or quasi-separable systems.
They appeared for the first time in [16], where it was shown that LU factorization of such a system

would have O(nδi
3) complexity instead of O(n3). Later this idea was generalized to QR and other

factorizations in [12]. We summarize the main results. It should be remarked that the complexity of

the method we shall describe can be considerably better than O(nδi
3), actually O(nδi

2) when state
space representations are judiciously chosen, but this topic goes far beyond our present purpose.

To work comfortably with time-varying systems, we need the use of sequences of indices and then
indexed sequences. WhenM = [mk]

∞
k=−∞ is a sequence of indices, then each mk is either a positive

integer or zero, and a corresponding indexed sequence [uk] ∈ `M2 will be a sequence of vectors such
that each uk has dimension mk and the overall sum

∞∑
k=−∞

‖uk‖2 (45)

is finite, the square root of which is then the quadratic norm of the sequence. When mk = 0,
then the corresponding entry just disappears (it is indicated as a mere ’place holder’). A regular
n-dimensional finite vector can so be considered as embedded in an infinite sequence, whereby
the entries from −∞ to zero and n + 1 to ∞ disappear, leaving just n entries indexed by 1 · · ·n,
corresponding e.g. to the time points where they are fed into the system. On such sequences we
may define a generic shift operator Z. It is also convenient to represent sequences in row form,
underlying the zero’th element for orientation purposes, taking transposes of the original vectors if
they are in column form. Hence:

[· · · , u ′−2, u ′−1, u ′0, u ′1, u ′2, · · ·]Z = [· · · , u ′−2, u ′−1, u ′0, u ′1, · · ·] (46)

Z is then a unitary shift represented as a block upper unit matrix, whose inverse Z ′ is then a lower
matrix with first lower block diagonal consisting of unit matrices (notice that the indexing of the
rows is shifted w.r. to the indexing of the columns.) Typically we handle only finite sequences of
vectors, but the embedding in infinite ones allows us to apply delays as desired and not worry about
the precise time points. Similarly, we handle henceforth matrices in which the entries are matrices
themselves. For example, Ti,j is a block of dimensions mi × nj with [mi] =M and [nj] = N , and,
again, unnecessary indices are just placeholder, with the corresponding block entries disappearing
as well - also consisting of place holders (interesting enough, MATLAB now allows for such matrices,
the lack of which was a major problem in previous versions. Place holders are very common in
computer science, here they make their entry in linear algebra.)

In this convention we define a causal system by the set of equations{
xi+1 = Aixi +Biui
yi = Cixi +Diui

(47)

very much as before, but now with a direct term Diui added to the output equation (in the

Kalman filter this term is zero, because the prediction is done strictly on past values.)

[
Ai Bi
Ci Di

]
is called the system transition matrix at time point i (Ai being the state transition matrix.) What
is the corresponding input/output matrix T? As is tradition in system theory, we replace the local

28

equations above with global equations on the (embedded) sequences u = [ui], y = [yi] and x = [xi],
and define ’global’ block diagonal matrices A = diag(Ai), B = diagBi, etc... to obtain{

Zx = Ax+Bu
y = Cx+Du

(48)

and for the input-output matrix

T = D + CZ ′(I −AZ ′)−1B. (49)

This represents a block lower matrix in semi-separable form. A block upper matrix would have a
similar representation, now with Z replacing Z ′:

T = D + CZ(I −AZ)−1B (50)

Remark: it is not necessary to change to a row convention to make the theory work as in [12].
Instead of defining Z as pushing forward on a row of data, we have defined Z ′ as pushing forward
on a column of data. Hence, Z ′ = Z−1 is the causal shift, and a causal matrix is lower (block)
triangular, rather than upper.

Such representations, often called realizations, produce in a nutshell the special structure of an
upper, semi-separable system. When T is block banded upper with two bands, then A = 0 and
B = I will do, the central band is represented by D and the first off band by C. With a block

three band, one can choose A =

[
0 0
I 0

]
, C =

[
C1 C2

]
and B =

[
I
0

]
, with Z :=

[
Z

Z

]
because the state splits in two components. We find, indeed, Z(I − AZ)−1 :=

[
Z 0
Z2 Z

]
, and

hence T = D + C1Z + C2Z
2. This principle can easily be extended to yield representations for

multi-band matrices or matrix polynomials in Z.

State space representations are not unique. The dimension chosen for xi at time point i may be
larger than necessary, in which case one would call the representation ’non minimal’ - we shall
not consider this case further. Assuming a minimal representation, one could also introduce a non
singular state transformation Ri at each time point, defining a transformed state x̂i = R−1i xi. The
transformed system transition matrix now becomes[

Âi B̂i

Ĉi Di

]
:=

[
R−1i+1AiRi R−1i+1Bi
CiRi Di

]
. (51)

for a lower system, and a similar, dual representation for the upper.

Given a block upper matrix T , what is a minimal system representation for it? This problem
is known as the system realization problem, and was solved for the first time by Kronecker (for
representations of rational functions [26]), and then later by various authors, for the semi-separable
case, see [12] for a complete treatment. An essential role in realization theory is played by the so

called ith Hankel matrix Hi defined as

Hi =

 ...
...

. . .

Ti−1,i+1 Ti−1,i+2 · · ·
Ti,i+1 Ti,i+2 · · ·

 (52)

29

i.e. a right-upper corner matrix just right of the diagonal element Ti,i. It turns out that any
minimal factorization of each Hi yields a minimal realization, we have indeed

Hi =

...

Ci−2Ai−1Ai
Ci−1Ai
Ci

 [Bi+1 Ai+1Bi+2 Ai+1Ai+2Bi+3 · · ·
]

(53)

where, as explained before, entries may disappear when they reach the border of the matrix e.g.
This decomposition has an attractive physical meaning. We recognize

Oi =

...

Ci−2Ai−1Ai
Ci−1Ai
Ci

 (54)

as the ith observability operator, and

Ri =
[
Bi+1 Ai+1Bi+2 Ai+1Ai+2Bi+3 · · ·

]
(55)

as the ith reachability operator - all these related to the (anti-causal) upper operator we assumed.
Ri maps inputs after the time point i to the state xi, while Oi maps state xi to actual and outputs
before index point i, giving its linear contribution to them. The rows of Ri form a basis for the
rows of Hi, while the columns of Oi form a basis for the columns of Hi in a minimal representation.
When e.g. the rows are chosen as an orthonormal basis for all the Hi, then a realization will result
for which AiA

′
i +BiB

′
i = I for all i. We call a realization in which

[
Ai Bi

]
has this property of

being part of an orthogonal or unitary matrix, in input normal form.

It may seem laborious to find realizations for common systems. Luckily, this is not the case. In
many instances, realizations come with the physics of the problem. Very common are, besides
block banded matrices, so called smooth matrices [35], in which the Hankel matrices have natural
low-rank approximations, and ratios of block banded matrices (which are in general full matrices),
and, of course, systems derived from linearly couples subsystems.

Solving Semi-Separable Systems With QR: The URV Method

The goal of an URV factorization is a little more ambitious than the QR factorization presented
as the beginning. As we saw, the factorization only works well when T is non-singular, otherwise
we end up with an R factor that is not strictly triangular but only upper and in so called ’echelon’
or staircase form. Clearly, row operations are not sufficient. To remedy the situation, one also
needs column operations that reduce the staircase form to purely triangular. This is in a nutshell
the URV factorization, in which U is a set of columns of an orthogonal matrix, V a set of rows of
another, and R is strictly upper triangular and invertible. When T = URV and T is invertible,
then U and V will be unitary, and T−1 = V ′R−1U ′. However, when T is general, then the solution
of the least squares solution for y = Tu is given by u = T †y with T † = V ′R−1U ′ (the same would
be true for y = uT , now with u = yV ′R−1U ′!) T † is called the ’Moore-Penrose inverse’ of T .

30

The URV recursion would start with orthogonal operations on (block) columns, transforming the
mixed matrix T to the upper form - actually one may alternate (block) column with (block) row
operations to achieve a one pass solution. However, the block column operations are completely
independent from the row operations, hence we can treat them first and then complete with row
operations. We assume a semi-separable representation for T where the lower and upper parts use
different state space realizations (all matrices shown are block diagonal and consisting typically of
blocks of low dimensions):

T = C`Z
′(I −A`Z ′)−1B` +D + CuZ(I −AuZ)−1Bu (56)

This corresponds to a ’model of computation’ shown in fig. 10. The URV factorization starts with

 u2 y2 Au2 Cu2

 Bu2
 Du2

+	

+	

 u3 y3 Au3 Cu3

 Bu3
 Du3

+	

 u1 y1

 Bu1
 Du1

+	

+	

 un yn Cun

 Dun

+	

:	
:	

 Al2

 Cl2

 Bl2

+	

+	

+	

 Al3

 Cl3

 Bl3
+	

+	

 Cl1

 Bln

+	

:	

:	

Upper	

Lower	

+	

+	

+	

:	
:	

:	
:	

Figure 10: The semi-separable model of computation

getting rid of the lower or anticausal part in T by post-multiplication with a unitary matrix, like in
the traditional LQ factorization, but now working on the semi separable representation instead of
on the original data. If one takes the lower part in input normal form, i.e. Ĉ`Z

′(I − Â`Z ′)−1B̂` =
C`Z

′(I −A`Z ′)−1B` such that Â`Â
′
` + B̂`B̂

′
` = I, then the realization for (upper) V is given by

V ≈
[
Â` B̂`

CV DV

]
(57)

31

where CV and DV are formed by unitary completion of the isometric
[
Â` B̂`

]
(for an approach

familiar to numerical analysts see [35].) V is a minimal causal unitary operator, which pushes T
to upper:

[
Tu 0

]
:= TV can be checked to be upper (we shall do so further on where we show

the validity of the operation) and a realization for Tu follows from the preceding as

Tu ≈

 Â ′` 0 C ′V
BuB̂

′
` Au BuD

′
V

Ĉ`Â
′
` +DB̂ ′` Cu Ĉ`Ĉ

′
V +DD ′V

 . (58)

As expected, the new transition matrix combines lower and upper parts and has become bigger,
but Tu is now upper. Numerically, this step is executed as an LQ factorization as follows. Let
xk = Rkx̂k and let us assume we know Rk at step k, then[

A`,kRk B`,k
C`,kRk Dk

]
=

[
Rk+1 0 0

Ĉ`,kÂ
′
`,k +DkB̂

′
`,k Ĉ`,kĈ

′
V,k +DkD

′
V,k 0

] [
Â`,k B̂`,k

CV,k DV,k

]
(59)

The LQ factorization of the left handed matrix computes everything that is needed, the transfor-
mation matrix, the data for the upper factor Tu and the new state transition matrix Rk+1, all in
terms of the original data. Because we have not assumed T to be invertible, we have to allow for an
LQ factorization that produces an echelon form rather than a strictly lower triangular form, and
allows for a kernel as well, represented by a block column of zeros.

The next step is what is called an inner/outer factorization on the upper operator Tu to produce an
upper and upper invertible operator To and an upper orthogonal operator U such that Tu = UTo.
The idea is to find an as large as possible upper and orthogonal operator U such that U ′Tu is still
upper - U ′ tries to push Tu back to lower, when it does so as much as possible, an upper and upper
invertible factor To should result. There is a difficulty here that Tu might not be invertible, already
in the original QR case one may end up with an embedded Ru matrix. This difficulty is not hard to
surmount, but in order to avoid a too technical discussion, we just assume invertibility at this point
and we shall see that the procedure actually produces the general formula needed. If the entries
of Tu would be scalar, then we would already have reached our goal. However, the operation of
transforming T to a block upper matrix Tu will destroy the scalar property of the entries, and the
inverse of Tu may now have a lower part, which will be captured by the inner operator U that we
shall now determine.

When Tu = UTo with U upper and orthogonal, then we also have To = U ′Tu. Writing out the
factorization in terms of the realization, and redefining for brevity Tu := D + CZ(I −AZ)−1B we
obtain

To =
[
D ′U +B ′U (I − Z ′A ′U)−1Z ′C ′U

] [
D + CZ(I −AZ)−1B

]
= D ′UD +B ′U (I − Z ′A ′U)−1Z ′C ′UD +D ′UCZ(I −AZ)−1B

+B ′U{(I − Z ′A ′U)−1Z ′C ′UCZ(I −AZ)−1}B
(60)

This expression has the form: ’direct term’ + ’strictly lower term’ + ’strictly upper term’ + ’mixed
product’. The last term has what is called ’dichotomy’, what stands between {·} can again be split
in three terms:

(I − Z ′A ′U)−1Z ′C ′UCZ(I −AZ)−1 = (I − Z ′A ′U)−1Z ′A ′UY + Y + Y AZ(I −AZ)−1 (61)

with Y satisfying the ’Lyapunov-Stein equation’

ZY Z ′ = C ′UC +A ′UY A (62)

32

or, with indices: Yk+1 = C ′U,kCk+A ′U,kYkAk. The resulting strictly lower term has to be annihilated,
hence we require C ′UD + A ′UY B = 0, in fact U should be chosen maximal with respect to this
property (beware: Y depends on U!) Once these two equations are satisfied, the realization for To
results as To = (D ′UD +B ′UY B) + (D ′UC +B ′UY A)Z(I −AZ)−1B - we see that To inherits A and
B from T and gets new values for the other constituents Co and Do. Putting everything together
in one matrix equation and in a somewhat special order, we obtain[

Y B Y A
D C

]
=

[
BU AU
DU CU

] [
Do Co
0 ZY Z ′

]
. (63)

Let us interpret this result without going into motivating theory (as in done in [12, 35]). We have
a pure QR factorization of the left hand side. At stage k one must assume knowledge of Yk, and

then perform a regular QR factorization of

[
YkBk YkAk
Dk Ck

]
. Do,k will be an invertible, upper

triangular matrix, so its dimensions are fixed by the row dimension of Yk. The remainder of the
factorization produces Co,k and Yk+1, and, of course, the Q factor that gives a complete realization
of Uk. What if T is actually singular? It turns out that then the QR factorization will produce
just an upper staircase form with a number of zero rows. The precise result is[

YkBk YkAk
Dk Ck

]
=

[
BU,k AU,k BW,k
DU,k CU,k DW,k

] Do,k Co,k
0 Yk+1

0 0

 , (64)

in which the extra columns represented by BW and DW define an isometric operator W = DW +
CWZ(I −AWZ)−1BW so that

Tu =
[
U W

] [To
0

]
. (65)

In other words, W characterizes the row kernel of T .

Remarkably, the operations work on the rows of Tu in ascending index order, just as the earlier
factorization worked in ascending index order on the columns. That means that the URV algorithm
can be executed completely in ascending index order. The reader may wonder at this point (1) how
to start the recursion and (2) whether the proposed algorithm is numerically stable. On the first
point and with our convention of empty matrices, there is no problem starting out at the upper left
corner of the matrix, both A1 and Y0 are just empty, the first QR is done on

[
D1 C1

]
. In case the

original system does not start at index 1, but has a system part that runs from −∞ onwards, then
one must introduce knowledge of the initial condition on Y . This is provided, e.g., by an analysis
of the LTI system running from −∞ to 0 if that is indeed the case, see [13] for more details. On
the matter of numerical stability, we offer two remarks. First, propagating Yk is numerically stable,
one can show that a perturbation on any Yk will die out exponentially if the propagating system is
assumed exponentially stable. Second, one can show that the transition matrix ∆ of the inverse of
the outer part will be exponentially stable as well, when certain conditions on the original system
are satisfied [12].

To obtain the Moore-Penrose inverse (or the actual inverse when T is invertible) one only needs to
specify the inverse of To, as the inverses of U and V are already known (they are just U ′ and V ′

with primed realizations as well.) By straightforward elimination, and with the knowledge that To
is upper invertible, we find with ∆ = A−BD−1o Co,

T−1o = D−1o −D−1o CoZ(I −∆Z)−1BD−1o . (66)

33

One does not need to compute these matrices, the inverse filter can easily be realized directly on
the realization of Tu by arrow reversal, as shown in fig. 11.

�

uk

�

yk
�

xk

�

xk+1�

Ak

�

Ck

�

Bo,k

�

Do,k

state	

next	 state	

in	 out	

+	

+	 +	

�

uk

�

yk
�

xk

�

xk+1�

Ak −Ck

�

Bo,k
D−1

o,k

state	

next	 state	

in	 out	

+	

+	

Figure 11: Realization of the inverse of an outer filter in terms of the original

With a bit of good will, one recognizes the square root algorithm for the Kalman filter as a (very)
special case of inner-outer factorization. Now, we actually have the dual case, due to the fact
that the anti-causal part first had to be eliminated, forcing the inner-outer factorization on the
rows rather than on the columns (we would have found the exact same formula as for the Kalman
filter, if we had started with an upper matrix and then had done an outer-inner rather than an
inner-outer factorization.) There is an alternative to the URV algorithm presented here, namely
working first on the rows and then on the columns, but that would necessitate a descending rather
than an ascending recursion.

8 Concluding remarks

The interplay of signal processing applications, numerical linear algebra algorithms and real-time
computing architectures is a fascinating cross-road of interdisciplinary research, which is under
constant change due to technological progress in all associated fields. Besides all the research aspects
this is also an essential aspect for designing engineering curricula - students need to learn about
this interplay, to command a good understanding of the associated domains. This understanding
is essential for them to successfully design real-time computer systems implementing state of the
art products in terms of highly integrated embedded systems.

We discussed the QR decomposition of a coefficient matrix as a versatile computational tool that is
central to many such algorithms because of its superior numerical properties matching the require-
ments for implementation on parallel real-time architectures. Besides its preferable properties, the
QR decomposition provides for an elegant computational framework that allows for an improved
understanding of many related concepts, including Kalman filtering and time-varying system the-
ory.

Many of the mentioned arguments and features of algorithms for solving linear systems have been
investigated and discussed in the context of algorithm specific systolic VLSI arrays for signal pro-

34

cessing applications [28]. Even though the hey-days of systolic arrays are gone, the topics are still
relevant, since programmable Graphical Processing Units (GPU) are relevant parallel data process-
ing targets for implementing number crunching algorithms in real-time computer systems [5],[27],
[14].

Fragment shaders of programmable GPUs provide for a high performance parallel computing plat-
form, but algorithms have to be able to fully exploit the performance offered by GPUs. Besides the
costs for arithmetic operations and static memory designers need to consider the cost associated
with data transport (memory bandwidth) as another important design criterium. Iterative matrix
solvers for large-scale sparse matrices are attractive for many large-scale computational problems
running on mainframe computers, however, for real-time applications running on embedded sys-
tems it may in fact be more interesting to use other algebraic means to exploit the structure of
matrices. The advent of concepts to exploit the semi-separable or hierarchically semi-separable ma-
trix structure holds new promise for attacking large-scale computational problems using embedded
real-time computer systems.

References

[1] H.M. Ahmed, J.-M. Delosme, and M. Morf. Highly concurrent computing structures for matrix
arithmetic and signal processing. IEEE Computer, 15(1):65–86, 1982.

[2] Bart Kienhuis e.a. Hotspot Parallelizer. Compaan Design, 2010.

[3] A. Björck. Numerical Methods for Least Squares Problems. SIAM, Philadelphia, Pennsylvania,
1996.

[4] B.G. Schunck B.K.P. Horn. Determining optical flow. Aritifiial Intelligence, 17(1-3):185–203,
1981.

[5] J. Bolz, I. Farmer, E. Grinspun, and P. Schröder. Sparse matrix solvers on the gpu: Conjugate
gradients and multigrid. In SIGGRAPH 2003, pages 917–924. ACM, 2003.

[6] Jichun Bu, Ed.F. Deprettere, and P. Dewilde. A design methodology for fixed-size systolic ar-
rays. In Proceedings of the International Conference on Application Specific Array Processors,
1990.

[7] D. Larsson and P. Schinner e.a. The CADMUS 9230 ICD Graphic Workstation 1, volume The
Integrated Design Handbook, chapter 8, pages 8.1–8.29. Delft University Press, 1986.

[8] Jean-Marc Delosme and Ilse C.F. Ipsen. Parallel solution of symmetric positive definite systems
with hyperbolic rotations. Linear Algebra and its Applications, 77:75 – 111, 1986.

[9] P. Dewilde. New algebraic methods for modelling large-scale integrated circuits. International
Journal of Circuit Theory and Applications, 16(4):473–503, 1988.

[10] P. Dewilde, K. Diepold, and W. Bamberger. Optic flow computation and time-varying system
theory. In Proceedings of the International Symposium on Mathematical Theory of Networks
and Systems (MTNS). Katholieke Universiteit Leuven, Belgium, July 2004.

35

[11] P. Dewilde, K. Diepold, and W. Bamberger. A semi-separable approach to a tridiagonal hi-
erarchy of matrices with applications to image analysis. In Proceedings of the International
Symposium on Mathematical Theory of Networks and Systems (MTNS). Katholieke Univer-
siteit Leuven, Belgium, July 2004.

[12] P. Dewilde and A.-J. van der Veen. Time-varying Systems and Computations. Kluwer, 1998.

[13] P. Dewilde and A.-J. van der Veen. Inner-outer factorization and the inversion of locally finite
systems of equations. Linear Algebra and its Applications, 313:53–100, 2000.

[14] M. Durkovic, M. Zwick, F. Obermeier, and K. Diepold. Performance of optical flow techniques
on graphics hardware. In IEEE International Conference on Multimedia and Expo (ICME),
2006.

[15] V.N. Fadeeva. Computational Methods of Linear Algebra. Dover Publications, New York, New
York, 1959.

[16] I. Gohberg, T. Kailath, and I. Koltracht. Linear complexity algorithms for semiseparable
matrices. Integral Equations and Operator Theory, 8:780–804, 1985.

[17] G. Golub and Ch. van Loan. Matrix Computations. John Hopkins University Press, Baltimore,
Maryland, 1989.

[18] J. Götze and U. Schwiegelshohn. Sparse matrix-vector multiplication on a systolic array. In
International Conference on Acoustics, Speech, and Signal Processing (ICASSP), pages 2061
– 2064 vol.4. IEEE, 1988.

[19] R.I. Hartley. In defence of the 8-point algorithm. IEEE Transctions on Pattern Analysis and
Machine Intelligence, 19(6):580 – 593, 1997.

[20] F. M. F. Gastona; G. W. Irwina. Systolic approach to square root information kalman filtering.
International Journal of Control, 50(1):225–248, 1989.

[21] K. Jainandunsing and E. F. Deprettere. A new class of parallel algorithms for solving systems
of linear equations. SIAM Journal on Scientific Computing, 10(5):880–912, 1989.

[22] K. Jainandunsing and Ed.F. Deprettere. A new class of parallel algorithms for solving, systems
of linear equations. SIAM J. Sct. Stat. Comput., 10(5):880–912, September 1989.

[23] T. Kailath. Lectures on Wiener and Kalman Filtering. Springer Verlag, CISM Courses and
Lectures No. 140, Wien, New York, 1981.

[24] T. Kailath and A. Sayed. Fast Reliable Algorithms for Matrices with Structure. SIAM, Philadel-
phia, Pennsylvania, 1999.

[25] T. Kailath, A. Sayed, and B. Hasibi. Linear Esimtation. Prentice Hall, Upper Saddle River,
New Jersey, 2000.

[26] L. Kronecker. Algebraische Reduction der schaaren bilinearer Formen. S.B. Akad. Berlin,
pages 663–776, 1890.

[27] J. Krüger and R. Westermann. Linear algebra operators for gpu implementation of numerical
algorithms. In SIGGRAPH 2005. ACM, 2005.

36

[28] S.Y. Kung. VLSI Array Processors. Prentice Hall, Englewood Cliffs, New Jersey, 1988.

[29] B.D. Lucas and T. Kanade. An iterative image registration technique with an application to
stereo vision. In Proceedings of Imaging Understanding Workshop, pages 121–130, 1981.

[30] M. Misraa, D. Nassimib, and V. K. Prasannaa. Efficient vlsi implementation of iterative
solutions to sparse linear systems. Parallel Computing, 19(5):525–544, May 1993.

[31] J. G. Nash and S. Hansen. Modified faddeeva algorithm for concurrent execution of linear
algebraic operations. IEEE TRANSACTIONS ON COMPUTERS, 37(2):129–137, February
1988.

[32] Ch.C. Paige and M.A. Saunders. LSQR: An algorithm for sparse linear equations and sparse
least squares. ACM Trans. Math. Softw., 8:43–71, March 1982.

[33] L. A. Polka, H. Kalyanam, G. Hu, and S. Krishnamoorthy. Package technology to address the
memory bandwidth challenge for tera-scale computing. Intel Technology Journal, 11(3):197–
206, 2007.

[34] I.K. Proudler, J.G. McWhirter, and T.J. Shepherd. Computationally efficient qr decomposition
approach to least squares adaptive filtering. IEE Proceedings F, Radar and Signal Processing,
138(4):341 – 353, 1991.

[35] S. Chandrasekaran, P. Dewilde, M. Gu, T. Pals, A.-J. van der Veen and J. Xia. A fast
backward stable solver for sequentially semi-separable matrices, volume HiPC202 of Lecture
Notes in Computer Science, pages 545–554. Springer Verlag, Berlin, 2002.

[36] Y. Saad. Iterative Methods for Sparse Linear Systems. SIAM, Philadelphia, Pennsylvania,
2003.

[37] G. Strang. Computational Science and Engineering. Wellesley-Cambridge Press, Wellesley,
MA, 2007.

[38] L. Tong, A.-J. van der Veen, and P. Dewilde. A new decorrelating rake receiver for long-
code wcdma. In Proceedings 2002 Conference on Information Sciences Systems. Princeton
University, March 2002.

[39] R. Vanderbril, M. van Barel, and N. Mastronardi. Matrix Computations and Semi-Separable
Matrices. John Hopkins University Press, Baltimore, Maryland, 2008.

37

