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Chapter 1

Introduction

Part T (Volume I) of ‘Systems and Computations’ is a first year graduate
level introduction to system theory based on a novel systematic computa-
tional approach. It is followed, in the next parts, by a collection of further
generalizations and a number of worked out concrete applications in vari-
ous domains. The whole series of three parts is intended to provide for an
easily accessible, reasonably complete and theoretically fully motivated com-
putational workbench for electrical engineers, numerical analysts and signal
processing engineers, who need to understand how systems behave and how
they can be computationally mastered.

With reference to the immense literature on system theory, control theory,
optimization and filtering, it is hard to believe that there would be such a
thing like an easily accessible computational approach to all these topics,
given the variety of mathematical methods people have developed to attack
the various fields pose in the area of system behavior. But there is! Such
an approach has gradually been appearing through a lot of searching for the
‘real basics’ in the various fields mentioned.

The ability to compute effectively and to connect computations to fun-
damental issues in system’s engineering is a major challenge to the ability of
our future engineers, whether they are more active in engineering or in data
numerics, see fig. [[.I One of the most appealing properties of our approach
is the fact that computations and system theory coincide when properly con-
sidered! A computer executing computations is a system in its own right,
even when it is used to perform computations for another, physical system.

To do this unification of fields right, we merge three main bodies of knowl-
edge (system theory, numerical algebra and signal processing) in one core,
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Figure 1.1: Our main disciplines are closely related!

with linear algebra playing the role of cement that glues everything together.
It turns out that the linear algebra needed to achieve this feat is mostly if not
wholly elementary. Simple matrix operations play the central role, but like
wild horses, they have to be tamed to behave in a constructive way. That is
the role numerical analysis plays in the set up.

The challenge to students and researchers studying system theory is the
mastery of elementary matrix algebra, and the ‘geometry’ connected to it. A
matrix defines a linear ‘operator’, and the range as well as the kernel of the
matrix as operator play the central role. Most algebraic operations aim at
characterizing ranges and kernels, mostly by deriving orthonormal bases for
them, an operation that in signal processing terms may be called ‘orthogonal
filtering’. Depending on the application at hand, whether realization the-
ory, optimal control or estimation theory, the filtering procedure goes with
an idiosyncratic name and is called e.g., dynamic programming, a Wiener
filter, a Kalman filter or a selective filter (in electrical engineering), or QR
factorization, or SVD in numerical algebra.

Conversely, the study we propose will equip the student with a wealth
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of examples in which they can refine their intimate knowledge of matrix
algebra as the main mathematical vehicle to achieve key results. Familiarity
with matrix algebra is a ‘to be or not be’ question for a modern engineer
who has to handle data in a variety of situations, and the detailed study of
system theory offers the ideal environment to develop that familiarity. This
can be seen as the main ‘end term’ of the course we propose.

Prerequisites

We assume knowledge of elementary (undergraduate level) matrix algebra
(real and complex numbers, vectors, matrices, matrix products, matrix in-
version, eigenvectors and eigenvalues, QR decomposition and SVD) and basic
analysis (functions, limits, ordinary and partial differentials, integration, se-
ries). Matrices are our ‘lingua franca’, and our students and readers should
develop close familiarity for them (this book will help tremendously!). More
advanced mathematical properties (in particular some elementary proper-
ties of Hilbert spaces) are introduced where they are used, and this happens
only in later chapters. Only in few, specific places more advanced proper-
ties are needed and will be explained there. We have added in appendix a
systematic introduction to linear (matrix) algebra, the properties and the
algorithms used or assumed, both for easy reference and to communicate to
the reader ‘our’ way of thinking on these matters.

Organization

We have attempted to make each chapter correspond with ca. two (some-
times three) hours of lectures or ‘workshops’. We have experimented with a
format in which students are asked to read the chapter beforehand, do some
research on the internet, and then come to class weaponed with observations
and questions. The class meeting then starts with an inventory of these,
followed by an in depth discussion of critical items. In particular, a lot of
attention then goes to ‘how’ to approach the critical issues rather than to a
linear treatment of the material. It takes some discipline from both students
and lecturers to work in a "flipped classroom” style. In particular, it takes
effort to convince students to put time in the preparation of the material and
to convince lecturers not to start right away explaining things during contact
hours. What may help is to organize and schedule ‘reading meetings’, i.e.,
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CHAPTER 1. INTRODUCTION

a cosy room and time slots set apart for preparations. When it works, the
method is much more productive than just lectures.

To enhance creative participation and/or communal reading, we have
added ‘discussion topics’ to each chapter as well as further exploration topics.
Etymologically, 'algebra’ is ‘the art of structuring’, and its practice is quite a
different thing than the mere acquisition of knowledge. This is our main goal:
motivate and facilitate the development of algebraic practice in dynamic
system theory and signal processing, with an important role for numerical
analysis (and practice) to play in the process.

Chapters 2-12 cover the basic theory, using the discrete-time Linear Time-
Variant (LTV) system theory as the main vehicle. Chapters 2-5 are purely
introductory, in that they position our two main application domains ‘dy-
namical systems’ and ‘signal processing’ both historically and from what is
commonly understood by them (semantically), using numerical algebra to
convert the ‘narrative’ in concretely useable mathematics—in our case just
elementary matrix calculus. Chapters 6-12 then develop all the basic con-
cepts in the context of discrete-time, linear, time-variant systems with finite
dimensional state-spaces, including two main application domains: Kalman
filtering and Bellman optimal control. They do so strictly using elementary
matrix algebra. This is possible because the computer, as a numerical en-
gine, belongs itself to the class of LTV systems, at least so long as linear
operations (addition and multiplication with coefficients) are used.

A follow up book then considers many further developments of the the-
ory, mainly in three directions: (1) extensions to other types of systems
(non-linear, continuous time or even hybrid) and (2) a variety of (often new)
mathematical properties of matrices that can be derived using system the-
oretical methods (matrix interpolation, approximation theory, model reduc-
tion) and (3) a full blown treatment of some important applications (in circuit
synthesis, optimization, data processing in telecommunication and optimal
control).

The thirteen chapters of the present book form therefore a logical whole
and have to be run through systematically and sequentially. Except for
chapter 5 that provides the link with classical time-invariant filter theory,
they develop the theory of dynamical systems systematically in the LTV
context, using concepts that are much more generally applicable, but are
made fully concrete thanks to the already mentioned direct connection with
numerical analysis and matrix algebra. The basic concepts acquire in this
way an eminently concrete meaning and immediately exemplify their power.
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A short overview of the first Part

We start out with a motivating chapter to answer the question ‘why it is
worthwhile to develop systems theory’. To do so,we jump from the start in
the center of our methods, using an eminent and classical topic in optimiza-
tion: optimal tracking. Although optimization is not our leading subject—
system theory is—it definitely provides for one of our main application areas.
This motivating chapter describes a straight matrix-algebra approach to the
problem, which should become second nature throughout the course. Opti-
mal tracking is based on a powerful principle called ‘dynamic programming’,
which is a great and very practical method in its own right, but its recursive
character also provides for a powerful link between optimization and the cen-
tral ideas behind system theory. The chapter then illustrates the technique
further with an appealing toy example that embodies in a most elementary
way all the central ideas, and ends with a short introduction to our graphical
method of choice to represent the resulting computational architectures.

Chapter 3 then moves into a more philosophical mood to introduce the
basic notions on which system theory is based. In this endeavor, it follows
the insights first provided by the late Rudy Kalman and his colleagues in
[26], but it does so mostly as a narrative, without going into a resulting
general mathematical treatment. The reason is that, on the one hand, a
couple of fundamental, and very appealing notions such as ‘state’, ‘behavior’,
‘reachability’; ‘controllability’ suffice as a basis for the whole theory, but, at
the other, we want to keep the mathematical treatment concrete. In further
chapters we shall gradually develop the mathematical consequences of the
concepts introduced here, giving priority to the matrix algebra approach,
but expanding on them where interesting or necessary.

In chapter 4, and based on the narrative given in chapter 3, we spend
some time introducing the reader to the main types of systems they may
encounter in practice. The chapter puts some more relief in the possible
contexts in which systems and their dynamics may arise, and gives some
arguments for the proposition that there is at least one reasonably general
type of system to which many of the more complex types (continuous time,
non-linear, distributed) have to be reduced, as soon as concrete computations
on systems’s properties or behavior have to be executed, namely discrete
time, Linear Time-Variant systems (LTV systems).

Chapter 5 then starts to develop our general ideas in this central LTV
prototype environment, an environment that appears to coincide perfectly
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CHAPTER 1. INTRODUCTION

with the linear algebra or matrix algebra context, making the correspondence
systems-computations a pregnant reality. At the same time, we develop
our algebraic formalism systematically. People familiar with the classical
approach in which z-transform or other types of transforms are used will
easily recognize the notational or graphic resemblance, but there is a major
difference: everything remains elementary, no function calculus is involved
and only the simplest matrix operations (addition and multiplication) are
needed. The algebra just follows the system theoretical and at the same time
computational processing needed. Particularly appealing expressions for the
state space realization of a system appear and the global representation of the
input-output operator in terms of four block-diagonal matrices {A, B, C, D}
and the ‘causal shift’ Z. The consequences for and relation to Linear Time
Invariant (LTT) systems and infinitely indexed systems are also considered
in *-sections, which can be skipped by students or readers not interested in
these topics.

From this point on, we are ready to tackle some main issues in system
theory. The very first, considered in chapter 6, is the question of system
wdentification. It is the problem of deriving the state space equations from
input-output data. The problem is, in the first place, the derivation of the
state space evolution equations and output equations from the input-output
(transfer) operators or input-output matrix. In this chapter, only the causal,
or block-lower triangular case is considered, although the theory applies just
as well to an anti-causal system, for which one just has to let the time run
backwards and apply the same theory in a dual way.

In chapter 7, an important and central issue is considered: that of mini-
mality of state space system representations. This is perhaps the most clas-
sical issue in system theory, with a big pedigree starting from Kronecker to
its solution in time-variant systems. The question introduces important ba-
sic operators and spaces related to systems in general and, in a strong way,
linear systems in particular. In the time-variant context (and by extension in
all other contexts), what we call the ‘Hankel operator’ plays the central role,
and in particular, a minimal factorization of it in a ‘reachability operator’
and an ‘observability operator’. From our LTV treatment, the corresponding
results for LTI systems (a special case) and infinitely indexed systems follow
easily, but they entail some extra complications, which are not essential for
the main treatment offered and can be skipped on first reading.

Chapter 8 then dives into elementary matrix operations that exploit the
recursive structure of their state space representations if such is available
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or derived, to wit: addition, multiplication and elementary inversion. The
latter when possible, of course—the issue of generalized inversion will occupy
us in more advanced chapters in Part 2. The chapter also introduces some
special types of matrices that play an important role for orthogonalization,
as was already exemplified in our motivating first chapter 2, namely inner
matrices. Their relation to system realization theory is worked out in the
next two chapters.

As we already observed in the case of the Hankel operator, factorizations
play a central role in system theory, and there are several types of them,
depending on what is factorized, and what form the factors have to take.
In this section we develop one type of factorization that is of great impor-
tance for the characterization of an LTV system, and which is traditionally
called ‘coprime’ factorization. Because not all such factorizations have to
be coprime (when non-minimal realizations are to be considered, which may
either be needed or just happens), we prefer the term ‘external factorization’
(in contrast to inner-outer which is the topic of the next chapter). Exernal
and coprime factorizations play an essential role in control theory, but that
will be considered in advanced and application chapters in Parts 2 and 3.

Chapter 10 considers perhaps the most important operation in all time-
variant system theory: inner-outer (and its dual, outer-inner) factorization.
This factorization plays a different role than the previously treated external or
coprime factorization, in that it involves properties of the inverse or pseudo-
inverse system(s), computed on the state-space representation of the original.
Inner-outer (or outer-inner) is nothing but recursive ‘QL-factorization’, as we
already observed in our motivational chapter 2, and outer-inner is recursive
‘RQ-factorization’. This type of factorization will play the central role both
in a variety of applications (like optimal tracking, state estimation, system
pseudo-inversion and spectral factorization), all topics that are individually
treated in further chapters.

The set of basic topics then concludes in Part 1 with two major and
elementary application domains of our theory: linear least squares estima-
tion (llse) of the state of an evolving system (Kalman filtering) and its dual
quadratically optimal linear tracking (Bellman filtering), both straight ap-
plications of the inner-outer theory. Further deepening of these in several
directions as well as many more applications are treated in the following
parts of this trilogy.

In appendices we give a systematic overview of the linear algebra we use
and we also discuss some methods used in LTI theory, with an emphasis
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CHAPTER 1. INTRODUCTION

on the transition from LTI to LTV. This chapter is intended for making
this transition natural to students who were trained in classical electrical
engineering methods, and for whom our systematic matrix-based may seem
outlandish.

A motivation for the approach

In our present technical world, systems and computers are ubiquitous. We
may experience them as different, but in many ways, the notions overlap.
Technical systems are often steered or controlled by an embedded computer
that executes some algorithm, and, conversely, a computer executing a com-
putational or algorithmic task can be viewed as a (dynamical) system in its
own right. This correspondence can be exploited to great benefit for the
understanding of the behavior of a system on the one hand, and, conversely,
the development of efficient computations on the other. This is also the key
idea behind the present book.

Traditionally, system theory, numerical algebra and signal (or data) pro-
cessing have developed and evolved in very different ways. We show in these
volumes that bringing the fields together has great advantages both from a
theoretical and a practical point of view. It turns out that only very few and
absolutely elementary basic concepts and numerical methods are needed to
cover the whole field, provided one is willing to leave the old ways behind
and look at the key issues in a novel way.

The insight that such an approach was possible gradually arose, first in
the seminal work of Bellman and Kalman, who dared to dispose of the clas-
sical, Fourier and Laplace transform based theory into the new environment
of time variant systems, but then were forced to re-incorporate their views
in the classical framework of time invariant algebraic structures like mod-
ules or Hardy spaces, lacking an effective time variant algebra. The latter
came up gradually, at the mathematical side as ‘nest algebras’ and at the
numerical side as ‘semi-separable systems’. It took a while to harmonize the
two approaches, but that is now the case and the present book offers a fully
didactical introduction to the unified theory.

The basis for the transformation or rejuvenation of the field is remark-
ably simple (but it took a long time to develop it systematically). The late
Rudy Kalman had the vision that ‘the state of a system is what the sys-
tem remembers of its past’, or, dually, ‘the minimal information needed at
a given moment to produce its future development, given future inputs as
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well.” Mathematically, this information presents itself as ‘Nerode equivalent
classes’, and, depending on the formalism one adopts, as an ‘ideal’” or a ‘sub-
module’ or a ‘restricted shift invariant subspace’. It was thought for a long
time that these notions could not extend beyond a time invariant framework.

At the numerical algebra side, the power of orthogonal transformations
gradually became evident, exemplified by the resurgence of QR~factorization
and the Singular Value Decomposition (SVD), insights going way back to
Jacobi and Gauss, but then resurrected by numerical analysists like Givens
and Householder. It turns out that the only really central concept needed is
that of ‘range of an operator’. For system theoretical purposes, the ‘operator’
that characterizes the transition from past to future is what is called the
‘Hankel operator’, and its range or co-range plays the role of state space in
the Nerode-Kalman view on systems.

In the time-invariant setting, the Hankel operator is simply a Hankel
matrix, that is, a matrix with identical elements along the anti-diagonals
(or NE to SW diagonals), but in the more general matrix setting, it has a
somewhat more involved recursive structure that reflects the shift invariance
of its kernel. This observation is the key to the development of a unified
and extremely powerful time variant theory. Translated to numerics, the
property amounts to efficient recursive QR or SVD, efficient because the
numerical complexity turns out to be dominated by the dimension of the
state space (which is often limited) rather than the dimension of the system’s
input-output relation (which may very well be infinite).

In the present book, we treat matrix operations the way we treat a dy-
namical system, that is, respecting its recursive order in time. General matrix
computations can just be viewed as operations on a numerical system and,
conversely, time variant dynamical systems produce general matrices as their
numerical behavior. The notions ‘matrix’ plus ‘linear order in time’ or ‘in-
dexing order’ coincide with the notion ‘discrete time dynamical system’ in
this approach.

Basic matrix operations are operations on systems and vice versa. For the
development of the whole theory only the most elementary matrix operations
(additions and multiplications) are needed. The large majority of results
ranging from system identification to system optimization, estimation and
model reduction can remarkably be obtained without anything more than
elementary matrix operations. Conversely, the approach often leads to novel
matrix methods as well, especially in the area of matrix approximation and
interpolation.

© Patrick Dewilde 2015 9
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The result is that time variant system theory and elementary matrix cal-
culus largely coincide. This is a major didactical advantage of the approach.
No complex function calculus, transform theory, module theory or whatever
complicated algebraic structures are needed for most of the results, provided
one stays within the context time-variant systems and matrices. On the
other hand, with some extra effort all the time invariant results can be de-
rived from the time variant basics, but they often require the solution of an
additional fixed-point problem. Historically, the time invariant way was seen
to be simpler and more insightful. The opposite is true: invariance compli-
cates matters considerably and may be seen as ‘unnatural’. By going time
variant one can sidestep most of the classical literature in favor of a straight
and simple matrix theory—a great logical and didactical simplification.

A further step in which the power of the time variant approach is ex-
ploited is towards non-linear systems. A non-linear system is only a dif-
ferential away from a linear, time variant system. This fact leads to the
applicability of most time variant results in the non-linear context, but there
is a catch, and that is that the opposite direction, from time variant result
to non-linear result is far from trivial in many cases. Nonetheless, as al-
ready mentioned, range theory remains the main ingredient and our main
workhorse, inner-outer factorization works non-linear as well, but the whole
non-linear development necessitates some differential geometry, which is of-
ten viewed as non-elementary. Therefore, these topics will only come into
play in later, more specialized chapters falling outside the scope of our first
part.

Notation

We mostly use standard algebraic notation, a survey of which is in the Ap-
pendix. We do, however, use special notations for mathematical objects
that occur often in our developments, and/or to avoid annoying overloads of
symbols (which sometimes cannot be avoided). Here is a short summary of
non-standard notations used in this book:

e Many of our objects are matrices, and we have often to consider either
special indexing conventions or take out submatrices from a given ma-
trix. As such operations can become unwieldy, we adopt systematically
a MATLAB-like annotation of index ranges. Suppose A is a matrix,
then Ag.pm. is a submatrix of A consisting of a selection of rows from
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index k to ¢ (inclusive) and columns from index m to n inclusive. If

such columns are not there originally, they are just considered empty

(see the next item). We also systematically economize the notation (in

contrast to many textbook): A, a and A may e.g., be different matrices

with A; ;, a; ; and A, ; different elements of each respectively.

e Very often we consider block matrices, i.e., matrices whose entries are
themselves matrices (called ‘blocks’). Blocks may consist of blocks
themselves, but they are indexed in the usual fashion and have to be
commensurate (dimensions in rows or columns must match through-
out). For example: A, may be a block in a block matrix A, and
[Ak ¢lm.n is then a block entry at the position (m,n) in that original
block. We do allow blocks with zero dimensions: they are just empty,
but do have index numbers. We do have some peculiar notation for
such a situation: an entry of dimension (0, 1) is denoted ‘—’, an entry
of dimension (1, 0) is denoted ‘|’, and one of dimension (0, 0) is denoted
“” (these are actually place holders: they have indices but no entries).
Special (logical) computational rules apply for such entries (they are
introduced in the text where this type of notation is first used). This
extension of matrix algebra appears to be very useful: in many matrix
operations (in particular reductions and approximations) one cannot
say before hand whether certain entries survive the operation (for ex-
ample: deleting rows or columns of zeros in a matrix). Just like the
introduction of the empty set () and the number 0 proved extremely use-
ful in set theory and algebra, so are indexed empty entries. They also
correspond to the empty symbol (L) often used in computer science.

e In the literature, many notations are used to indicate the transpose
of a real matrix or the hermitian transpose (conjugate transpose) of a
complex matrix. In this book and as in MATLAB, we shall only use
real or complex arithmetic and indicate these transpositions by a single
symbol, namely a single accent (i.e., A’ is in all cases the hermitian
transpose of A. In the real case it is then also just the transpose.). A
motivation for this choice is 1., the overload of the symbols T or H,
as we have special use for those (we do not like the notation 77 for
the transpose of 7' nor H* for the hermitian transpose of the Hankel
matrix H!) and 2., some consistency with MATLAB, however with
the proviso that in MATLAB the accent is just a transpose (not a
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CHAPTER 1. INTRODUCTION

transpose conjugate)—but as most of our computations are real, this
should not be a problem. We reserve the star (for example, with a an
operator, a*) for the dual of an object in a context where duality is
well defined (a dual is not necessarily a transpose, although it often
will be). Sometimes, the dual of a matrix is indeed its transpose, but
that should be clear from the context. We use tildes and hats as normal
typographical symbols—they do not have any other meaning than to
characterize the object under discussion.

We use ‘constructors’ systematically, following a good habit of com-
puter science. Constructors are written in normal font. For example
‘col’ is the column constructor. It takes a sequence of elements (e.g.,
numbers or blocks with appropriate dimensions) and makes a column

out of the them. For example: col(uy, us) = { Zl ] (compare this with
2

[ ul ul ]T) Further constructors are ‘row’, ‘Toeplitz’, ‘Hankel” etc.
(often abbreviated).

Names and formulas: the general convention is that 'names’ are written
in ‘regular font’. For example: ‘ker’ or ‘ran’ are names for functions
that return respectively the kernel or the range of an operator, while
ker is the product of k, e and r. This convention allows to use indexed
names as well: so is K7 just a name, while the notation K; assumes K to
be a vector, whose element with index 7 is K7. A new name occurring
in the text, a theorem or a proof is introduced with the symbol :=’;
example: T := D + C(I — ZA)"'ZB defines T in terms of the right

hand side symbols (assumed to be already defined).

Another convenient notation that we shall use extensively is a short

hand for system realizations. Z is systematically used as the ‘forward’

or ‘causal’ shift, with its conjugate Z’ the ‘backward’ or ‘anti-causal’

shift. A causal, linear time variant (LTV) system 7" may have a ‘real-
ization’ T'= D + C(I — ZA)~'ZB for which we use the shorthand
A B

TNC[C’ D]' (1.1)

Similarly, and anticausal LTV system may have a realization T'= D +
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C(I — Z'A)~'Z'B, with the shorthand
A B

T { = ] .
For purists: Z is a generic operator or constructor. It just shifts the
indexing scheme, but stands also for a generic collection of shift ma-
trices, which have a different effect whether applied to the left or the
right of an indexed object. E.g., suppose u is an indexed column, then
Zu is again an indexed column whose elements are (Zu); = ug_;1. In
our formalism, the dimensions of the u; may vary (and even become
empty), and the dimensions of the entries in Z, interpreted as a ma-
trix, have to adapt. This question is addressed at length in the chapter
on LTV systems. Some constructors can be represented as matrices.

What characterizes a constructor is that it entails an organizational
operation rather than a numerical operation.

(1.2)

e We also need shifts along diagonals. We denote A<*1> as a ‘forward’
diagonal shift on a matrix, i.e., a shift in the South-East direction, with
as its conjugate the ‘backward’ diagonal shift denoted as A<7!>, i.e., a
shift in the North-West direction.

e We shall also occasionally use ‘continuous products’, defined for inte-
gers 1 > k as Aik = A;_1--- Ay with A;; := I (notice: this convention
may differ with what is done in the literature!).
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Chapter 2

Optimal quadratic tracking

Our first chapter is intended to be purely motivational, while
also covering an important and highly useable general topic, dy-
namic programming. Dynamic programming is a perfect vehicle
to start appreciating the power of recursion, which is also why
system theory is such an important engineering topic. Recursion
is where systems and computations meet. We start out by intro-
ducing one of the most powerful operations of linear algebra, the
Moore-Penrose inverse, which we shall use extensively to solve
least squares optimization problems throughout the book. Next,
we describe the prototype optimal quadratic tracking situation,
and use Moore-Penrose to find an optimal recursive solution. This
approach is known as a case of dynamic programming and it ex-
hibits the importance of the notion of state, which we shall pursue
intensely in the further chapters. The following section is then
devoted to a toy example, deceptive in its simplicity but very
instructive to build dynamic programming intuition. The core
of the chapter then ends with the introduction of our method of
choice to map computations into architectural implementations,
here applied to the dynamic programming situation.

Menu
Hors d’oeuvre
The Moore-Penrose inverse

First course
The Bellman problem: optimal quadratic tracking
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CHAPTER 2. OPTIMAL QUADRATIC TRACKING

of a dynamical system

Second course
A toy example of
the power of dynamic programming

Third course
Unbiased architectural representations

Dessert
Notes

2.1 Preliminary: the Moore-Penrose inverse

Let us consider an overdetermined system of linear equations b — Az = e
in which A is an n X m matrix of linearly independent columns, n > m
(necessarily), x is an unknown vector of dimension m, b a given vector of
dimension n, and the goal is to find = so that the quadratic norm of the
‘error’ or ‘cost’ e, namely ||z||s = Ve'e with e’ the transpose of e (we use
MATLAB notation as much as possible) is minimum. We have:

Proposition 1 The solution to the minimization problem argmin||b— Azx||-
with A an n x m matriz (n > m) with independent columns is unique and
given by

Tmin = ATD, (2.1)

in which At := (A’A)"YA’. Al is, by definition, the Moore-Penrose inverse
of A.

Proof

(We follow the traditional ‘Wiener’ orthogonality argument). Whatever x of
dimension m, Ax will lie in the linear space (hyperplane) generated by the
columns of A, i.e., the range of A. The ‘best’ x,,;, will then be such that the
least squares error ey;, = b — Az, is orthogonal on the range space of A,
i.e., we should have

A'(b— Azpin) =0 (2.2)

and hence xy;, = (A’A)7tA’b since A’A is an m x m non-singular matrix
thanks to the assumed independence of the columns of A. (Notice: Any
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2.1. PRELIMINARY: THE MOORE-PENROSE INVERSE

x will have b — Az = (b — Azpn) + h for h = A(zpin — ) L enin, see
fig. and hence [|b — Az|]? = |lemm||* + 7% > ||émnl||* when h#0.)
QED

Figure 2.1: Best linear quadratic approximation

Example

Subpose we have two measurements of a quantity x, the first giving x = 9
and the second x = 11. What is the ‘best’ = in the least squares sense?

1
Writing the measurements in matrix form gives b — Az = e with A = { 1 }

9

amdb:{11

} We find A’/A=2and AT =3[ 1 1] and hence 2y, = 10

1
one would expect.
This is the basic ‘geometric’ result that we use in most optimization
problems that we shall consider, since most of them will be of the least squares
type. Still, a number of remarks and/or refinements can be considered, to
wit:
- A’ is an m x n matrix so the dimension of A’b is the same as that of z.
Iy := A(A’A)"tA’ is the orthogonal projection operator on the range of A,
and we shall sometimes write b := II Ab. b acquires a special meaning as llse
or linear least squares estimate of b in a stochastic estimation context.
- In case the columns of A are not linearly independent, more work has to be

with €min —

}, the overall square root error being \/e/ . emin = V2 as
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CHAPTER 2. OPTIMAL QUADRATIC TRACKING

done to solve the minimization problem, which also does not have a unique
solution any more. We refer to the algebraic introduction at the end of this
book for details.

- The QR~algorithm applied to A produces a factorization of the form

a-l@ @]y (23)

in which ) = [ Q1 Qo } is an n X n orthogonal matrix and R a non-singular
m X m upper-triangular matrix (see the algebraic introduction at the end of
the book). The columns of ()7 form an orthonormal basis for the range of A,
while the columns of 5 form an orthonormal basis for the kernel of A’, also
known as the co-kernel of A. When we dispose of such a QR-factorization,
then we can immediately write AT = R71Q{. QR is not the only possibility
for such a result, we could (and shall) also use a QL version of the same

type of algorithm, writing A = [ Q1 Q- } { 2 ] , in which @ (different from

before!) is still an orthogonal matrix and L is a non-singular lower triangular
matrix. In this latter case we shall have AT = L71Q;. Both R and L can
be seen as ‘compressed’ versions of the rows of A with a special (upper or
lower) structure.

- QR (or QL) are not the only possibilities to obtain the range basis. A
numerically more refined method is the singular value decomposition also
described in the algebraic introduction.

Example
11

In the previous example we have A = [ 1 ] = \f f { \65 } , giving
V2 2

orthonormal bases for both the range of A and the co-kernel of A, which is
the kernel of A’.

2.2 The Bellman tracking model

By way of introduction and provision of a specific instance of motivation for
the development of system theory, let us consider the problem of optimal
quadratic state control or optimal tracking of a linear dynamical system,
as originally defined and studied by Bellman [7]. Throughout this book,
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2.2. THE BELLMAN TRACKING MODEL

we work with signals discretized in time (for brevity, we skip the standard
step of discretization here, which typically could be done using a trapezoidal
integration rule to protect numerical stability. We treat the issue in a more
advanced chapter in Part 2). Our dynamical system will possess a state,
which summarizes its past at any given indexed time instant k and is assumed
to be a vector of dimension 7, denoted as x. Moreover, let the system be
driven by an input wu; at index k, where uy is a vector of dimension my,
and let the evolution of the state of the system at k be given by linear state
equations (we use a state space formalism throughout, because the systems
we consider will mostly be time variant)

Thy1 = Akxk + Bkuk (24)

in which Ay is a n1 X n, and By a ng1 X my, matrix. A simple signal flow
diagram as shown in fig. is often used to represent such a calculation
(we shall extend such representations by a functional model data model to

be defined in section .
Lo
By,

Tr Tpy1 = Ay + Brug
Ay,

Figure 2.2: Signal flow model of the state evolution at index k

We assume furthermore that our system starts at index 0 with a given
initial state zy and that we wish to control the evolution of our system in
the interval [0, + 1] where n is a final index, so as to minimize a positive
quadratic cost function restraining states and inputs.

For simplicity and in order to represent a quadratic cost adequately, we
write the cost of a state zy, as ] M,/ Mz, in which M}, is a matrix of appropri-
ate dimensions and the accent indicates real or complex conjugation, making
xj, a row vector, in line with MATLAB, whose notation convention we use
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CHAPTER 2. OPTIMAL QUADRATIC TRACKING

throughout (often the cost is defined by a strictly positive definite matrix C,
and one may take M) = C’,i/ ? or just as well a Cholesky factor but Cj may
be non-strictly positive definite and M, may be a rectangular factor; precise
conditions on the available latitude will be derived later.). Similarly, the cost
of an input ug will be uj N Nyu, and we assume N}, square non-singular (so
that arbitrarily large inputs will not be possible). We assume, in addition,
that the system description is minimal, which, in this case, just means that
all possible states xp at any relevant index point k& can be reached with an
appropriate sequence of past inputs, a technical condition necessary to make
the algorithms presented work, but about which we shall not worry in this
first approach, because a non-minimal model can always be reduced to a
minimal one by a standard procedure that we shall present in the chapters
on system realization.

Note

One of the original motivations for considering a quadratic optimization
model was the Apollo mission: how to get a rocket to the moon with mini-
mal expenditure of fuel? It takes, of course, some work to reduce the Apollo
mission problem to the simple model presented above. One must first find a
potentially optimal trajectory that respects gravity laws and that requires a
minimal nominal amount of fuel to reach the goal within a domain of feasi-
bility defined by various limits in time and fuel needed. Once settled on such
an optimal trajectory, the control problem is to keep the rocket close to the
optimal trajectory with minimal expenditure of fuel, even though various
inaccuracies may have occurred producing (stochastic) deviations. This is
achieved by controlling the deviation of the state from the desired optimal,
and using the control to bring the rocket closer to the nominal optimal trajec-
tory without spending too much fuel. When sufficiently small, the deviation
of the state will satisfy a linear differential model derived from the optimal
trajectory. After discretization, a model of the type given above is obtained
(in a much later chapter we shall study discretizations to some extent.).

Dynamic programming

The problem of optimal quadratic control in the given set up is solved by
dynamic programming. The basic idea of dynamic programming is: once
the system has gotten to whatever state xp at time index k, the trajectory
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2.2. THE BELLMAN TRACKING MODEL

has to be optimal from there on—for, if that were not the case, there would
be a better overall trajectory just by replacing the segment from k on by a
less costly path. This means, in particular, that all optimal inputs and costs,
when started from whatever xy at time index k are only dependent on zj, (and
not on previous states), given the model of course (or, to put it differently,
all the future inputs have to be chosen so as to optimize the trajectory from
index k on, and hence are only dependent on z; and the model). Let us
prove this assertion now for the quadratic error case (a general proof works
the same way, but in the quadratic case we get a more specific result).
For this we introduce the recursion hypothesis:

the total optimal cost starting from any xy, in the remaining inter-
val [k,n + 1] is given by a quadratic form cjc, == x[Y, Y12y
with ¢, = Yp_12k, n which Y,_1 1s a to be computed np X ni
matriz.

The recursive hypothesis will be verified if 1. it is valid at end point k = n+1
and 2. when valid for k+1 it is valid for k. Point 1. is obvious, because at the
end point n + 1 the cost is nothing but x, M, M, 12,41, s0 Y, = M,
and the recursion we derive now will verify point 2. (remark: the -1’ in Y;_;
is historically motivated).

Key to the method is the determination of a cost model: put the ‘square
roots’ Ypxpi1, Myxz, and Npu, of the cost terms as outputs in the model.
Next, assume recursively that the optimal cost, from k£ + 1 on, and for any
Ty, is given by @] Y'Y, w111, the cost model at k (shown in fig. gives,
after multiplication of the first block row with Yj:

Yiii1 Y, Ay Y. By Yy Ay ‘ Y. By, T
Nkuk 0 Nk 0 Nk b

and the optimization problem specializes to: find the u; that minimizes the
cost x] My Myxy, + u N/ Ny, + 2 Y'Y Tp1 (x5 i thought given and fized
in this phase of the recursion and its cost obviously cancels). Notice: in this
phase of the recursion x;, is the only remaining ‘variable’, the others, namely
ug and xpo 1 will be ‘optimized out’ in function of x.
Eq. is a linear (vector) equation of the form

<cost> = <known data> + <matrix 7> times <driver> and the goal is to
find a <driver> that minimizes the <cost> in a quadratic sense. The general
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U
By,
T L+
| Myzy,
Lk o l Nkuk ]

Figure 2.3: The full local cost model for optimal quadratic control, including
cost outputs

solution of this problem is given by ‘<cost> = -TT <known data>’, in which
Tt is the Moore-Penrose pseudo-inverse of T (see the preliminary section!).
Here we consider the common case in which 7" has independent columns, in
which case the solution is unique and the Moore-Penrose pseudo-inverse is
given by TT = (T'T)~'T’. This is a good closed form expression, but our
filtering strategy, to be developed next, will produce an attractive, recursive
solution of low numerical complexity (for the definition of the Moore-Penrose
inverse, see the first section of this chapter or the mathematical inroduction
at the end of the book).

One effective way to find this pseudo-inverse and hence solve the problem
is to execute a so-called @Q)L-factorization on the full ‘system model” given
by the third term in eq. 2.5 ‘Q’ stands for an orthogonal transformation
and ‘I’ for a lower-triangular matrix whose rows are linearly independent
and have a ‘staircase’ aspect (often with irregular steps, but not so in the
present case, because our assumptions will be such that the matrix to be
factorized is assumed to have independent columns). The computation of an
orthonormal basis for the columns (range) of a given matrix, is a classical
problem in numerical analysis and can be done with a variety of methods that
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2.2. THE BELLMAN TRACKING MODEL

we shall discuss later (Givens or Jacobi rotations, SVD or even n-dimensional
global rotations)—see, for a start, the section on implementation further on
in this chapter. The result of the QL-factorization is summarized in the
following formula, in which we have introduced appropriate (to be explained)
symbols for all the elements that are computed in the operation, namely all
the matrices and submatrices on the right hand side:

0 0
Yei| O (2.6)
Co,k Do,k

Q. is an orthogonal (or, in the complex case, unitary) matrix that produces
the block staircase in the right factor, namely, as we shall show in the next
paragraph, the new (recursive) value for Y;_; as well as the non-singular
bottom row [ Cor Dok ] that contains the data needed for the optimal
control, as we shall see soon. The computation of new matrices from a
given matrix, as is done in eq. [2.6] has been termed array processing in the
literature, for obvious reasons.

To proceed with ease, we need some further properties of Y;,_; and D, .
They will be square non-singular matrices when the left hand side of eq.
consists of independent columns. At this point we just assume that this is
the case (the condition is necessary for a unique solution to exist).

From eq. 2.5 we see that the optimal uy is given by

YiBr 17 [ ViAs

Umin,k = — 0 Mk T (27)
N, 0
Y. By
in which 0 is the Moore-Penrose pseudo-inverse of the coefficient
Ny,
matrix of ux and, by eq. we may infer:
Umin,k = _D;ico,kl'k (2.8)
because
0 = Qk 0 and Mk = Qk Yk,1 . (29)
N, D, 0 Cok
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Y. By,
Hence 0 = [ 00 Do_,i ]Q,g The orthogonality Q;Qr = I then
N,

produces the result. Next, filling in the optimal control in the cost equation
0

immediately produces the minimal cost cyingk := Qr | Yi—1 | o and hence
0

Conin kCmink = T3 Yy 1 Yi 12y, as claimed by the recursive hypothesis.

A simple QL-factorization gives the complete recursive solution of the
quadratic tracking problem, whereby the orthogonal Q-factor filters the input
data to produce both the optimal control and the new global cost function,
all in function of the actual state x;. This local factorization leads to the
product decomposition of the model filter shown in fig. known as an
inner-outer factorization—a topic that we shall discuss in great detail in a
later chapter.

ity uo

Ln ¢Ln—|—1

Figure 2.4: The recursive factorization of the Bellman model filter in an inner
(bottom chain) and an outer (top chain) filter. The picture shows the signal
propagation in the factorization as well.

In the optimal case, the input to the inner filter (see fig. [2.4) is seen to be
zero (from the control equation, eq. , except for the initial input xg, and
the inner filter shows the distribution of the minimal cost across the system
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(fig. . The inverse of the outer filter with input zero gives the control

Y 4 0

Lmin,O
Figure 2.5: The signal propagation in the inner filter in the minimal case.

for the optimal case with the adopted costs, shown in fig. However,
that is not all. Both the inner filter and the outer filter are invertible. The
inverse of the inner filter is anti-causal, while the inverse of the outer filter
is causal. The inverses allow one to modify the cost at specific locations and

FO = —Do_,(l)coyo Fn = _D;,'}lco,n

L0 A

A

Figure 2.6: The optimal controller is simply the inverse of the outer filter.

then compute the input needed to achieve the new performance (this design
issue leads beyond the scope of the present discussion.).
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2.3 A toy example: row, row, row your boat*

A starred section may be skipped without impairing the continuity
of the development.

Suppose you want to cross a river with a rowing boat. The current in the
river has variable velocities depending on the distance from shore. You can
let your boat drift, and with careful handling of the rudder or the oars, you
can reach the other side without any effort on your part. This will drift you
off too much, so, instead, you shall row against the current with the aim to
reach a destination close to your starting point, at the other side. You will
try to do a best possible job, by minimizing the effort you have to exert,
while trying to get close to your destination. We make a simplified model
of the situation, for discussion purposes. Here are the assumptions (see fig.
27):

- we subdivide the river in four segments 0 : 3, each segment having a uni-
form speed of water vg.3. We let the current flow in the (vertical) x-direction
- the ‘natural drift’ in each segment (i.e., the drift with no effort) is given by
0;, 1 € 0:3. E.g., ; proportional to v; with some constant;

- rowing provides for an improvement on the drift of d; > 0 in segment ¢,
whereby the rowing effort is pegged at n?d? for some n; solely dependent on
v; (perhaps proportional, assuming the force to be overcome proportional to
the speed of the water that hits the boat). This is motivated by the following,
admittedly somewhat flimsy, consideration: the force to gain d; against the
current speed v; is proportional to d;. So is also the displacement you have
to cover with this force. So, the total energy your rowing has to produce is
proportional to d? with some constant n? (other considerations would lead
to a non-quadratic cost, which would complicate matters considerably math-
ematically, without impairing the principle of dynamic programming);

- the total cost to be optimized becomes hence

3
Cy= Z nid; + m2x3, (2.10)
=0

in which the offset at destination x4 is penalized as m*z? for some m to be
chosen. All the ‘modeling quantities’ n; and m are assumed known (this is
the big physical work!).

The local propagation model is very simple in this case:

Tyl = T + 5k - dk (211)
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4l
speed of the
water

Yfinal error T4

B s o ———— = >
B . .
==~ river width

optimal trajectory given
quadratic criterion

Figure 2.7: Optimal cost trajectory to row over a river with variable water
speed.

Notice that the model is not linear: it is affine because of the drift term,
but we shall soon see that it can be handled with linear methods just as well
(thereby generalizing the development in the previous section!).

Our optimization strategy now consists in writing down the cost model,
with the terms appearing squared in the cost function as outputs. We have,
for the global cost model:

No ' do 0
Ya ns d 0
—-m —-m 3 mo;
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in which d, = 77, d; is the total drift and the [|y;||* are the local contribu-
tions to the overall cost. Let us define N := diag[n;] and E=col [ 1 ---1 |
a column vector of 1’s, then the Moore-Penrose inverse of the non-singular

. N :
system matrix S 1= {—mE’} is

St=(N*+m?EE")"' [ N —mE | (2.13)
and the solution of the optimization problem is given by
dos = (N* + m*EE")"'m?ES, (2.14)

This expression can be computed explicitly, using the inversion rule for a low
rank perturbation of a non-singular matrix (sometimes called the ‘Sherman-
Morrison formula’: suppose that low dimensional (rectangular) matrices A
and B of same dimensions are such that I + B’A is non-singular, then (I +
AB")™' =1 — A(I + B'A)"'B’; proof is by direct verification; the simplest
possible case is when A and B are just vectors.). We leave details to the
interested reader. The result is

m?
di=|—23 |6 2.15
<1+m2z<%>> t (219)

which is a forced, a priori control (not a state dependent control), forced
-~ 2

by the parameters n; and the total drift §,. Notice that d; = <6, with
Zai

a; = ni when m — oo, so the effort to be spent at each step becomes
inversely proportional to the local speed squared, assuming n; proportional
to the local speed (which is not unreasonable altogether: you distribute the
energy to be exerted evenly over the sections. Notice also that in this limiting
case »_ d; = &, forcing the rower to get at the destination point exactly.).
The global character may be seen as a problem with the global solution.
Many things can happen when one is underway, and it pays to figure out
recursive solutions that can adapt to the perspective from a local state one
may have reached. The global solution can of course easily be converted to a
local solution, just by adapting the parameters to the state reached (making
them a function of that local state). But there is another advantage to the
local solution (given the global validity of the model of course), and that
is that at any local position only information on the next move is needed.
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In other words: at each local position, control is only dependent on that
position. This fact is what makes dynamic programming so efficient.

Let us therefore follow how the recursive optimization happens in this
case and how the control law depending on the local state is derived. Using

subsequent Givens rotations of the type g _CS , we have for the first

reduction to lower triangular, starting on the right bottom of .S

C3 —S3 ns _ 0 (2 16)
S3 C3 —m —\/n3 + m? '
for c3 = m/y/n3 +m? and s3 = —n3/y/n3 + m2. This first step reduces S

to an intermediate
No
ny
Y Yo, Y| 0O
C103 C(03 C(03 Do3

in which D,3 := —y/n3 +m?, Y3 := —s3m and C,3 := —czm. The recursion
now moves one step up the diagonal, and applying a new Givens rotation to
the new right bottom:

Cy —S89 N9 _ 0 (2 ]_8)

S C2 Yo V/nj +YZ '
with ¢p := Ys/y/n3 + Y7 and sy := ny y/n3 + Y2, producing the next step in
the reduction of S:

no
n
vov (219)
002 C'02 Do2
C103 C(03 D03 Do3
in which Dy = y/n3+ Y3, Y] := —sYs and Cpy := Y>. Continuing

recursively one finally gets

DOO
S=Q| Cy Da (2.20)
C102 C102 D02

003 CoB Do3 Do3
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and () is a product of four elementary orthogonal rotations adequately em-
bedded in a 5 x 5 orthogonal transformation @) = Q3Q2Q1Qy, in which,

e.g.,

Ql = —S1 C1 . (221)

It is somewhat awkward to express the global () in matrix form, because
the matrix form hides the simple structure of the product. A more effective
way is to exhibit the computational structure explicitly. We discuss this in
the next paragraphs. Important is to see that both the recursive Q and R
factors have an intrinsic low complexity, due to the recursive, dynamic system
or evolutionary structure of the original problem. To exhibit and utilize this
structure will be a main issue in the system theory that we shall develop in
this book.

So far for the global computation. The computation of the total cost

quickly becomes unwieldy, even in this extremely simple case! However, the
local, recursive computation, based on dynamic programming, remains sim-
ple and is worth pursuing. In the present case, we can even greatly simplify
the local computation by some further modelling considerations (which turn
out to be very worthwhile, the whole art of the game is good modelling!).
Suppose you have arrived at stage k of the computation, and you are re-
gressing backwards from stage k + 1 to stage k using dynamic programming.
Considering the optimization at stage k, what you need is
1. the optimal cost C'(xy41) for each (potential) x1, and
2. the cost model at stage k, which consists of the local cost for the transit
from xy to xpy1, assuming z; given, as well as the optimal cost for all the
Tr+1 you might reach in the transit from & to k + 1.
Concerning the optimal cost C(zg+1), we observe 1. that the cost is zero
if xp41 = —01 k41, Where 011 = Z?:kﬂ 0;, because in that case we reach
the ideal destination with zero effort, and 2. the optimal cost expression
in function of x4, will very likely be a quadratic expression (we shall have
to prove this hypothesis recursively), which then necessarily would have the
form mzﬂ(xkﬂ + 0y gr1)?, with myy some coefficient to be determined re-
cursively. This local model at stage k is shown in fig. 2.8

This cost model is affine in the steering (input) vector di, and the cost
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ldk

LTk+1

nedr M1 (g + 64 — di)

Figure 2.8: The local cost model for our rowing situation: it is the quadratic
norm of the output vector.

vector (cost being its norm squared) is then

mk+1(1'k+1+5t,l~c+1) —_ | T+ dr + mk+1($k+5t,k) (2 22)

By the Moore-Penrose theory, it follows that

f 2

d, -m M1 (g + 0 m

dy = — [ n:ﬂ ] [ k1 ( (I)c tk) } — ﬁ(zk +6).  (2.23)
k k+1

2
Mgt

This is an affine control, partly proportional to x) with a constant .>—-5—
k k+1

plus an a priori driving term). For the cost we find, after a small calculation,

2,,2

~ nim
Clry) = (g + 0yp.)° 2.24

(50 = 2o+ ) 220

thereby proving the recursive hypothesis, with my = —£=L_ That’s all!

nptmi

Remarks

e The simplicity of the recursive solution should be obvious, but it re-
quires some additional modeling effort to get it. It also has a great
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advantage, not mentioned so far, and that is that the optimization cri-
teria may be modified adaptively as one proceeds (e.g., when one gets
better estimates of future costs). This is an issue we shall not address
here, but which may come up when we discuss optimization problems
in later chapters.

In case one has to reach the destination exactly (z,+1 = 0), then one
may let m tend to infinity with some care. This will not change much
in the derivation, except at the last stretch. It is a good exercise to do!

From the control formula, it is clear that the effort to be performed at
any stage k has n? in the denominator, meaning that the stronger the
current the less one should row against it, and this considerably! Going
against the current is of course not restricted to the rowing case, and
the wisdom to profit from the least resistance or the low hanging fruit
is clear. The general physical principle of least action has some of this
flavor as well.

It should be clear that the Moore-Penrose optimization method only
works on linear or affine models and costs of quadratic type. When
the cost function or the model is more complex, then the whole proce-
dure becomes considerably more complex as well, but the principle of
dynamic programming often still holds, and recursive computations re-
main a method of choice. It is instructive to analize when the principle
breaks down (we leave this point as a thinking exercise!)

Our example was restricted to n = 4, but the treatment was perfectly
general (provided the model is valid of course), and could also be uti-
lized for a continuous time situation after discretization, or, conversely,
to derive the continuous time treatment from the discretized (which is
what is often done in the literature).

It is easy to see that the recursive solution is the same as the global
one. A good exercize!

It is not easy to find a simple direct example for a purely quadratic
optimization problem on a linear model. Most such problems are of
the type ‘tracking a non-linear trajectory to counteract stochastic dis-
turbances’. We shall discuss such problems in a later chapter.
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2.4 Implementation

The filtering algorithm we have been discussing so far boils down to the de-
termination of an orthonormal basis for a recursively computed set of vectors,
for which an algorithm like QL or RQ (same as QL but done on the trans-
pose) is appropriate. The most elementary (but singularly effective) way of
doing this is by systematically using Jacobi/Givens transformations. Here
we consider only this method, leaving other methods for later chapters, and
this to illustrate the technique we shall use to represent computations.

The data model

To describe computational or time-variant systems comfortably, we need a
data model that is more flexible than the traditional signal flow diagrams,
because the computing nodes we use may have more than one function and
we wish to have a representation that is both close to functional algebra and
computer processing. For this we propose a simple functional representation,
defined as a directed graph consisting of nodes and edges with the following
properties (semantics):

- nodes execute functions and data is transmitted along edges;

- a node has input ports (indicated by incoming arrows) and output ports
(indicated by outgoing arrows);

- a node executes a sequence of computing cycles; at the beginning of a
computing cycle of a given node, a specific function is installed by the node
controller, the function reads (and consumes) the input data it needs from its
relevant input ports, does the computation, puts (pushes) the output data on
the relevant output ports (these ports may differ per function) and installs
the next function;

- input and output data accumulate on the edges in a first-in, first-out (FIFO)
fashion; any function installed in a node waits until its relevant input ports
have obtained the data the function needs, and pushes the output data it
produces on its relevant output ports.

This means, in particular, that the edges must be equipped with the neces-
sary memory and that the execution proceeds in a Petri-net fashion. Each
node executes a trace of functions in the course of its history[] We may draw

!This model is close, but not identical, to the Kahn network formalism. Rather, it
adheres closely to the algebraic practice of composing functions and arguments. It also
extends the signal flow diagrams in a straightforward way.
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functional diagrams from right to left, in accordance with mathematical prac-
tice (example: in y = Au, u is fed in from the right and y gets out at the

left side, and we draw y < A < u.). A split node ><; and a join <_<

typically act as controlled switches (in the diagrams presented here, there are
other possibilities of course, but our conventions respect global losslessness
or unitarity, when the individual nodes are unitary).

Simplified convention

When there is no confusion possible, we retreat to the classical signal flow
graph convention, where an edge is seen as a multiplication by a coefficient
or a matrix marked on top of it, like in _ A | which according to the

functional data model should be denoted ‘<— A <, since multiplication by
A is an operation, to be executed, and a join is actually a node in which
matrix addition is performed. (In our datamodel, the trace representing the
sequence of data transmitted is often put on top of the arrow. The applicable
situation is to be derived from the context!)

Realizations using Jacobi/Givens rotors

The simplest possible components for orthogonal transformations (often called
orthogonal filtering) are elementary real or complex rotors (the elementary
rotor goes back to Jacobi, but in numerical algebra is known as a ‘Givens
rotation’). Only the real case is considered here, but the rotors can easily be
extended to the complex case.

Rotors

A rotor comes in two (switchable) versions: the wvectoring mode, where a
rotation matrix is computed from the input data and applied, and the rotating
mode, where a given rotation matrix is applied on new data—see fig. In
the wvectoring mode (v) of the single rotor, a vector [ b a ] is inputed, the
rotor calculates n = va? 4+ 0%, ¢ = a/n and s = b/n, and outputs a ‘control’
output [ s ¢ } and a ‘data’ output [ 0 n ] so that

IR 029
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rotating

b cb — sa b

n:\/a2+b2 a Sb+Ca a

vectoring ~ [5,d]
Y

Figure 2.9: The single Jacobi/Givens rotor in two modes: vectoring and
rotating. In the vectoring mode, angle information is produced, labeled here
as [s, ¢|, while in the rotating mode the angle information is used to perform
the rotation. In many cases the angle information remains resident in the
node and is not shown. Signal propagation is from SE to NW.

In the rotating mode (r), a control input [ s ¢ ] is given and applied to
an input vector [ b a ] to produce an output vector [ d c } so that

=) o2

Figure[2.10]shows a simple application in which the vectoring mode is used
recursively to produce the norm of a vector (in this example, the recursive
edge is initialized to 0 and the trace is vvv ---). There is an electronic
device called CORDIC that implements the rotor using elementary (bitwise)
rotations and that is used in high frequency applicationsﬂ The Jacobi/Givens
matrix is in principle unitary, but in finite arithmetic, the unitarity cannot
be exact. A conservative solution to this problem insures that the actual
matrix is slightly contractive (as also used in standard wave digital filtering),
so that no extra energy that could lead to instabilities is generated.

In the typical inner-outer applications, the initial data at the beginning of

a step is given as [ ég g } (step index k dropped for convenience) which the

0 0
orthogonal filter with transfer matrix @' transforms to [ gn 0 } starting
o DO

from the last column and moving forward to the first, compressing rows
towards the bottom (Y, is the ‘Y’ for the next recursion!). As one needs

2See e.g., www.actel.com/ipdocs/CoreCORDIC_HB.pdf.
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Figure 2.10: The single rotor used as a norm generating filter (traces shown).

to input the last column first, one can best use the involution constructor,
denoted ‘4’ on the columns to represent this reversal (the involution ‘i’ can
also be thought as a generic matrix with '1’s on the anti-diagonal, which
reverses the order of the columns when applied to the right of a matrix, or
rows when applied to the left) to compute

0 O
Y, O ie@’e[

AY B}
C, D,

oy D |* (2.27)
The block operation can be refined further by first acting with an orthogonal

transformation @ on [ g ] 1 to produce [ [())0 ] 1, next using the recently
computed @) on [ égﬁ ] ¢ to produce an intermediate result [ % ] 1, where-
upon a (reduced) orthogonal transformation Q) := [ @ ; ] produces the

final result:

0 0 51
0 Y, <—{ 2 I]<—Q{<_{
Dyi C,i

BiAYi ] | (2.28)

Dy CVi

More details of the operations go all the way down to individual rotors
that constitute the product Q50 shown for the 3 x 2 case with D scalar,
A of dimension 2 x 2 and Y of dimension 2 x 1 in fig. [2.11| (in this ex-

ampleA:[; 712},32[?},0:[2 —ﬂ,Dzlande[}]gives
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D, = /2, C, = 2/2 and the new Y, = \/§) In this typical orthogonal filter

[0, 0] [0, X11] [B1, (AY )]

[Ba, (AY)2]

[D,CY]

Figure 2.11: A 3 x 2 example of a step in an inner-outer factorization. In
this example, D is assumed scalar, A a 2 x 2 matrix and Y a 2 x 1 vector.
The traces on the rotors and edges are shown () stands for ‘no operation’).
Rotation angles remain internal to the rotors and are not shown, the last one
computed in a vectoring operation is used in the next rotation.

configuration, the information on the angles remains resident in the rotor
nodes and the outer factor is outputed (C, and D,), together with the data
needed for the next recursion (Y;,). A similar filter can then be used in the
next iteration after inputing the new data (dimensions may and often will
change!). Some further observations:

- The @ matrix in this case has dimensions 3 x 3 with 8 non-zero entries,
but is characterized by only three rotors. Even applying those elementary
rotations in matrix form would be economical rather than multiplying with
the matrix (and more so in higher dimensions). In the present example we
have

BWAUBU:| \/%

o= [oere o

1/2 (2.29)

(remark that in this case Ay is not square, because the dimensions of the
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new ‘Y’ are different from the previous.)
- The 3 x 2 case is perhaps the simplest relevant case. In many cases the
D matrix is (essentially) not scalar and the connecting matrix Y square and
non-singular. In some important cases the ¥ matrix has to be rectangular,
but it will always be chosen non-singular.

2.5 A question to be researched

Thinking about optimizing the behavior of a system evolving in time, under
what conditions would dynamic programming be possible? Or, negatively,
when is dynamic programming for sure not possible?

2.6 Notes

1. Dynamic programming is only one example of the use of system the-
ory. There are many more examples, many of which will be discussed in
this and the following books. We mention: state estimation (Kalman
filtering), control theory, system modeling and model reduction, ap-
proximation and interpolation of matrices, efficient computations with
some types of structured matrices, data filter design a.s.o. The value of
dynamic programming as a prime example is the intimate connection
it exhibits between the dynamic model and the recursion that leads
to the optimal control. Nice further examples of interesting optimiza-
tion problems on systems can be found in the book of Luenberger [27].
A classical textbook on linear optimization is [1]. Nonetheless, the
straight connection between quadratic tracking and inner-outer factor-
ization has only recently been made.

2. There is a host of other methods one can use to orthogonalize a set of
commensurable vectors, to wit:
- global multi-dimensional rotations (to be preferred) or Householder
transformations;
- Gram-Schmidt orthogonalization;
- bi-orthogonalization using hyperbolic transformations [9] [§].
These methods will be discussed in further chapters, when they come
up, and in the appendix on Linear Algebra.
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3. The functional representation and data model described in this chapter
was first proposed and analyzed in [3]. It allows for an unbiased trans-
formation of mathematical operations to a computer architecture at the
functional level. It hides organizational details like the conditional se-
quencing of functions, the partitioning, storage and transfer of data, in
such a way that this information can easily be generated once further
architectural decisions like the localization of data in memories and
the assignment of functions to processors has been done (such design
phases will not concern us in this book). In particular, the model easily
accommodates hierarchical representations and parallel processing. In
this book we shall only worry about practical implementation aspects
for as far as numerical properties (numerical accuracy and complexity)
are concerned.
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Chapter 3

Dynamical Systems: a
narrative

This chapter brings a semi-philosophical description of the
notions ‘system’ and ‘dynamical system’, together with an in-
troduction to the main concepts characterizing the latter: state,
behavior, reachability and observability, in non-technical terms—
it brings what people call a ‘narrative’ that aims at describing
the background ideas of system theory. In the remainder of the
book the ideas presented are taken up again in more concrete
situations, showing that not much more is needed conceptually
to solve most system related problems, provided one succeeds in
characterizing these notions mathematically. The chapter can be
skipped at first reading, but it also introduces a way of thinking
that motivates the general modern approach to dynamical system
theory and can thus be seen as an introductory narrative as well.

Menu
Hors d’oeuvre
The Definition of “System” and “Dynamical System”

First course
Systems Described by Ordinary Differential Equations
Discrete-time systems

Second course

The State
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Reachability and Observability

Third course
Behaviour

Dessert
Discussion Topics

3.1 What is a (dynamical) system?

The Oxford dictionary says:

system

noun

1 a set of things working together as parts of a mechanism or an interconnecting network;
a complex whole: the state railway system || fluid is pushed through a system of pipes or
channels.

- Physiology a set of organs in the body with a common structure or function: the digestive
system.

- the human or animal body as a whole: you need to get the cholesterol out of your system.

- Computing a group of related hardware units or programs or both, especially when dedicated
to a single application.

- Geology (in chronostratigraphy) a major range of strata that corresponds to a period in time,
subdivided into series. the Devonian system.

- Astronomy a group of celestial objects connected by their mutual attractive forces, especially
moving in orbits about a centre: the system of bright stars known as the Gould Belt.

- short for crystal system.

2 a set of principles or procedures according to which something is done; an organized scheme
or method: a multiparty system of government — the public-school system.

- a set of rules used in measurement or classification: the metric system.

- [ mass noun ] organized planning or behaviour; orderliness: there was no system at all in the
company.

- a method of choosing one’s procedure in gambling.

In short: a system is an “assembly of interconnected and interacting en-
tities which together achieve a specific behaviour”. Hence, it consists of
(1) entities, (2) interconnections, (3) interactions and (4) an identifiable be-
haviour. Such a definition is very general and as a consequence there are
many types of systems. A discipline called System Theory would then at-
tempt to find some communality between all these types, or at least discover
classes of systems that can be described meaningfully. As it would be im-
possible to have descriptions that fit all, engineers and scientists who want
to understand how a system functions or how to build one, wisely restrict
themselves to classes on which they have some grip, i.e., types of systems
they can either manufacture, describe mathematically or both. The combi-
nation of mathematical description and ability to manufacture is what allows
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engineers to design a system. However that may be, systems do occur nat-
urally and there are many types of extremely interesting systems that we
cannot manufacture — yet can use to combine them with man-made sub-
systems. Some can be described mathematically pretty well, think e.g., of
the sun-and-planets system, others are so complex or complicated that they
defy unified mathematical descriptions, think e.g., about a cellular organism
or the human brain. Identifying such a system from its behaviour is then a
major issue.

As soon as one observes a system, one discovers that it moves and evolves.
So, often one shall be interested not only in how a system is put together, but
also in its evolution. When this evolution is the prime interest, one would
call it a dynamical system in contrast to a purely static system, e.g., the ar-
chitecture of a building. Our main interest in this book shall go to dynamical
systems. The very first dynamical system ever described mathematically is
the system of planets evolving around our sun. Isaac Newton deserves the
tribute that he discovered the basic dynamics of this system: the sun and
each planet is given one static variable, their mass, and six characterizing
dynamic variables, three positions and three velocities, while the future evo-
lution is given by the law of gravity, that defines the derivatives of these
‘dynamic’ variables (Newton discovered the notion of ‘derivative’ exactly for
the purpose). All the variables that characterize the dynamical entities of
the system are called its state variables, and the evolution is then given by
writing out equations that describe how these variables change with time,
e.g., an ordinary differential equation relating the derivatives of the state
variables to their actual values and the forces of gravity to which they are
subjected.

3.2 Discrete-time systems

In the present age of computers controlled by a clock, we often encounter
situations where there is discrete time evolution: the ‘time’ is actually an
index, and system evolution then moves from some time index — say k —
to the next time index k£ + 1 producing the dynamic state equations

eh+1) = fulelk),u(k)
{yuf) = gela(k)ulk) - (3:1)
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In this expression, we have chosen to index the functions f and g, a conven-
tion that is often used. We could have written f(x(k), u(k), k), the important
and highly limiting restriction being the direct dependence on states and in-
puts at index k.

A discrete time system will also result from the discretization of a con-
tinuous time system. This appears to be a necessary condition for numerical
simulation of physical systems. The discretization of physical systems with
continuous time often results in an accurate description when carefully done,
so that we can concentrate in first instance on discrete time systems to ob-
tain results that are also valid for the continuous time case. It turns out that
most basic notions of dynamical system theory can indeed be covered in this
way.

A further discussion leads us to a number of central notions characteristic
of dynamical systems. We consider them in this chapter, concentrating on
the basic concepts and leaving specifics for further chapters.

3.3 The State

What characterizes the notion of “state”? Over the years the following insight
has crystallized (see [26]):

A state at a given time ¢ (or index k& when discrete time) is suffi-
cient information on the system at that given time point ¢ (or k)
to determine, given future inputs, its future evolution.

This means, among other things, that for systems with a finite state vector
the whole past evolution of the system up to time t is, as far as the future is
concerned, fully accounted for in the state vector at time t. We don’t need
more information on the past to assess the future evolution, given future
inputs, or, to put it more negatively, the system forgets everything from its
past except what is contained in its state. This is somewhat illustrated in
fig. .1}

The definition given leaves a somewhat arbitrary choice dangling: where
is the ‘cut’ between the past and the future with respect to a time point ¢ or a
time index k7 The traditional choice, in the wake of [26], is to let the past run
to just before t (often written as t—) or k — 1 for discrete-time systems, and
to let the ‘future’ start with the present ¢ (or k) — this is already assumed
in the equations given so far. In statistics often the opposite choice is made,
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the output produced by a state and
a given (future) input

past inputs that produce a given state

| timet

Figure 3.1: The state as the link between past and future

and sometimes one sees mixed choices for inputs and outputs. The problem
arises in the case of discontinuities and has to be considered carefully once
it occurs.

3.4 Basic system characteristics

State minimality

In the state description just given, the state is described as ‘sufficient’ infor-
mation. Minimality would actually require also ‘necessary’ information. A
computer memory is usually filled with all sorts of information that is not
relevant to the problem at hand. A state is called minimal when no data in
the state vector at time ¢ can be left out without potentially affecting future
outputs, at least for some well chosen inputs. A more precise formulation
is: so that no future input exists for which the system’s evolution would be
different. This leads to the notion of Nerode equivalence. We say that two
past inputs up to time ‘t—" are ‘Nerode equivalent’, if there is no future input
(i.e., starting at time t) that will produce different future outputs.

It should be immediately obvious that the notion of minimality depends
very much on the output equation as well. It may be that part of the system
internals will never be visible just observing the output, in which case they
could be deemed superfluous. However, a completely autonomous system
has neither inputs, nor outputs. Hence, a minimal description for it would
be empty. This unpleasant situation can be remedied by the convention that
in the case of an autonomous system, one can observe the state directly,
so that the output equation simply becomes y(t) = z(t). Since there are
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no inputs any more in this case, the minimal state determines the output
evolution uniquely. (The great breakthrough of Newtonian mechanics was
the realization that the velocity of the planets belonged to the state, in
contrast to what the pre-Newtonian Western world thought, which limited
the state just to position data; they thought that a change of position directly
depended on (was proportional to) instantaneous forces.)

An important further consequence of the notion of a minimal state is that
its quantities (components of the vector) are algebraically independent. They
can be assigned arbitrary values (of course within the number system used,
in our case they will be either real or complex numbers), independently from
each other. Here also, there is a potential unwarranted generalization. It is
conceivable that independent state variables may only take limited sets of
values. That is e.g., the case in a computer, which does not allow any size
of number, but also real life systems are limited by ranges of relevant vari-
ables. The mathematical formalism conveniently ignores these contingencies,
hoping that the theory shall be able to handle them when actually necessary.

Reachability

Returning to the characterization of a non-minimal state, it may be that
some states at some time point ¢ cannot be reached, i.e., there is no past
input up to time t that is able to produce the state. States that can be
generated by at least one past input function are called reachable.

Observability

It may also happen that some states at a given time point ¢ will produce
the same output in the future, no matter which future input is applied. The
distinction between such states is called unobservable: whether the system
has one or the other state at time ¢ cannot be determined by observing the
evolution from ¢ on, using whatever input from then on. We call the state
observable, when each such equivalence class of states that all produce the
same future output for whatever future input consists of only one element.
Actually, every equivalence class of states whose distinction is unobservable
can be represented by just one state.
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The behaviour of a system

We use the term ‘behaviour of a person’ to indicate how a person’s actions
and reactions appear to us, not how the person actually produces them phys-
ically. The notion involves both the person and how the environment per-
ceives themﬂ In the case of a system it would be “how the world perceives
the system globally”. As the external world has access to the system solely
via its inputs and outputs, one could say that the system behaviour is “how
the system attaches outputs to inputs over all time”. In mathematical terms,
this would be formulated as a relation between input over all time and corre-
sponding output over all time. At issue could be whether a system behaves
deterministically: one could conceive a case whereby within a system there
are some hidden actors that cause the system to move one way or the other in-
dependently from the actual inputs. Needless to say, such a viewpoint would
greatly complicate formal descriptions. In the section on estimation theory
we shall allow such interferences, but shall be careful to assign additional
inputs to them, so that the erratic behaviour is taken out of the system’s
internals. That turns out to be a good strategy in many cases, at least where
engineering is concerned. Therefore, many treatments of dynamical systems
will assume that the system, given an initial state at some initial time ¢,
defines maps from the input starting at ¢, and running to some final time
t1 > to to (1) the state at t; and (2) the output from ¢, to ¢;. This map is
then the functional behaviour or transfer map of the system.

From the point of view of an observer of the system, the system may
produce some other types of behaviour that are worth noting, and that we
would catch under the term ‘behaviour’ as well. For example, it may heat
up, or it may age, or it may develop some other physical characteristics that
are not directly related to how it produces an output given an input, such
as a change of size, color or form (these might even be taken among the
outputs.). Certainly, the term ‘behaviour’ would always relate to something
in the system that changes over time and can be observed. In engineering
practice, one always selects a limited number of variables for which one wants
to define the dynamics (i.e., the state variables), relegating all other (often
long term changes) to evolution of the system’s structure over time, calling it
a (maybe slowly) ‘time-variant’ system. Although one could actually assign
states to such characteristics, it turns out to be more practical to leave them
as system parameters that change over time — as you can see, the assign-

'We use a plural for non-gender specific reference.
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ment of state variables is often in some sense arbitrary (e.g., if you want to
control an airplane, you do not bother about changes in loads, which you
conveniently summarize as one parameter: actual weight).

The late Jan Willems defines the behaviour of a system as [44]

‘A mathematical model is a subset of a set of a priori possibili-
ties. This subset is the behaviour of the model. For a dynamical
system, the behaviour consists of the time trajectories that the
model declares possible.’

Willems attaches the notion ‘behaviour’ to an intrinsic mathematical model
of a system. He thereby excludes inputs and outputs to keep the defini-
tion untainted from outside influences. Such a definition has advantages and
disadvantages. An important advantage is a precise definition of scope. A
disadvantage is that the definition is ‘mathematical’, in that differs from the
normal, non-mathematical usage of ‘behaviour’. The term behaviour is also
used in computer science with a somewhat different meaning, where how the
system interacts with the outside world is at stake, not how it achieves its
actions internally. We have defined behaviour in the more common sense,
and have included inputs and outputs in the definition. The disadvantage of
our definition is that it is more remote from the problem of mathematically
modeling systems in a physically sound way than Willems’s definition, but
the advantage that it leans towards synthesis, signal processing and design
engineering, where behaviour is seen as a goal to be achieved (namely a de-
sired input-output behaviour) rather than the characterization of how a given
mathematical system model is thought to evolve internally. To conform with
Willems’s terminology, we could call our usage ‘Input-Output behaviour’.
Nonetheless, the methods we use, and in particular inner-outer factoriza-
tion, come very close to the treatment Willems gives based on his notion
of behaviour. The two notions can be brought together with a bit of good
will both sides. Fully correct mathematical modeling of a system is never
possible since every model involves abstractions and approximations, and
correct modeling necessitates observation of the system, hence outside influ-
ence. Willems recognizes this, but reserves the term behaviour to properties
of the mathematical model, while in our usage it refers to an observed or
desired input-output relation. Whatever usage is utilized should be made
explicit from the start.
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3.5 Concluding remarks

All these concepts: state, behaviour, reachability, observability, play an ex-
ceedingly important role in the development of dynamical system theory.
Almost all the properties of a system can be derived from them. A central
thesis of this book is that these few basic notions are able to produce ma-
jor mathematical leverage and thereby solve central problems in estimation
theory, control theory, numerical linear algebra and circuit theory. To con-
clude this introductory discussion, here is a quick run down of some typical
dynamical systems and their state spaces.

Mechanical system: position and velocity

Computer: various types of memory

Automaton: control states, routing states

Airplane: position, velocity, roll, yaw and pitch angles
Process plant: pressure, temperature, concentrations
Brains: synapses

Discussion items

1.

Given the non-minimal state set of a system, how could one derive a
minimal set?

. Propose more examples of dynamical systems, and logical state sets for

them.

Given a system, one can create a system to observe it. What would be
the state of the latter?

Systems can be build from other systems. How would that work? What
would be the state of the overall system? How about its minimality?

An electrical circuit is a dynamical system. What is a reasonable state
for it? The same question holds for a living cell.

State equivalence: given a state set for some system, could one derive
new state sets for it purely formally?

To analyze a new dynamical system one would have to discover a state
set for it. How could one do that?
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8. The dynamical systems considered in this chapter have states that
evolve either through a differential equation (for continuous time) or
through a difference equation (for discrete time). What could be more
general types of systems?

52 © Patrick Dewilde 2015



Chapter 4

Types of dynamical systems™

Before developing the theory for a our selected prototype of
dynamical system, let us make an inventory of the various types
one encounters and how one may describe them mathematically.
In the previous chapter, we have identified basic notions that
are characteristic for the notion of dynamical systems: inputs
and outputs, the state, the state evolution, reachability and ob-
servability. These are characteristics that all types of dynamical
systems will share, and the issue we consider in this chapter is
how these notions appear in a concrete mathematical description,
and how such descriptions relate to each other. The chapter also
serves as a motivation for our choice of prototype system environ-
ment: discrete time, linear, time variant systems, because, from
a computational point of view, many system problems can and
will be brought to this LTV set up.

Menu
Hors d’oeuvre
Inputs and outputs

First course
The state

Second course
State evolution

Third course
Behaviour
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CHAPTER 4. TYPES OF DYNAMICAL SYSTEMS*

Causality

Dessert
Generalizations and Discussion Topics

4.1 Inputs and outputs

Inputs and outputs are quantities that vary in tz’meﬂ To start with time,
it is customary to assume a unique time variable—often labeled t—valid
for the full system, including state variables. The simplest distinction was
already given in the previous chapter: continuous-time and discrete-time.
Continuous-time would be a real number (often called t), and it would typi-
cally run from —oo to +00, by which we mean that it has no fixed beginning
and no fixed end. Clearly if a system had a fixed beginning or end, this
could be embedded in the previous: embedding is a strategy we shall often
adopt, so we shall not consider ‘sub-cases’ separately. It turns out that this
will not lead to major difficulties. Next, discrete-time would be just an index
(an integer) also running from —oo to +oo. Here the situation is a bit more
delicate: 1., one could think of these indices to represent time points that
are spread regularly over the time axis with constant intervals (this would
be the normal discrete-time case) or 2., they could be representative of mo-
ments in time when something happens, not necessarily regularly spaced (like
what happens in a waiting line), in which case we would talk of a discrete
event signal. There are even situations where in one given system, several
time scales are present, e.g., in a sampling system where the input would
be continuous-time and the output discrete-time, or in a system in which
different sampling rates are present. What also often happen in practice is
that the system has an overall regular clock, but that many of its subsystems
have their own clocks. The strategy to be followed in such cases will proba-
bly be case-dependent, but an effective strategy is to make all these various
timing signals dependent on one general time (continuous or discrete when
possible), so that one does not loose track of how they relate to each other.

In this book, our starting point will be discrete-time, equally spaced tim-

'In more advanced theories, there might be ‘space-time’. Or various parts of a system
may have different times. For example: various computers with different clocks commu-
nicating to each other. There are many more possibilities, but they will not concern us
here.
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ing points, but as we go further we shall venture in some other timing sys-
tems, continuous-time and even some discrete event systems. It will turn
out that there is a relatively easy way of connecting (regular) discrete time
with continuous-time algebraically, allowing the transposition of important
results from one domain to another.

Concerning the values inputs and outputs may have: here also a great
variety is possible. Inputs and outputs are function of time, that issue we
just discussed. The next question is: to what range do they belong? In the
simplest case, they would be one-dimensional real (R) or complex valued
(C). Let us first consider the discrete-time case. What comes to mind is
how a computer operates: at regular time intervals it takes in new data from
its input devices, does some computations on it and then outputs to output
devices, after which it renews the cycle. In each such cycle, the computer
may take in data as needed from a variety of sources and output data to
various data repositories. So we would typically assume that 1., the data
has a vectorial character, and 2., the dimension of the vectors taken in or
outputed may change from one event point to the next—hence inputs would
belong to R™* or C"™ where my is the input dimension at index point k,
and outputs would have the form R™ or C™, with n; the dimension of
the output data vector. This means that in such systems, the input is an
irregular sequence of vectors that are either real or complex, and likewise for
the output. This is the point of view that we shall mostly adopt in this book.

For continuous-time systems, the situation is more tricky. The traditional
approach is to assume that the inputs and outputs form some function of time
to a real or complex vector space of fixed dimension (hence R™ respect. R"
for some fixed positive integers m and n in the real case.). Traditionally,
one also assumes the continuous-time system to be time-invariant, but that
is a massive reduction of the field of interest, often justified, but actually
not really necessary in many cases. When one is not satisfied with these
restrictions, one would have to conceive continuous-time systems in which
the dimensions of inputs and outputs may vary when time evolves. That
would make such a system already automatically a combination of discrete
events and continuous-time evolution between events. In some later chapter
we shall consider that case to some extent.

But why should the collection of inputs and outputs be discrete (vecto-
rial)? It is of course easily conceivable to have systems whose inputs and/or
outputs are themselves function of another variable besides time, e.g., a space
variable. Think e.g., of a boat in the waves (waves impinging on its full
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length) or, similarly, a near field antenna in an electromagnetic wave. Often,
such cases can be treated by discretizing the continuously parametrized input
(or output), so we shall not pay special attention to them.

Finally, why should an input or output be a real or complex number? In
our computer age, we could just as well assume them to be bits, or bytes
or to belong to some other field, as happens in coding theory. Although
we shall not consider the case of such digital systems in this book, let us
mention that all the basic notions that we are considering do apply to them
as well (e.g., reachability and observability play an important role in digital
optimization and testability of digital systems), and that the conversion of
real and complex data to digital data requires consideration. Many problems
can be dealt with by careful development of algorithms that are robust for
rounding—and this is an issue that we shall consider.

4.2 The state

The state of a system is also a function of time, and hence will be subject to
a similar taxonomy as the inputs and outputs. So, at a given point in time,
it can be a real or complex vector (i.e., a function of an index) or a function
of some continuous parameter (e.g., the length of the rod of a cantilever).
In a discrete-time system, the dimension of the state may change from one
time-index to the next. In a continuous-time system it is common to fix the
dimension of the state over all time, unless one considers the already men-
tioned combination of discrete events and continuous-time evolution between
events (after all a situation that can easily occur in practice). In most of the
chapters of this book, we shall assume a state that evolves in discrete time,
and whose dimension can vary from one time point to the next. This is in line
with what a state can be in a computer memory: evolving in time stepwise
but whereby the size of the required memory may change. At some point,
we shall also develop arguments to show that in many cases a time-variant
but continuous-time system can be accurately discretized.

There are of course many cases in which the state of a system is not a
finite dimensional vector. It may also be that it is finite dimensional, but
that the vector structure is not really appropriate for it, its natural structure
would rather be e.g., a matrix or a tensor or some other entity with structure.
Such additional structures are very interesting, in particular as they may lead
to efficient algorithms, but their extensive study would lead us too far afield,
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although we shall consider some interesting cases of states with structure,
in particular matrices or tensors. The treatment of state variables that are
continuously dependent on some parameters (e.g., space) is beyond the scope
of this book—sulffice it to say that in many cases careful discretization of the
continuous parameter may solve the problem.

4.3 The evolution of the state

As there are many possible types of states, there shall be many possible ways
in which a state can evolve. However, since our main focus is on discrete-
time systems (typically mapped on a computer), we shall generally assume
the state evolution to be an index-varying map at each index point k, which
maps the vectorial state z(k) and the vectorial state u(k) to the next state
x(k+1), as shown in eq. . Here the state transition function f is a general
non-linear function. (One may assume without too much extra difficulty that
the state-evolution is restricted to a (finite dimensional) manifold.)

Most of the theory we shall develop at first makes a sweeping further
assumption, namely that the transition function is actually linear, which
means that both the state evolution and the output equations are described
by a set of linear difference equations:

{ w(k+1) = Apx(k)+ Bru(k) (4.1)

y(k) = Cyx(k) + Dyu(k)

in which A, By, Cy and D, are matrices of appropriate dimensions, which
may vary with the index k. There are two main motivations for this choice:
1. linear systems do occur a lot in practice, as matrix computations do occur
a lot;
2. many properties can be derived from studying system variations i.e.,
differentials, which turn out to be linear but time-variant.

This works as follows: the state of a non-linear system—say x(k)—follows
a trajectory function of k, imposed by an initial state and an input sequence
u(k). Under some continuity requirements valid for many real-life systems,
one may assume that a close-by initial state and a close-by input sequence
generate close-by trajectories. Let the variational operator be denoted by ¢
so that a new, close-by trajectory is written as z(k)+dz(k) and the new input
as u(k) + du(k)—this actually defines the operator 0z (k) := znew(k) — (k)
and likewise for u(k), then, and assuming the differences to be very small,
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we shall have to a first ordei]

dx(k+1) Aoz (k) + Brou(k)
{ Sy (k) = Cyox(k) + Dyou(k)

(4.2)

whereby Ay := 0, fr, Br := Oufr, Cr := 0.gx and Dy := 0,g. In other
words: the variation of the trajectory is a time-variant linear system. The
difficulty with this approach is the fact that the resulting linear variational
system is trajectory dependent. To obtain properties of the original system
from this, an integration has to be performed from the differential system to
the original. We shall spend a chapter later in this book to discuss this issue.

The same strategy can of course be followed in the continuous-time case,
with the additional difficulty that it may interfere with discretization—dis-
cretization in both time and in the state space has to be done consistently.
This can be achieved elegantly for an important class of physical systems,
namely those described by a Lagrangian—again a topic for a later chapter.

Some classes of systems have received much more attention historically
than others. To be mentioned are both continuous-time and discrete-time,
linear time-invariant systems (so called LTI systems) with a finite dimen-
sional real or complex state space. No doubt, they are important as they
cover important application domains (elementary electrical circuits and el-
ementary control systems), but, surprisingly, they are less elementary than
the time-variant variety that form the backbone of this book. The reason for
this is that time-invariance imposes global constraints that are often hard to
fulfill. For example: the control of an airplane is very much dependent on
the local speed, pressure and perhaps also temperature, which change all the
time. From our general and elementary time-variant treatment we shall in a
few chapters specialize to LTI systems and derive the additional properties
needed. Here we suffice to indicate the state evolution of the two types.

In the continuous-time case, the state evolution of an LTI system with
finite dimensional state space is given by a set of ordinary differential equa-

tions:
{:‘c(t) = Ax(t) + Bu(t)
y(t) = Cx(t) + Du(t)

in which the dot indicates time-derivation and the matrices A, B, C, D are
constant (in the time-variant version they would be time dependent.). In the

(4.3)

2We shall use the expressions to come only much later, in Part II, so the detailed form
of the differential matrices A etc. is not of importance at this point of the discussion.

58 © Patrick Dewilde 2015



4.4. BEHAVIOUR

discrete-time variant, the state evolution is given by a difference equation
and the state-space equations become:

(4.4)

There is a substantial distinction between the two cases. In the continuous-
time case, the A matrix is a generator of a state evolution ‘semi-group’, while
the zero-input state transition is properly described by an operator of the
type e, while in the discrete-time case, the A matrix properly transfers the
state from time-point k to k41, assuming the input u(k) = 0. The distinction
will become much clearer when we discuss discretization in chapter 77.

In the wake of the extensive historical development of LTT system theory,
people have attempted to extend the theory to more complex cases than just
covered by finite dimensional state spaces. A case in point are delay differ-
ential systems, which are systems in which a finite number of delays of the
state may influence the state evolution. Strictly speaking, such systems have
infinite state spaces, but they have a structure that allows for a description
with finite matrices. Examples are circuits that contain transmission lines
or control systems in which interactions between components are delayed,
as would happen if a control signal has to be transmitted over a communi-
cation link. Needless to say, the additional structure can, on the one hand,
be exploited to simplify treatment, but, on the other, will result in a much
higher theoretical complexity. In many cases, the additional structure can
be accounted for by an adequate (discrete) computer model in which the
transition matrices have some interesting structure (like multiple band). As
we already indicated, we shall only scantily touch on this topic.

Concluding, a good balance for a textbook on the relation between dy-
namical system theory and computational algebra is provided by discrete-
time, time-variant linear systems, as most more complex cases end up for
practical treatment in that category.

4.4 Behaviour

We defined behaviour as how a system is seen from the external world, specif-
ically what is called its ‘functional behaviour’: how inputs and outputs are
globally related to each other mathematically. The concrete mathematical
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description of the system’s behaviour will depend on the type of system, in-
cluding the type of inputs, outputs, state and state evolution, but one thing
is common to all: the functional behaviour is the map from the inputs to
the outputs after elimination of the state, at least when such a map exists
(otherwise one considers the relation). To define such a map properly, a host
of sometimes nasty mathematical assumptions have to be made, mainly be-
cause the allowable sets of inputs and outputs have to be defined properly
for the behaviour to make sense. For example: it does not make sense to
allow any possible input sequence from —oo to 400 as input and require the
system to produce a reasonable output consistent with the state equations,
what if e.g., the input values for large negative times tend to infinity?

Another issue related to behaviour, is what to do with starting up the
system? It is definitely impractical to attach a specific ‘creation time’ to a
system and a starting value of the state at that time—this turns out to be un-
necessary. In a time-variant system, this situation is easily circumvented (as
we shall soon see), by allowing an indeterminate start up time before which
the state (and all inputs and outputs) are simply empty. The issue is more a
problem in LTT systems, where ‘start up’ actually destroys time-invariance.
Traditionally, one circumvents the problem in two non-compatible different
ways: 1., by allowing as inputs only signals that have a limited carrier for
large negative times (i.e., that are zero for any ¢ smaller than some signal de-
pendent ty,¢) and whereby the system is initially in the zero-state, or 2., by
assuming from the start that the behaviour is a map between normed spaces
of inputs and outputs consistent with the state evolution, i.e., where there
exists a state evolution, usually also normed in some sense, that is consistent
with the map.

Which choice is actually made will depend both on physical considera-
tions and mathematical consistency. Many physical signals and systems have
energy constraints, so one can often require the inputs to belong to some Lo
(in the continuous-time case) or ¢5 space (for discrete-time), and then require
the output to belong to such a space as well, which will put constraints on the
system description. For example, it may be so that the system permanently
adds energy to the output, making the map from input to output unbounded.
This is the case of an integrator (in the continuous-time case) or an adder (in
the discrete-time case): for the latter case, suppose the system starts adding
at k = 0 then at some integer K > 0, we shall have y(K) = Zszo u(k). Even
when the series u(k) is bounded in energy (31 [u(k)|* < E for some max-
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imum energy input £), such a bound will not exist for the resulting series
y(k)): the behaviour is unstable in the norms chosen. However, that does not
mean that the system is ill defined: it is merely behaviourally unbounded.
It will depend on the application domain what type of input-output descrip-
tion is appropriate, and how the (external) behaviour relates to the (internal)
state description. Such considerations appear to have a great impact on the
mathematical development of system theory in specific mathematical envi-
ronments (it is maybe unfortunate that there does not seem to exist a unique
framework covering all instances!).

So, let us concentrate on what to do in the discrete-time LTV case with
finite state vectors (the central case in this book). Also here we have two
choices: either force the system and its inputs to start at a certain (not
necessarily known) point in time, and thereby allow 'unstable’ behaviour, or
force the system to achieve a bounded map between normed input and out-
put spaces. The first approach would often be used in control applications,
where instability and the control thereof plays a major role. The second ap-
proach is more appropriate for signal processing or numerical analysis, where
numerical stability and boundedness plays an important role. As we shall
soon see, the two approaches are not compatible with each other, although
the relation between the two can be profitably studied. It turns out that the
mathematical analysis for the second case is easier than for the first, because
the properties the system under consideration may have are mathematically
more restricted.

To make the last point more precise, let us explore the differences between
the two approaches in our LTV case. The state description then has the form
given in eq. .1 Assuming all states and inputs zero or empty before some
index kg, we find, by eliminating the states, that the output for k > kg is
given by (see chapter |5| for more details)

i=ko

where the continuous product Ay_1 - -+ A;11 (sometimes denoted as A,jl) only
exists for ¢ < k—1 and is taken to be [ for i = k—1. These equations describe
the relation between input and output, and are perfectly well defined because
the summation is in all circumstances finite. However, when k increases,
the sum may get out of bounds, and this will especially happen when the
continuous product diverges. In the LTI case A, has the form Ak—ko—1
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and divergence will happen when A has eigenvalues greater than 1, that
is, when the system is unstable. Moreover, the instability is exponential,
which in numerical computations is definitely a disaster (we shall explore
this question further in the chapters on inversion.)

The second approach uses norms on the input and output sequences and
requires the output series y(k) to be (uniformly) bounded when the input
series is. The traditional approach in numerical analysis is to require the
time series in the input and output spaces to be bounded in energy, i.e.,
to be of f>-type. Once this is agreed on, one can drop the requirement
of having a starting time because both the maps from input to state and
from input to output map will be well-defined, even if one allows the signals
and the system to run for all times. The details on how all this is done is
relegated to chapter 5| let us suffice here to state that the approach greatly
simplifies the mathematics at the cost of introduction of some elementary
Hilbert space theory. In particular, the input-output map gets the simple
form T'= D + C(I — ZA)"'ZB in which A, B, C and D are diagonal
operators, Z a simple shift operator and the inverse is guaranteed to exist as
a bounded operator.

Connecting the properties of the behavioural or input-output map to the
internals of the system is a major issue in dynamical system theory, known
as system identification and we devote chapter [0] to it for the case of LTV
systems. A central role in this question is played by what we shall call the
Hankel operator, which by definition is the operator that describes how the
system maps (strict) past inputs to its future outputs, excepting or modulo
the contributions of present and future inputs, and this at each time point
(this is explained in detail in chapter @ The Hankel operator characterizes
the contribution of the minimal state of the system at each time point needed
to uniquely determine future outputs from that time point on given (present
and) future inputs. It is a sub-operator of the input-output map, which is
instrumental in singling out what a minimal state has to contribute, and
it factors into the composition of a reachability operator, which produces
the state from strict past inputs and an observability operator, which then
describes the contribution of the state in the output, and this at every time
point. These operators form the gist of dynamical system theory. They
exist in all known types of dynamical systems, with more or less the same
properties in each case. The Hankel operators play a central role in dynamical
system theory!
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4.5 Causality

Dynamical system theory evolved with the progression of time. Just like
number theory and algebra evolved: after the positive integers came ‘zero’
and then the negative integers, the rational, the real, the complex numbers
etc., and this to great benefit. There is no reason to stick with just positive
time evolution. Why not consider a new type of time that evolves negatively?
That means: the system’s dynamics evolves with decreasing time—a new
kind of system evolution very much ‘dual’ to the original. To be able to talk
about the distinctions, let us call a system that evolves with positive time,
as before causal, a system that evolves with decreasing time we would call
anti-causal.

Restricting ourselves to systems described by ordinary differential or dif-
ference equations, how would an anti-causal system be described? Looking
first at the differential equation:

{jc(t) = A(t)z(t) + B(t)u(t) (4.6)
y(t) = Ct)zt) + D(t)u(t) '

there is no other difference than that the integration would be executed
in reverse order, for negative times. The time reversal happens completely
outside the system, it is in the eye of the beholder. (We know that Newtonian
systems are time reversible!)

However, with discrete-time systems, the situation is different: a causal
system would move from index point k£ to index point k + 1, while an anti-
causal system moves from index point k£ to index point k& — 1—this is sub-
stantially different, as the evolution may not be reversible in this case. This
being as it may (we shall exploit it extensively further on), the convention
we shall adopt is to always take the state z(k) as the input of stage k, so
that the description of an anti-causal time-discrete system becomes:

ek—1) = fule(k),u(k))
{y<k> — Gela(k), u(k)) (4.7)

for some functions f; and g,. In this convention, which shall appear to be
consistent with matrix calculus, the incoming state x(k) inputs at a different
position in the causal system than in the anti-causal (do you see that: it
inputs at the index k 4+ 1 of the forward system?).

The indexing conventions we adopt for discrete-time systems are some-
what arbitrary; other conventions appear in the literature. It should become
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clear in chapter 5| that they are the most natural for translating matrix cal-
culus to dynamical system operations.

The questions immediately arise whether the causal and the anti-causal
descriptions can be mixed with each other and whether a causal description
can be inverted to an anti-causal one with the same behaviour, i.e., the same
overall relation between inputs and outputs. These questions are closely
related to system inversion and will be treated extensively in this book, in
particular in chapters[9] [[0]and ??, so we do not discuss the question further
at this point.

4.6 Generalizations

In this book, we restrict ourselves strictly to a monotonous time, either in-
creasing or decreasing. In other words: time forms a completely ordered
(countable) lattice. Nothing prevents one from considering more general
‘time’-lattices. One would be just an ordered lattice with origin, i.e., a lat-
tice in which two elements have at least one common ancestor (and hence also
a minimal one). More general lattices have been considered as well, in par-
ticular regular 2D or 3D lattices as they occur in image or video processing,
i.e., partial orders in space. Needless to say, system theory on such structures
becomes much more complicated, because, in more general lattices, there are
many ways in which evolution can take place and descriptions hence inherit
a large measure of arbitrariness. In this book, we take the view that time is
a fully ordered lattice, and it can only be increasing or decreasing, while all
other ordering principles (e.g., in space) are ‘local’ at any given time point
(and may even change between time points.). In first instance, the only local
order we consider is the ordering in the vector representation, but in some
later chapters we shall consider more extensive local orders, e.g., multi-band
transition matrices or transition matrices that themselves have a ’local’ state
space structure.

Also the discussion on behaviour can be made more general than we have
done. One very fruitful approach is based on ‘nest algebras’ [4]: starting
from the definition of unilateral time as a totally ordered set, to each point
in time ¢ one may attach all acceptable inputs up to that time point, calling
it a set U;—containing all the inputs that run from —oo to and including
t. Clearly when ¢; < ty one shall have U, C U,,, the collection U; forms
what is called a nest algebra. Usually one shall impose some continuity on
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that algebra as well, requiring e.g., U; = N,~4,. This then allows to define
Ui = U, U, thereby identifying what happens exactly at a continuous
time point ¢. Also the output space can be given a similar structure based
on the same time set, and a map would correspond to a causal system when,
at each time point ¢, all inputs that coincide up to (and not including) ¢
will map to the same partial output up to, and including t. Most of the
important system notions (e.g., Hankel operator, inner-outer factorization)
extend to such systems defined on nest algebras. However, it would lead us
too far afield to consider this highly interesting and relevant generalization,
given our aim to keep all treatments matrix computational.

4.7 Concluding remarks

The discussion in this chapter focusses on some very basic assumptions and
considerations, that are often overlooked or considered ‘trivial’. However,
the more basic the assumption, the more consequences it has for the further
development of the theory, so it pays to put enough care to develop them.
We did not do that fully as of yet, for that we need a better vista on these
very consequences, but they will soon appear when we proceed. Some are
technical, and determine how easy or complicated the resulting algebra will
become. It has been thought for a long time that the time-continuous, time-
invariant case is the simplest, but it will appear that this assessment does not
pan out, although one can treat some of the estimation and control problems
elegantly, with simple expressions, in that case.

However, from the point of view of the simplest possible algebra, the
discrete-time, time-variant case stands out, because it relates directly to ma-
trix algebra. It allows for the simplest possible treatment of all the basic
system theoretical ideas that we already met schematically in this chapter
(state, reachability, observability), and this with an impressive generality,
de facto capable of handling completely general matrices (while the time
invariant case is restricted to matrices with a lot of structure: infinite dimen-
sional ‘block Toeplitz matrices’” for transfer matrices and (infinite dimen-
sional) ‘block Hankel matrices’ for what we have called Hankel operators).

Some assumptions appear to be fundamental in the sense that they have
a great influence on the type of theory that follows. One such is whether one
chooses to consider bounded systems on normed input and output spaces, or
whether one would allow the system to start at some finite point in the past
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and then let it evolve unconstrained. In the first case, a ‘dichotomy’ appears,
which allows for new system properties to appear, that do not reveal them-
selves easily in the second case. The complementarity of the two cases can
sometimes be exploited, as we shall see when we deal with system inversion.

4.8 Item for discussion

How would one set up a dynamical system theory for the discrete event case?
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Chapter 5

LTV (semi-separable) systems

In this chapter we specialize the type of dynamical systems
to ‘linear, time-variant, discrete time’ (and then further to time-
invariant systems). Although such systems may not be the first
type studied historically, they are the systems that allow for
the most straightforward mathematical and numerical treatment.
Because of the prevalence of modern computers, they are also the
type that best meshes with computer calculations and numerical
linear algebra, where they are often called ‘semi-separable sys-
tems’ or sometimes ‘quasi-separable systems’ (see the notes at
the end of the chapter on this.). This connection works in two
directions: systems that compute can be considered dynamical
systems and vice-versa. Our starting assumptions are: the time
is discrete and represented simply by an index that runs from —oo
to +00. The chapter then develops our formalism for LTV sys-
tems, concentrating on straightforward, easy to use generic ma-
trix representations for the state space evolution and the input-
output map, both for a causal and an anti-causal system. We in-
troduce block-diagonal representations, the generic shift and the
generic transfer function representation for the LTV case. Next
we discuss closely related issues such as the notions of causality,
anti-causality, stability and duality. Further important system
theoretic notions are postponed to the next chapters; the aim of
the present chapter being to develop familiarity with the relation
between systems and matrix algebra.
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Menu
Hors d’oeuvre
Why linear time-variant (LTV) and discrete-time systems?

First course
The formalism for causal systems

Second course
Uniform exponential stability

Third course
The formalism for anti-causal systems
Duallity

Fourth course
The diagonal notation

Dessert
The LTI case

5.1 The formalism for causal systems

Let us first consider systems that run forward in time, using only past inputs
(causal systems). At index point k, the system will have a state xj of dimen-
sion 7, and will receive an input u, of dimension my. Stepping from k to
k+1, it determines a new state xy 1 of (potentially different) dimension 7.1
and produces an output y; of dimension n,. In other words, there is a local
transition map (zy,ur) — (Trs1,yr) happening at ‘clock index &’ producing
the next state xyy1, a local output y, and moving the system to the next
index point k£ + 1. The local transition map would in general be non-linear,
but we start out by assuming that it is linear, leaving the generalization to
non-linear for later (in Part IT).

For mathematical precision, one would normally specify to which type of
vector space the various vectors one is considering belong. In this book, we
compute with real or with complex numbers (R or C)—even though many
properties would also work in a finite field (like p-adic numbers), not consid-
ered here. So we write: z, € R™ or x, € C™. Actually, it does not matter
much whether the numbers are real or complex for the theory to work, and,
moreover, the reals can be considered a special case of complex numbers. We
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shall define our notation in such a way that things work out independently
of which case is being considered (in many cases the computations will just
be real).

A linear map a : R™ — R" : u +— y = a(u) (often just written y = au)
is represented by an n x m real matrix when the natural bases in the input
and output spaces are used, let us call it A, so that y = Au, or with indices
Yr = Z:’il Apju;. This is an example of matrix-column multiplication, that
assumes vectors to be represented by columns and the linear map by matrix
multiplication. A row-based system would work equally well, and we shall
sometimes use it, but most of the book will use the column representation
for vectors (in modern differential geometry people use an “Einstein index
notation” and do not really specify which type or matrix representation they
use.).

It is often useful to subdivide vectors into sub-vectors, or to assemble
vectors into new, larger vectors. Such operations are very common in e.g.,
MATLAB, and we shall adopt MATLAB’s notation conventions to construct
new vectors (we shall even extent the conventions, see further.). Column
vectors can be concatenated: suppose e.g., that u; is a column vector of
dimension n; and wuy a column vector of dimension ny, then one could de-
fine a new column vector u of dimension n; + ns, which we could denote as
col(uy, uz), using a constructor ‘colﬂ. If n1 = ny = n, then one could also
stack the two vectors and create an n x 2 matrix [ U Us } Many such
constructs are possible (we shall explain what is happening either in detail
when needed, or else assume that it is clear from the context.). The distinc-
tive characteristic of a matrix is that it is a rectangular block of data with
precise dimensions. When assembling matrices, or do operations with them,
dimensions should always match properly. E.g., a matrix A of dimensions
n X m can only multiply a matrix B of dimensions k£ x ¢ to the left when

A

C D
number of rows of A and B as well those of C' and D to be equal and the
number of columns of A and C as well as those of B and D.

m = k. Similarly, a sub-division of the matrix T" = requires the

With the conventions so far, our discrete-time, linear and time-variant
system would then satisfy a transition equation at each index point k of the

. . T . .
1One often sees expressions like u = [ uf  ul ] , which are unnecessarily cumber-

some. We prefer u = col(uy,us2), much simpler and effective, especially when one wants
to make more complex constructs as we shall be doing.
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type:
{ Tip1 = Apzp + Brug (5.1)

Yk = Cioi + Dyuy

in which A, has dimensions 71 X7, By dimensions 71 xmy, Cy dimensions
ng X1 and Dy, dimensions ng X my,. Ay is called the ‘state transition map’, By,
is a map from the input at index k to the next state, C} is a state-to-output
map and Dy, is a so called ‘feed-through’, it connects the input at index k
directly to the output at index k (from a computational point of view there
will be a slight delay, which is neglected, assuming a computer to calculate
at infinite speed. If one does not like the feed-through term, one may put it
zero! However, keeping the term simplifies many calculations and enhances
generality. It also plays an essential role in the Kalman filter, see chapter

11).

xk +1

Figure 5.1: Signal flow diagram of a discrete-time, linear and time-varying
causal system.

5.2 Input-output behavior

Suppose now we were doing a computation as follows: the calculation starts
at index 1 with no input state (z; is empty). It takes in a first input wu;
of dimension my, computes o = Bju; of dimension 7, and y; = Dju; of
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dimension ni, using some matrices By and D; of appropriate dimensions.
Then it moves to index 2, takes in uy, of dimension ms, computes rs3 =
Asxy + Baug of dimension 73 and y, = Chyxs + Doug of dimension ny. Next,
it moves to index 3, takes in uz and computes x4 and y3 etc... up to a last
index ¢, whereby the last computation ends with an empty state x,,; and
Yo = Cel‘g + DgUg.

What would be the behavior, i.e., the overall map such a system has
computed? Clearly, each state x; remains internal to the system, for an
external observer, only the input-output map, called the functional behavior
would matter. We obtain this behavior when we eliminate the state. E.g.,
we have ys = Coxg + Dous and hence y, = CyBiuy + Dous, and likewise
ys = C3A5Bu; + C3Bsug + D3ug etc..., summarizing in matrix form:

Y1 Dy 0 0 (51
v2o| _ CoB1 Dy 0 - uz | (5.2)

Ys C3A,B; C3By D3 - u3

The matrix in the middle, let us call it T, has dimensions (n; + ny + n3 +
- ) X (my +mg+mg+---). It is a matrix consisting of subblocks T; ; with
dimensions n; x m;. It is also lower block triangular, reflecting the fact that
an output y; is only dependent on inputs u; with j <. Its general element,
assuming j <1 —11is C;A;_1 - -+ A;j11 Bj, in the literature sometimes denoted
by CiA7;Bj, where A7, is the continuing product A;_y--- Ajyy for i > j and
with the convention that AZ . = I. The regularity in the construction of the
entries is pretty apparent, so it will prove useful to introduce a more compact
notation that summarizes the essentials.

To start with this, let us first look at vectors. If we do not want to
see indices in detail, we put u := col(u;)j_,. But why restrict ourselves to
starting times at index 1 or stopping times at n? If we do not want to bother
about the starting time, we can just pad u with empty entries for all index
points less than one and larger than n. Let us put u; := — (i.e., dash) for
all j < 1 and j > n, and we can write u := col(u;) where the index range
from —oo to 400 is simply understood. The entry annotated by '—’ has
dimensions 0 x 1, and it is compatible with the typical dimension of a vector,
e.g., m x 1, now with m = 0. One can always think of such dummies stacked
on top and at the bottom of a vector. They play the role of “place holders”,
with the meaning: “there is an index, but no entry”. Such place holders
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u, u_, u, u,
X, b Xo X, Xy
Vo Y Yo i
\ \ \
o y=Tu
Yo . @—E)
Yo _ ¢ u,
Oﬁ) CAA B, ¢ R U,
: ol
-2

Figure 5.2: Example of an overall causal system build from local computa-
tions.

play an essential role in computer languages (in that context they are often
denoted by a “perp” (L)), and they arise e.g., when a stack becomes empty
after processing, or, as here, when at some indices in an indexed list there
is no entry. In our case, the definition should produce elements that are
dimensionally compatible with other elements in the same vector.

Likewise, we could have a case where at some index points there are no
input entries, while there is still a computation going on, or where the com-
putation does not produce an output entry. So it makes sense to generalize
our notion of ‘empty entry’ further. We may have a matrix element of di-
mension 1 x 0, which we might indicate by a vertical dash (]), an element of
dimensions 0 x 0 that we annotate with a simple dot (-) and all these may be
stacked as well in vectors, provided dimensions remain compatible. Clearly,
an extension of matrix calculus is needed to allow us to do computations with
such elements. Here are a few simple rules that keep everything compatible.
Let us use the “x” to represent matrix multiplication explicitly, and a any
number:
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operation result

(Notice that we do not distinguish between | and [|] etc..., for brevity—
brackets are just ”sugar coating”.)

With such rules we can still write for any input-output map y = T'u, in
which all vectors and matrices are properly padded, and zero dimensions are
allowed for the inputs, the states and the outputs, while all time series run
from —oo to +oc.

However, there is one issue with this approach that should already be
mentioned here: as soon as vectors and matrices are allowed to have infinite
indices, the matrix-vector product or matrix-matrix product may produce
infinite sums that do not converge. We shall discuss in further chapters
how one can deal with such a situation, let us at this point assume that
either it does not occur (because all summations are de facto finite), or that
convergence is properly taken care of. The fact that systems evolve with
unconstrained times has great technical consequences. So it makes sense to
bring in that fact from the start. Another point of technical importance is
that of orientation in an infinitely indexed vector or matrix. For this we
single out the element at index 0 and surround it with box. Hence we have
u = col(-++ ,u_y,[upl,us,---) etc... (this element may of course be empty.).

The next step is to represent the various actions in the system in a com-
pact fashion. We start by remarking that each elementary computation takes
place at a specific index point. Let us explore the global consequence of this
simple fact. Concatenating the states, let’s simply write

z = col(-+,x_y,[x0] 21, +), (5.3)

then we observe that the operators A, together not only map x to a backward
shifted version of itself (namely col(-- -, xo,[21] z2,--+)), but also so that
each xp only maps to its x;,1; and nothing else. To capture this globally, we
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define a forward or causal shift operator Z: given any infinitely indexed vector
(say z), let Zz be defined as the vector Zx := col(--- ,I_2,7 Toy ),
i.e., it just postpones x; one index point. This operator admits of course an
inverse, the backward or anti-causal shift, which we write as Z~1.

For the operators Ay, that are just locally active, we next define a (doubly
infinitely indexed) block diagonal matrix, using a constructor that produces a
diagonal matrix from its arguments, A := diag(- - - ,A,l,, Ay, --+). Sim-
ilarly, B := diag(By);{2>° ., C := diag(Cy){>° . and D := diag(Dy);>°
will globally characterize the input-to-state, state-to-output and feed-through
maps that act locally at each index point, and the global state-space equa-
tions become

{x = Z(Az + Bu) (5.4)

y = Cz+ Du

This is probably as compact as one can get these equations. Whether such
a compact representation is indeed useful has to be demonstrated, and we
hope that the rest of the book will be convincing. It surely allows us to
derive an equally compact representation for the state of the system, at least
formally. Eliminating the state z, we obtain in sequence:

v=(I—-ZA)'ZBu (5.5)

and y = T'u with
T=D+C(I—-ZA)'ZB. (5.6)

Very well, but what is (I — ZA)~1?

5.3 Uniform exponential stability

Now the issue has become: is inverting (I — ZA)~! meaningful and what
is it then? Remarkably, there are several answers possible to this ques-
tion, each with its own significance (and history). First of all, suppose
that the sequence x is known to begin somewhere (e.g., at index 1 in our
previous example and is empty for indices less that 1), then one could
write w := ([ — ZA) ‘o = (I + ZA+ ZAZA + (ZA)? + ---)z, remarking
that the term (ZA)*z involves k subsequent forward shifts, since of course
[(ZA)*a]; = Ajox -+ AjopsrAjowjon, because [(ZA)'a]; = [A(ZA) ;o1 =
A;_1[(ZA)*1];_1 etc. Now fix some j and look at the sum of all the terms
in the j*" component of the sum. When j = 1, only one term is non-trivial:
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the first one wy; = ;. When 7 = 2, we find wy = x5 + Ayxy, and then
w3 = o3 + Ay + AgAjxy ete... and when j < 1, w; is empty. The sum
contains less than j terms for every element in w = (I — ZA) 'z of index
less than j. When j < k, then z;_ is empty (= —), and hence the whole
product is empty as well. This actually reflects the fact that the state space
equation is a forward recursion, whereby z; is only dependent on previous
values, which is just a finite set. However, the dependence grows with grow-
ing k, and so it may happen that for larger k’s, these entries blow up. E.g.,
suppose all Aj, = 2 for k > 1, then one would have [(ZA)*z]; = 29"Fz;_ for
all 7 > k.

It is not difficult to write down the matrix for (I — ZA)™! for the n x m
block matrix we started out with in this chapter. It is

_ B B B -
| I 0 0
| A, I 0 0
(5.7)
| As Ay Ay I 0
| | An—lAn—2 e A2 o An—lAn—2 An—l I _

and it has dimensions (1, + 72 + -+ + 1,_1)? (it is a square matrix, with
unit matrices on the main diagonal.). We see that if the Ay’s are too large,
elements further away from the main diagonal might blow up even exponen-
tially, making the resulting matrix numerically unstable. Such an instability
must often be avoided. Although (I — ZA)™! remains well defined in the
positive one-sided case just described and leads to finite arithmetic, it is of-
ten necessary to require boundednessﬂ This can be done as described next,
where we consider the more general case that the system’s indices extend
potentially to either —oo, 400, or both, as would e.g., always be the case for
time-invariant systems.

One way to impose some modus of stability, at least in the infinitely
indexed case (but also often needed for finite matrices), is to assume that
there exists a positive number ¢ < 1, such that for any (small) positive €

2Systems that have to be controlled can be unstable, the purpose of the controller being
to achieve stability. For such problems, unstable system descriptions are necessary. On
the other hand, instabilities in data processing applications have to be avoided, making a
different approach necessary. We shall analyze this issue further in chapter @
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with o +e€ < 1, there is an £ such that for all k (i.e., uniformly), || A7, ./l <
(0 + €)%, where ||[M|| is by definition the Euclidean norm of any matrix M.
The smallest such o is called the spectral radius of ZA. When such a property
holds, then A is said to be uniformly exponentially stable, which amounts to
say that the entries in the matrix (I — AZ)~! eventually die out exponentially
with rate ¢ uniformly, when you move away sufficiently far from the main
diagonal. This condition is of course automatically fulfilled when (I — AZ)
is a finite matrix, since a lower triangular block matrix with units on the
main diagonal will always be invertible, but the result may still have an
undesirably large condition number, a situation that then would have to be
dealt with in each concrete case. We shall analyze this crucial situation in

detail in chapter [I0]

5.4 Diagonal shifts

Block diagonal matrices, responsible for local calculations, play a major role
in the theory of LTV systems, much like constant matrices do in the theory
of linear time-invariant systems. We introduce therefore a special type of
shift for them. Suppose A is such a matrix, then consider ZAZ~1. The
left shift operator Z will shift the rows of A one notch down, while the
right shift operator Z~! will shift the columns one notch to the right. The
net result is a shift along the main diagonal in the South-East direction.
We write A<T1> := ZAZ~!. Similarly, a diagonal shift in the North-West
direction is A<™'> = Z71AZ. Equivalently, we have ZA = A< 7 and
AZ = ZA<71>. Although Z does not commute with other operators, there
is a kind of weak commutativity, involving a shifted version. As we shall see in
further chapters, this is enough for most of LTV system theory to generalize
what happens in the time-invariant theory. It also follows that (ZA) =
ASHIZ A<H2> L A<tz g0 — 7 A<=(=1)> .. A<=1> A: 3 global expression for
the continuous product.

5.5 Anti-causal Systems
We call lower triangular block matrices causal. A state xj, or output y of
a system whose transfer operator is (block) lower triangular depends only

on inputs in the past up to index k (i.e., a causal system). Dually, we
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can consider systems that run backward in time, where y; would only be
dependent on inputs u; with j > k. Consider the transpose Z' = Z~! of Z:
it defines a backward shift on vectors. Now consider the backwards running
system

{ Tpo1 = Apwp + Brug (5.8)

Yk = Cyap + Dyuy

resulting, similarly as before, in an anti-causal transfer operator T' = D +
C(I—Z'A)"'Z'B. The corresponding matrix will then be upper-triangular,
in the case of a traditional (block) matrix with a state space description
starting at index n and running backward to 1 it looks as follows:

D, CiBy C1A3Bs -+ CiAy---A,1B, ]
0 D, CyBs o ChAs--- A, B,
0 Dy - : (5.9)
i 0 D, ]

with general term 7;; = CjA;41---Aj_1B; for i +1 < j. The notion of
uniform exponential stability applies as before.

Figure 5.3: Schema for a general anti-causal LTV system.
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5.6 Duality

Given a causal state space system T = D + C(I — ZA)"'ZB, and using the
regular matrix transposition ('), we may define the dual or transposed system
T'=D'+B'Z'(I-A'Z")"'C"=D'+B'(I-Z'A")"'Z'C’. We see that the

causal transfer operator just changes into the anti-causal transfer

A C
B D'
interchanged, the incoming state x, comes out of the previous step which is
now located at index k + 1 and the outgoing state will feed into stage k — 1.
Although this convention may seem a bit strange at first (the k' state xy, is
at a different location in the causal than in the anti-causal case), it turns out
to be consistent with the normal indexing in the input-output matrices. (It
may be remarked that other conventions can be found in the literature, in
particular z; can be taken as the output state in the causal filter, which then
takes xj_1 as its input. This is of course immaterial, the convention adopted
here seems the most convenient.)

A B
C D

operator . Time is reversed, the role of inputs and outputs are

5.7 Example: a simple banded matrix and its
inverse.

Let’s find a simple realization for

d 0 0 0

. a9 dQ 0 0
T=| o a4 o (5.10)

0 0 ay d4

Let’s retain the traditional matrix indexing scheme (i.e., starting at index 1).
It follows that stage 0 is empty. At stage 1 we take in u; and immediately
produce y; = dju;. Next we have the choice to either immediately compute
asuy, or take u; as a state and feed it to the next stage. Let’s take that latter
21,1 gi } = [ I d11 } The next stage now
takes in o and us, and we compute immediately yo = asxs + dous. At this
point, u; = s is not needed anymore further on and can be discarded, but
uo will be needed in the next computation. Hence we put x3 = us and have

path and put zo = u;. Hence [
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Ay By | | 0 1 ) .
[ C, D, } = [ a5 do } . The next stage is not much different and we find

As By | | 0 1 . . _
[ ¢, D ] = [ — ] Finally, the fourth stage takes in x4 = us and

. A4 B4 . - -
uy, and computes yy = asxy + dyuy so that [ C, Dy } = { s dy } The

following steps are empty again.

Anticipating the section on matrix inversion, let us observe that if all the
D;’s are invertible, one obtains an easy realization of the inverse of a system
(forgetting about stability), by ‘arrow reversal’: reversing the feed-through
arrow from input to output (see fig. [5.4). This procedure can be applied

Y Uy D,:1 Vi

X Xl

Figure 5.4: Finding a formal (potentially unstable) inverse by arrow reversal.

directly on the state space description:

(5.11)

A B . A—-BD™'C BD!
C D -DIC D!

from W}llich a reali%ation f?r the invegse is ealsily found, in sequence:

| dy —dy as dy —dy az dy - -
{ | d! ] { —dy'ay dy! ] { —dy'ag dy ] { —ditay dy! ] Not only
does this allow for a quick and easy calculation of the inverse matrix (which
would actually not be too hard by back-substitution), it shows that the in-
verse system has a realization whose state dimension equals the original,
hence can perform computations (solving equations) with the same com-

putational complexity as the original, although the matrix now has a full
triangular lower part.
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5.8 Block matrices and the diagonal notation.

Suppose A, B, C, D are (block) diagonal matrices representing a realization,

then we could write down a block matrix { é g 1 having these block-

diagonal matrices as components. More graphically, this representation looks
as follows:

A,l B,l
Al Bl
(5.12)
C_y D_,
Ch D,

Alternatively, one could write the same realization as a single block diagonal
consisting of local block matrices, as follows:

A_l B_1
C,1 D

[ 4o Do ] (5.13)

Co Dy
Al Bl
Cy Dy

Both representations are, of course, fully equivalent: via an obvious per-
mutation of appropriate rows and columns. One could develop a formal
equivalence theory for such structures, but we shall not do so, assuming that
the type of representation used will always be clear from the context, and
thereby avoiding an unnecessary cluttering of symbols. How this type of lib-
erty functions is seen in the following, hopefully obvious example; when e.g.,
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A= A Arp is a matrix of block diagonals, then a correct expression
Ag Ap
for ZA is:
| ZAn ZAx
ZA= { Z Ay ZAg (5.14)

because “Z” is nothing else but a shift operator, which applies equally on
the indices of all rows (when applied left) or on the indices of all the columns
(when applied right). One could actually state the formal equivalence

{ diagA;, diagB; } (5.15)

Ay By
diagCy diagDy

= diag [ C. D,

showing that the matrix constructor commutes in a sense with the diagonal
constructor (provided dimensions of the arguments agree, of course). How-
ever, the matrices both sides of this expression have a different order.

5.9 Example: the realization of a series.

With the ideas just expounded, it is easy to generalize the previous exam-
ple and produce realizations in ‘companion form’ as in the classical case.
Consider the global realization

0 I 0]o0

A B 0 0 I]0
[(J D]: 0 0 0|1 (5.16)

Ty, T, Ty | Ty

in which the “I’s” are (finite or infinite) unit matrices, the “0’s” (finite
or infinite) zero matrices and the T; block diagonals, all with matching
dimensions as needed by the matrix, of course. Then this realizes T =
To+ TV Z + ToZ? + T37Z3 as is easily verified from

-1

I -Z 0 AVARA 0
(I-ZA)'ZB=|0 I -Z ZB=|0 Z Z* 0. (5.17)
0o 0 I 0 0 Z I
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The method generalizes easily further to larger expansions. In the case of
the smaller Example 1, we have:

dy
da

and the realization

ds

dy

az

a3
Qy

Qg

d
da
ds

i)
— O

dy

(5.18)

(5.19)

(it is worthwhile checking this out carefully!)

5.10 Discrete time, linear, time-invariant sys-
tems™

A time-invariant system runs from arbitrarily small negative indices to ar-
bitrary large positive ones—it is by definition an infinitely indexed system.
That mere fact makes a number of issues connected to such systems rather pe-
culiar. Historically, such systems were studied first, and it was soon thought
that time-variant systems would be more complicated, which, in the light of
modern time-variant theories appears not to be true at all. Some attempts
to generalize results for time-invariant systems to the time-variant case failed
miserably (we shall discuss some in further chapters), and it took a long time
to understand that the algebraic principles underlying general, time-variant
dynamical systems were at the same time simpler, more general and more
intuitive than in the LTI case. Much is somewhat similar to the move from
continuous-time to discrete-time systems, and in particular from the Laplace
transform to the z-transform. Discrete-time systems are basically much sim-
pler than continuous-time systems. The modern approach that we advocate
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turns things around: one discusses the discrete-time time-variant case first
and then moves on to continuous-time and time invariance.

Concerning the notion of time invariance, one may adopt an internal
and an external or behavioral view. The internal view is that none of the
constituents of the system change with time. If the system has a ‘natural’
state space description, time invariance would mean that this description is
the same at all times. In the case of discrete-time, linear systems with finite

. . o A B
dimensional states, that means that the same transition maps [ c D }

is valid for all £ running from —oo to +o00. In that case, the corresponding
global block diagonal matrices A, B, C'and D are diagonal Toeplitz, meaning
that their diagonal entries all have the same value. In that case, the shift Z
commutes with the operators and can simply be written as a “scalar” z, as
we have zA = Az. The time-invariant transfer transfer function can then be
written as

T=D+C(I—-2zA)""2B. (5.20)
At this point, z is just a forward shift (in much of the engineering literature,
the forward shift is written 27!, with z the backward shift. We do not
follow that convention, mainly to avoid formulas with lots of z=1’s—which of
course look very impressive.). The next step in the analysis of such systems
is to interpret z as a complex variable, and to drop the interpretation of A
as a block diagonal Toeplitz matrix, replacing it simply with the original
transition matrix A (and similarly for the other matrices B, etc.)ﬂ. This is
useful, because then (I — 2A)~! can be interpreted as a rational matrix:

1

Ca(z)
in which (4(z) = det(/—2zA) and M4(z) is the matrix of minors of (I —zA) (if
Xa(A) = det(A — A) is the characteristic polynomial of A of dimension 7 x 7,
then C4(2) = 2"xa(z7!). Ca(2) is a polynomial of degree 1, and M4(z) is a
matrix of polynomials of degree at most 7 — 1. Hence the transfer function
becomes

(I —zA)"'=

My(2) (5.21)

T(z) = CAL(Z)[DQ(Z) + 2CMa(2)B] (5.22)

3Although we shall not pursue this path formally, there is an ‘isomorphism’ involved
here, where a calculus of (doubly infinitely indexed) Toeplitz matrices are made to corre-
spond with infinite matrix series in the variable z. E.g., the input-output causal Toeplitz
operator T corresponds to the transfer function T(z) = Ty + 2Ty + 2%2T» + ---. See the
appendix, chapter [14] for further information.
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Much of discrete-time LTT system theory consists in studying this expres-
sion, using various properties from linear algebra and analysis. In particular,
the zeros of (4(z) are the poles of T'(z) and T'(z) will be ‘stable’; if all these
lie strictly outside the unit disc D of the complex plane. It may be seen that
this condition is equivalent to the more general condition of ‘uniform expo-
nential stability’ that we discussed earlier. Suppose that a € D with a#0 is
an eigenvalue of A, then 1/a is a pole of T'(z), and it lies outside the unit
disc. It would be called a ‘stable pole’. Suppose that a0 is an eigenvalue
of order ¢ of A, then one can show that the corresponding time series decays
as (k|a|* for indices k running to +o0o when this pole is excited, which will
always be majorized eventually by (|a| + €)* for any arbitrarily small € > 0.
One way to study these phenomena is to convert the state transition matrix
A to a Jordan canonically form; in further chapters we shall hint at some of
those. In particular, when all the eigenvalues of A are zero, we shall have
Ca(z) = I, A nilpotent, and T'(z) purely polynomial, called a ‘moving average
filter’.

Conversely, suppose that a is an eigenvalue of A with |a| > 1, and that
the corresponding pole 1/a is not cancelled out by all entries in M4(z), then
the system will be guaranteed unstable. A somewhat dubious case arises
when the eigenvalue a has modulus |a| = 1, resulting in a kind of borderline
stability, at least when the eigenvalue is single (when the eigenvalue is mul-
tiple it is unstable). However, there are good reasons to even call the case of
a single boundary eigenvalue unstable, which is what is usually done in the
literature.

5.11 Discussion issues

e Given two LTV systems, one could combine them in various ways.
Since each represents an input-output operator, one could e.g. add
them when they have the same inputs and outputs (T' = T} + T3) or
multiply them, in case the output of one can be taken as input to
the next (T" = TyTy). Suppose each has an appropriate realization,
what would be a realization of the sum or the product? One could,
of course, consider more general, networked cases, how could a more
general theory look like formally?

e The various construction mechanisms for block- and block-diagonal ma-
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trices seem to be only partially compatible with each other. Would
there be a more logical system, that is at the same time simple, MAT-
LAB-like and allows for arbitrary, matrix-compatible constructs?

e With respect to the computation of (I — ZA)™! in section and ex-
ample 1: an easy way to see how signals are put together (in particular
the state at a certain index) is by drawing the data flow diagram, much
in the taste of figs. and [5.3 You can easily check the correctness of
the formulas given that way. Which properties should such a diagram
have so that it corresponds to an executable computation?

e Stability as we defined it, whether u.e.s. in the time-variant case of
the location of poles of the transfer function, is based on the result-
ing evolution of the state or the response of the system when time
increases. Or, to put it differently: it describes whether the effect of
a single disturbance dies down when the system progresses in time.
Another notion that is often used is 'BIBO-stability’, or 'Bounded In-
put Bounded Output stability’. This notion requires the definition of
a norm in the spaces of input and output time-series, often taken to be
an overall quadratic norm. BIBO-stability then means that the map
from input space to output space induced by the transfer function is
bounded. Would there be some relationship between the various no-
tions?

5.12 Notes

e The large interest in linear time-variant systems started most likely
with the ground breaking work of R.E. Kalman on state estimation
theory, in the early sixties of the past century [25]. For a nice overview
of much of the early work, see [21I]. The gist of the new movement in
system theory was the introduction of state space descriptions, so that
system properties could be studied intimately via the properties of the
evolution of the state rather than purely from an input-output point
of view, as was the standard until then. Notions such as reachability,
controllability and observability became the central concepts. They
allowed the development of new approaches not only to estimation
theory, but also to control theory and network theory. Even though
many of these were very successful, a big gap remained between the
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properties of time-variant and time-invariant systems, because in the
latter, full use could be made of transform theory via the properties
of poles and zeros of the transfer function or the eigenvalues of the
state-transition matrix. Only in the beginning of the 90’s a bridging
concept was discovered that allowed many, if not most of the proper-
ties of time-invariant systems to be generalized. The present chapter
introduces that concept for the case of discrete-time systems, namely
the globalization of the system description via instantaneous diagonal
operators and the shift operator Z. In the remainder of this book we
shall study the emerging basic concepts in detail. We just mention
at this point that ’inner-outer’ factorization will turn out to be the
central method. From a mathematical point of view, inner-outer fac-
torization is exemplary of what happens in what has been termed ‘nest
algebras’ by Ringrose [30] and Arveson [4], which provides for the basic
theoretical framework common to both time-invariant and time-variant
systems. The case of discrete time, time-variant systems using diagonal
calculus is a specialization of the nest algebra approach that makes the
treatment of time-variant and time-invariant look very much alike, and
was first proposed in [11], see [10] for a full account.

One of the salient features of using diagonals as basic entities, is that
(block-)diagonals act as the ’scalars’ or basic building blocks of the
theory, very much like real or complex numbers do in elementary one-
input one-output system theory, or m x n real or complex matrices in
multiport theory, with m the dimension of the input vectors and n that
of the output vectors. In other words: only the character of the basic
state operators {A, B,C, D} changes, but not, in a large part, their
algebra. They do not commute any more with shifts, but the structure
remains rich enough to allow for most if not all the basic notions and
operations. This will become apparent in the following chapters and is
also the main motivation why the theory is developed in this way.

86 © Patrick Dewilde 2015



Chapter 6

System identification

In chapter 5| we discovered matrix representations for the
input-output behavior of a causal dynamical systems for which
there is a state space realization—at least in the discrete time,
linear case. System identification takes the opposite path: it
starts from an input-output description, and then goes on to fig-
ure out a state space realization of a causal dynamical system
that would produce the specified behavior. This is in general a
tricky undertaking in general, like trying to discover what is in-
side a black box from experiments outside. Luckily, some a priori
structural knowledge about the system helps. For example, that
it is a discrete-time and linear system, the case we consider here.
Even in this already restricted class, we shall distinguish several
different but related cases: the finite matrix case (the simplest
one), the time-invariant case and the general linear discrete-time
and time-variant case. Further cases, beyond discrete time LTV
are relegated to later chapters.

In this chapter we work primarily on causal systems—the anti-
causal case being dual and hence equivalent algebraically. Hence,
we assume the transfer matrices describing the input-output be-
havior to be block lower triangular for the finite matrix case,
or, in the LTI-case and infinitely indexed case, to be stable as
well as causal. It soon turns out that for systems with relatively
small state space description, the full input-output description is
highly redundant, and the identification can be done with a lim-
ited amount of well-chosen data. In another direction, we could
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try to match limited system descriptions to a limited number of
experiments, a point that we shall only touch. The procedures
generalize to mixed causal-anticausal systems as well.

Menu

Hors d’oeuvre
The matrix case

Intermezzo
Specializing to time-invariance*

Main course
Realizations with partial data

Dessert
The case with infinite indices

6.1 The matrix case

We assume that we are given a lower block-triangular matrix 7', and a re-
alization (a state space description) for it is desired. From chapter [p we
already know that just finding a non-minimal realization is relatively easy:
just decompose T in its block-diagonals and a standard ‘companion form’
realization would follow. This is not really what is desired, because the di-
mensions of such a realization quickly gets out of bounds. From a numerical
point of view, the whole attraction of using state space descriptions is that
many systems possess a low order system description, which can be used to
execute efficient computations, e.g., for matrix-vector multiplication or sys-
tem inversion—to be treated in following chapters. Hence, what is needed is
a realization that is as small as possible in the dimensions of the subsequent
state spaces. We shall soon see that there are indeed realizations with the
smallest possible dimension at each index point, and that these are uniquely
determined by the input-output matrix—a very strong result.

At this point, our basic insights from Chapter [3] come to the rescue.
The state of the system at a given index k is what it has to know from
the past, to allow precise determination of the future evolution given future
inputs—see figure . To put it differently: two past inputs may produce
the same state when the observation of any future system evolution cannot
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distinguish between them, using new test inputs (we then say: these inputs
are ‘Nerode equivalent’.). In the case of linear systems (we shall discuss
non-linear systems in a later chapter), the situation greatly simplifies, at
least algebraically (it turns out that a clean and general non-linear theory
is possible, but gets to be too abstract for a first approach.). The reason
for this is that in the case of a linear system, testing with any future input
turns out to be as good as with any other, and in particular with the zero
input: we shall soon see that if one specific future input is able to distinguish
between two different states, then any other would do it as well.

From the definition of ‘state’, it follows that the state is what connects
the past of the system to its future. Algebraically, this is best characterized
by what we have defined as the Hankel map, namely the map that maps
strict past inputs to future outputs, with zero as the future input (since,
as we shall soon see, any other input would be just as good). Let’s make
this precise. Consistent with our notation so far and positioning ourselves
at some index point k, we can subdivide any input sequence u = u,, + uy,
where u,, is the input up to and including index & — 1, and wy, the input
from k£ on up to infinity. Hence, the subdivision w.r. to index k divides the
input into its strict past and its future, whereby the ‘present’ k is included
in the future. We can of course also define a projection operator m;_ so that
Up, = mp—u and uy, = (I — m,_)u. Likewise for y. Doing so will decompose
the (causal) input-output operator as follows:

_ Yo | _ | Te— O ] {upk }
=Tu — = 6.1
vy { Y } { Hy Tyt | | up, (6.1)

In MATLAB notationﬂ we have Ty = Tih—1):(k-1), Hr = Tj..—1) and
Tt := Tk i see fig. . T}, maps strict past to strict past, Ty, maps future
(including present) to future (including present), while the crucial Hankel
operator H; maps strict past to future at index point k.

From the relation yy, = Hyup, + Tiiuy,, we see that two inputs in the
past will produce the same output in the future when their difference belongs
to the kernel of Hj, no matter what the future input uy, is. Conversely, if,
for some future input, two past inputs produce different future outputs, then

In MATLAB, ranges of indices are indicated as follows: ‘1:5" means from 1 to 5
inclusive’, ’1:” runs from 1 to infinity, and multiple ranges are separated by comma’s.
Hence, a doubly infinite matrix with rows running from —oo to -1 and columns from 0 to
oo has ranges : —1,0 2.
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Tk—3,k—3
Tk—2,k—% Ty 2yn
T = [Zc- 0 ] U Tk-l,k-3 Tk-l,k-z Ty
He T, Teps T Tpa | T

E+l,k—3 T;c+l,k—2 7;<+I,k—l 7;<+I,I< ];<+I,k+1

T, T, T, T,

k+2,k-3 k+2,k-2 k+2,k-1 k+2.k k+2.k+1 k+2,k+2

Figure 6.1: The decomposition of T at index point k into strict past and
future.

the difference between these two past inputs cannot be in the kernel of Hy.
It follows that the matrix rank of H; has to be the minimal state dimension.
We show now constructively that this is indeed the case, and in the process
obtain a realization for T" at index k.

Our strategy is now as follows: first we suppose that we have indeed found
a realization {Ay, By, Ck, Dy} at every index k for each Hj and look at the
consequences. Next, we use the knowledge so gained to turn tables (this is
a common strategy in algebra: assume a solution, find its properties, and if
these turn out to be sufficient, use them to determine the solution.). From

eq. p.2 we find:

CrAr—1Ar—2Bi_3 CrAk—1Br—2 CrBr—1
Crit1 A A1 A28 _3 Cr+1AkAk—1Bi—2 Cr+1AkBr—1
Cr2Ar+1ArAg1Ag 2By 3 CrioAi 1 ArAk_1Br_2  Ciq2Ap41AxBi—1

62)
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and we see immediately that Hj, factors:

Ck
Crr14y,
H, = Ck+2£k+114k [ v Ap 1 Ag9Brs A 1Bro B } = OxRj

(6.3)
Interpreting this decomposition by applying u,, on the right, we see that
Rkupk = [ s Ak_lAk_QBk_3 Ak—lBk—l Bk—l }Upk = Ty, the state for
this realization, and, in a sense dually, Opx, = yy,, when uy, is zero. Re-
ferring back to chapter [3, we realize that we have discovered the reachability
operator Ry at index k, and, dually, the observability operator Oy at the same
index.

Before 'turning the tables’, we have to derive important (sufficient) prop-
erties of the decomposition of the Hj, given a realization. First, we see that
Cr =[Ol and By_1 = [Ry]i—1. Next, considering [Og]1). (the beheaded
O;,, which we also write as OZ), we see that [Oglks+1): = Opy1Ax. So, if
Oy, is left invertible, i.e., if there exists a pseudo-inverse OLH such that
O}, ,0us1 = I, then Ay, = O}, ,[O4]sf} Dually, Au[Ry] = Rty
and hence A; = [Rkﬂ]:(k_l)RL, provided Ry, is right invertible. These ob-
servations give rise to a few definitions:

Definition 1 We say that a realization is reachable iff all Ry are right in-
vertible. Equivalently, the rows of each Ry are linearly independent.

Definition 2 We say that a realization is observable iff all Oy are left in-
vertible. Equivalently, the columns of Oy are linearly independent.

Definition 3 We say that a realization is minimal iff it is both reachable
and observable.

When a realization is minimal, then the corresponding factorizations of the
Hj, are minimal as well, and conversely, when all factorizations of Hj are
minimal then the resulting realization is minimal. That means that, in the
minimal case, the columns of Oy form a basis for the range of Hy, while at

20ften X1 is used as notation for the Moore-Penrose inverse of X. One may also allow
more general pseudo-inverses here, which may be computationally less demanding.
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the same token, the rows of Ry form a basis for the co-range of Hy (the range
of H}), as happens with any minimal factorization of a matrix.

The gist of realization theory is now that, conversely, factorizations of Hy,
produce realizations, at least in the minimal case. We formulate this as a
theorem (this is maybe the most important theorem in system theory, which
we could call the “generalized Kronecker theorem”—see the notes at the end
of the chapter on this.).

Theorem 1 Let, for each k, Hy := Oi Ry be a minimal factorization of Hy,
then a corresponding minimal realization is given by

Ay = OLH [Ok] (kg1):

By = [Rppilw

6.4
G = [0k (6.4)
Dy = Ty

In addition, A, = [Rkﬂ]:(k_l)RL as well.

Proof

We have first to show that the realization so defined reproduces the en-
tries in the subsequent Hankel operators Hj. This we do by first show-
ing that the realization as given reproduces all the left factors Oy. This
is clear by definition for the first entries given by the subsequent Cj. For
the remaining entries [Ok](kﬂ):, we observe that, with the definitions given
O, 1A = Ok+102+1[0k](k+1);. Iy = Ok+102+1 is a (perhaps skew)
projection operator on the range of Hy,1. But, the columns of [O]k+1): be-
long to the range of Hyyq since we assumed a minimal factorization, so 11
projects them on themselves, and hence [O](x+1): = Og41Ax. It follows that
the {Ag, Ci} define all the subsequent Oy, starting from the highest rele-
vant value of k. A dual reasoning works for the Ry, now with the definition
A, = [Rkﬂ]:(k,l)RL. Hence remains to be shown that the two definitions for
Ay are equivalent.

From the way the Hankel operators are intertwined, we have [Hy|11).; =
[Hi11].:(k+1) and hence [Og] ki1, Ri = Opq1[Ris1]:(e—1)]. Pre- and post mul-
tiplication with respect. OL 4 and R,i produces the equality of the definitions

3Depending on the pseudo-inverse used. In case the Moore-Penrose inverse is used,
then the projection is orthogonal.
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Figure illustrates the intertwining property of the Hankel operators.
Concerning the pseudo-inverses, up to this point we have not supposed them
to be Moore-Penrose inverses, so actually there is a large collection of pseudo-
inverses possible, which, however, would all produce the same results given
the minimal factorizations. Also with the choice of bases for the columns
or rows of each Hj there is a lot of freedom possible, which we shall soon

exploit.

T,

k+1,k+1

Figure 6.2: How the Hankel operators at £ and k + 1 are intertwined.

Example
Consider
1
01
T = 00 1 (6.5)
1 0 01
|
with the normal matrix indexing schema. We have H; = I empty. Next:
|

0

Hy= {0 ,ng{oo}:{o}p 0],Hi=[10 0] (66)

10 1

1
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and hence C} = | is empty, Co = 0, C3 = 0 and Cy = 1. Likewise, B; = 1,
By, =0, B3 =0, By is empty. We can take O} = [O 01 },O;[: [O 1
and O = [1], so that A, is empty, Ay = 11 =1, 4, = [0 1] (1) =1

and A; again empty. The result is shown in fig. (6.3)). Remark that in this

lul u, U, u,

v
A

b lyz ly3 Y

Figure 6.3: A realization example.

example, other values for e.g., O; would be [ r y 1 } with arbitrary values
for  and y, and that this would not influence the result. Other minimal
realizations would be found by factoring differently, e..g., one could write

Hy = [ (2) } [ 1/2 0 } and one would have obtained a somewhat different

realization (in this simple example the differences are not that big.).

6.2 The time-invariant case®

The time-invariant case is in essence not much different from the matrix case
just treated, except that the matrices involved are now infinite dimensional.
A fully responsible treatment necessitates the introduction of a mathematical
framework that allows for such matrices, because matrix-vector products are
not guaranteed to converge any more. We do this in a separate chapter
(chapter ??). Because of time-invariance, all Hankel operators are now equal,
let’s look at Hy, and let T'(z) = Ty + 211 + 2°Ty + - - -, then

T3 1o Th
T, Ty T
Hy = Lo (6.7)

5 T, T3
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This is a famous ‘block Hankel matrix’, which is normally written as

Ty 1y T
TQ T3 T4 S
H = T3 T4 T5 e (68)

after reordering of the columns (corresponding to reversing the input or-
der). The Hankel matrix is highly regular (it has identical blocks on anti-
diagonals), and it is handy to introduce a constructor, that produces a Han-
kel matrix from a series of blocks (notice a different definition of Hj in this
section!):

T1 T2 o Tk:
TQ T3 L ) Tk+1
Hk = HaH(Tl, T27 e 7Tk) = T3 T4 - . Tk+2 (69)
| Tk Thyr -+ Tok— |

The famous result (originally due to Kronecker in the scalar case) is now
that T'(z) is a rational transfer function, if and only if H is finite dimensional
(i.e., its rows and columns span finite dimensional spaces). This somewhat
delicate question (because the T} might not be bounded when k increases,
producing unbounded H}’s) can luckily be dealt with without recourse to
infinite matrices. Suppose that for a given Hankel matrix we can ascertain
that there is an index k so that Han(77 ---T}) has the same rank ¢ for all
¢ > k, then this can be used as a criterion for finite-dimensionality of H, even
when H turns out not to be bounded in any reasonable metric. Actually,
one can even take k as the minimal such value, in which case one would call
it the order of the system, with the rank ¢ as its degree. Taking a finite H,
with ¢ > k and assuming the H, to be block-indexed starting at index 1,
let us factorize it minimally as H, = O,R,, where O, has § columns and
Ry, 6 rows. One can now see easily that H, ; has a minimal factorization
derived from the previous, as Hy—1 = [O¢]1.e—1)[Re]1:(e-1), also of rank §. The
construction of the previous section applies here as well:

= [OEH;(g_l)[OK]Z:(: [RK]Q:[REH;@_U)
= R1
= 01
= TO

(6.10)

QW

© Patrick Dewilde 2015 95



CHAPTER 6. SYSTEM IDENTIFICATION

and the proof runs precisely like in theorem

Once the full rank ¢ is reached at block index k, all the subsequent finite
Hankel matrices can actually be constructed from Hj because the additional
rows and columns are all linearly dependent on those in Hy, and contain suffi-
cient blocks that are already known, which determine the further coefficients
in the factorization. This partial realization method generalizes actually to
the general LTV case—see the next section.

6.3 Partial realizations in the matrix case

Reverting back to the matrix LTV case and the notation of section [6.1]
suppose that for some reason we know upper limits to the sizes a; > k and
b < k needed for each partial [Hy]k:q, b,k to reach the full rank oy, with,
in addition, axy1; > ap and b1 > bg. This would e.g., be the case when
the matrix is block-banded, the inverse of block-banded, or else because it
is known that elements decay rapidly away from the diagonal, so that at
some point one can assume them to contribute little (notice: this can be
a dangerous assumption in the case of very large matrices!). In matrices
from modeling problems such knowledge is often the case. It turns out that
minimal factorizations of somewhat enlarged sub-matrices of Hj are then
sufficient to find a realization. o
Consider therefore minimal factorizations of [Hy]x.a, bk := OrRy, a par-
tial Hankel operator as shown in fig. (6.4). Then, assuming that such a
factorization is compatible with a realization, it would follow that

Ak = Q.I];:+1Hk+1:ak+1,bkik?f{'z:
Br = [Rgiilx

A 6.11
Cy = [Olx (611
Dy, = Tyx

very much as before. The reason is that factorizations of the somewhat larger
partial Hankels produce factorizations of smaller ones, and can be extended
to factorizations of larger ones. For a full proof, see [I0], but it is not hard
to see that R R

Hiitiap bk = Orp1 ArRy, (6.12)

which is the main relation used in the proof. Besides the partial Hankel
operators, knowledge of the orange colored sub-matrix is needed as well. We
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leave it to the reader to investigate how the ideas of theorem [1| can be refined
to handle the present case.

k+1q--

Figure 6.4: Realization with partial Hankel operators.

6.4 Identifying a running system™

Up to this point, we assumed the input-output matrix given, and the problem
was to find a minimal realization. However, direct access to all the informa-
tion needed, i.e., all the entries of the matrix (i.e., all the impulse responses
at each index point), may not be available, and the realization has to be
made from indirect measurements, or it may be that only partial informa-
tion is available. We already encountered that case in the previous section,
where we were able to construct a realization from smaller submatrices of the
Hankel operators, provided some additional information on the system was
there, in that case: the maximum delay needed to reach the dimension of the
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state at each index point. A further question would be: can one identify the
system just based on observing inputs and outputs?

Let us first, for exploration sake, look at systems with one input and
one output. Suppose the input is v and the output y, and we know already
that the system is causal. Can we specify the matrix from that information?
Clearly, one has to bring in all the extra information one has and find input-
output matrices that are compatible with it. For example: time-invariance.
This can be fully accounted for by observing that if u — y, then also Zu +—
Zy etc... afull set of input-output maps becomes available, merely by shifting
(assuming u starts at some point):

Uo 0 0 s Yo 0 0
Uy U 0o . 0o .
1 0 s Y1 Yo . (6.13)

Uz Ul Up i Y2 Y1 Yo

Suppose now that ug is neither unreasonably small nor large, then this map,
when restricted to dimension n, specifies the first n entires of the input-output
map:

-1

T, 0 0 - w 0 0 -«-1Tu 0 0
T To 0 - v 0 uy up 0

T, T T, - Y2 Y1 Yo o - Uy U U

(observe: the result will automatically be finite Toeplitz.). Hence, a partial
representation of the I/O-map in the sense of the previous section has been
obtained.

In the case of a time-variant system, this does not work, because we loose
the shift property, and hence cannot construct a full, invertible input matrix
that will determine the transfer function, at least partially. Not enough infor-
mation is available to construct the full input-output map. Suppose, to begin
with, that a single input-output pair (u,y) is the only information available,
what is a system with minimal state dimension that we can construct that
will produce it? First, the system we are identifying is known to be linear,
so we should surely have ua — ya for any number a. Next, to be a bit more
specific, let us start at £k = 0, and suppose we input just ug, leaving all the
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6.4. IDENTIFYING A RUNNING SYSTEM*

next entries 0, then we should certainly have, because of assumed causality,
the first output to be yp, all the following entries being unknown (since we
do not have the impulse response for a single input at k£ = 0 available, hence
we end up with quite a bit of freedom). Next, a similar argument is valid for
the inputs col[ug, u;] for which we only know that it must produce col[yg, y1],
and so on for the further entries. It follows that the following map will hold
(with unspecified and hence potentially free to choose entries marked ’?7’):

Too O 0o - Up Up Up - Yo Yo Yo
Tl,O Tl,l 0 . 0 Uy U . ? U1 Y1
|_>

Tho Ton Toe - 0 0 w " 77

(6.15)
Let us now, for discussion’s sake, make the rough assumption that all the en-
tries ug up to k = n (supposing we have to go that far) are nicely invertible,
then the u matrix above is invertible, and we may see that the row-ranks
of the Hankel operators build on the strictly lower part of the T" matrix will
be the same as for the corresponding lower Hankel operators in the output
matrix, all consisting of '?’s, because the inverse of the u matrix is again
upper and the lower part of the product of the y matrix with the inverse of
the u matrix does not depend on the upper part of the y matrix. Hence, if we
want to find a realization that is minimal in the state dimensions, we should
choose all these ranks to be as small as possible, the simplest would be to
put all the ’?" equal to zero. That would then simply yield a diagonal T'
with T} x = yx/uk, obviously a solution and the simplest possible—it is alge-
braically minimal as it contains exactly the same number of free parameters
as the problem has.

What now when one entry u; = 07 We see that in this case u; has no
influence on y;, (multiplying uy with whatever constant produces zero): the
value of y; has to be generated, because of causality, from previous values
of u, and relevant ’?’ cannot be zero any more (for example: if one wishes

Top O up U Yo Yo . .
’ = , one has no alternative but choosin
|: Tl,O T171 :| [ 0 0 ? U1 &

T1 = y1/up and hence 7 = y;.). In the more general case one can fill in the
? entries recursively so as to minimize the ranks of the subsequent Hankel
operators, taking care of correct ranges as given by the right hand side (the
y matrix)—we leave the details for the “Discussion items”. So we see that
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in the LTV case we end up with realizations that have much smaller state
dimensions than what would be the case for LTI systems, although they
also are not without some constraints forced by linearity and causality. The
Hankel theory gives us a good grasp on the situation.

Let us now briefly consider generalizations to multi-input multi-output
systems (so called MIMO systems). In the LTT case, a single input-output
pair will not suffice anymore to characterize the full transfer function, one
would need a sufficient number of independent inputs, at least the same num-
ber as the number of input ports. This, together with shifted versions, would
then provide a full characterization of the transfer function, by inversion of
the input data as done in the one input case. For LTV systems the situation
is even more complex: not only is information needed about inputs applied
at all the input ports, but also at every time point. Again as before, such
situations can be analyzed using, in particular, the Hankel theory that we
have developed, but the situation quickly becomes quite complex and specific
for the example at hand. See the notes for some literature references on the
issues.

6.5 Working with infinite indices™

With the exploration done so far, it is not too hard to imagine what to do
when we deal with LTV systems running for all times (from —oo to +00).
Let us assume that we dispose of a full set of impulse responses at each index
point, or, equivalently, of the matrix input/output operator 7', which we
assume to be causal, and that we have to compute a realization, assuming
that the system has one. The most practicable way then is to assume that
we can compute any T; (i > k) or that any such is given if desired.

From our knowledge so far, we know that a realization with finite states
will exist, iff each Hankel Hy (which is now an infinitely indexed matrix) has
finite rank, by which is meant that the rank of each sub-Hankel [Hyp . of
Hj, will be finite, uniformly in ¢. Indeed, assuming a minimal realization to
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exist, one has

CrAggr--- A1 By - CrBi-1
(Hiler, = | CenrAr---AraBy - Crp1ApBio
‘ ’ 1
c, (6.16)
= Ck+1Ak [ Ak:—H Ay 1By -+ By }

so the maximal rank of all these over ¢ will be the dimension of the state
space at index point k. If J, is this dimension, then there will be an £ such
that for all £ > ¢, the rank of [Hy]ey. will be g, and the factorization shown
will be a minimal factorization of that ¢ > ¢;,. Conversely, adopting the
strategy of section [6.3] and finding such ¢, and {44, a realization at point k
can be found by choosing compatible bases as explained in that section—we
leave it to the reader to figure out details.

While the previous paragraph does produce a solution to the identification
problem, it is somewhat unsatisfactory, in that quantities ¢, and ¢;, 1 have to
be found that are dependent on unknown quantities, namely the degrees oy
and 041 of the state at index point k. One can of course determine the ranks
of Hankel submatrices progressively, but that may amount to a lot of work
without guarantee that one has gone out far enough to reach the maximal
rank.

The situation is of course inherent to the identification problem: in some
systems and especially time-variant systems, things may happen at unfore-
seen points in time, but they can be detected by the rank conditions de-
veloped so far. On the one hand, that is satisfying because it is a precise
condition, on the other, it may require a lot of computation, which, in many
systems would be unnecessary, as one can put a bound on potential time
delays in the system’s operation. If the latter is the case, then one can often
state that (1) there is an upper limit to the state dimension over all k, and
(2) there is an upper limit ¢, to ¢, and how big ¢ must be in [Hy]sj e to
reach the state dimension, also uniformly over k, so that partial realization
theory can be used on submatrices [Hy]y,, .k k:0,,- System’s with this property
are sometimes called locally finite systems.
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6.6 Discussion items

1. An important issue, not covered in this chapter, is what happens when
‘partial’ identification is done: one uses data up to a certain order,
does the identification and one obtains a realization. How does the
realization obtained relate to the original system? [Some questions,
e.g., what gets interpolated, may be easy to answer; other, e.g., how
well does the partially identified system approximate the original seem
much harder.|

2. There are other ways how to approximate or identify a system (or an
approximation), given data or information on it. One is to use various
kinds of ‘interpolations’ and even specific properties the system may
be known to have. E.g., it may be known that the system is ‘bounded’
with respect to some norm, and that hence the approximation should
satisfy the same constraint. We devote quite a few subsequent chapters
to such issues.

3. In the time invariant case, it is known that approximating or identify-
ing a system on the basis of either the impulse response or the resulting
transfer function may not be the best thing to do. In particular, the
frequency response of the system may be dependent on the given co-
efficients in a highly sensitive way (meaning: tiny variations in the
value of the coefficients entails big variations in frequency response.).
This brings in the issue of conditioning of a problem and its relation
to numerical stability. This highly important question is given some
considerations in the “Notes on Linear Algebra” at the end of the book.

6.7 Notes

e Needless to say, system identification is a central problem in system
theory, and a lot of literature has been devoted to it. Far from giving a
full account, we want to mention a few salient contributions. The first
results of what later became identification theory are due to the German
mathematician Kronecker, who showed that a Maclaurin series belongs
to a rational function iff the Hankel matrix build on its coefficients has
finite rank. Kronecker’s work was easily extended to rational matrix
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functions and has become a standard fixture of, among other, matrix
function and Hardy space theory [31].

e In the sixties of the previous century and in the wake of the develop-
ment of state space theory, a search was on for methods of identify-
ing the state space description (the so called ‘realization’) of a linear,
discrete-time and time-variant system, and to derive both conditions
and algorithms to ascertain that the system given by its (multiport)
impulse response has a finite dimensional state space. Best known is
probably the contribution of B.L. Ho and R.E. Kalman [19], but also
L.M. Silverman and H.E. Meadows [33] solved the problem simulta-
neously. The method presented in this chapter, based on the global
Hankel operator, was first presented by A.J. Van der Veen in his thesis
[39] and subsumes much of the previous work.

e A nice observation is that system identification from the knowledge of
the input-output transfer data (the transfer matrix or transfer oper-
ator) amounts to the determination of the range and the co-range of
all the relevant Hankel operators derived from the transfer data. This
is precisely the data that leads to minimal factorizations of the sub-
sequent Hankels! This simple observation greatly simplifies both the
methods for identification and the proofs.

e Identification using real life measurements is a more involved issue that
we could only touch in this chapter, although it uses the same basic
principles (how the system maps strict past inputs to the future). Origi-
nal work on this topic and further references can be found in [41],[42] [40)].

e Very often, the determination of a realization of one or the other trans-
fer operator is part of a more general problem such as solving systems
of equations, matrix factorization, spectral factorization or the approx-
imation of a matrix with a low degree realization. In many of the fol-
lowing chapters we shall see that the methods presented in this chapter
reappear as building blocks to solve those more elaborate issues.
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Chapter 7

State equivalence, state
reduction

The state of a system sits in its interior, it is often hidden
(this property is sometimes called ‘Markovian’, especially when
the dimension of the state is small). A consequence is that the
state is not uniquely characterized by the input-output behavior
of the system. On the one hand, there may be redundancy in
the state (think of the memory of a computer: it may contain
many items that are not relevant to a given problem). On the
other hand, different minimal states may produce the same input-
output behavior, they are equivalent from the point of view of the
input-output map. In this section we deal with these two issues
in the context of discrete-time, finitely indexed LTV-systems (the
matrix case), ending the chapter with some considerations con-
cerning infinitely indexed, discrete-time LTV and LTI systems.
Changing the state description without changing the behavior
can produce desirable effects, in particular, it can produce inter-
esting canonical forms: the input or output normal forms and
balanced realizations, all of which play important roles in further
developments (approximation, inversion, estimation, control and
synthesis).

Menu
Hors d’oeuvre

Introspection
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First course
Equivalences of minimal states

Second course
Reduction to minimal
A first square-root algorithm

Third course

The LTI case

Dessert
The case of infinite indices

7.1 Equivalences of minimal LTV system re-
alizations

In the previous chapter, we discovered that a minimal realization of a discrete-
time, LTV system can be obtained through factorization of the Hankel op-
erator Hy at each index point k of a system with input-output map 7"
H, = OyR;. The reachability operator R, maps the ‘strict past’ of the
system to a (minimal) state, while the observability operator Oy maps the
contribution of the state at index point k to the future (because of linearity,
that contribution is a linear component of the output from & on.).
Factorizations of a matrix are by no means unique, even when they are
minimal: choose for each k£ an otherwise arbitrary invertible matrix Sy and

Hy = OyRy, with Ry, := SyRy and Oy := 0,5 " will likewise be a good

minimal factorization. The new state becomes T := Spz., and the new
realization:
{/m\k+1 = gl:k/fk‘i‘gkuk (7.1)
yr = CpTp + Dyuy
with
ffl/:k By . [ Ser1ArSy ' Sk By (7.2)
Cr Dy CpS; Dy,

Such state transformations are commonly used to produce interesting
‘canonical’” forms for the realization—canonical means ‘characterizing’, often
uniquely in a certain sense. The first idea we develop further is to choose
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an orthonormal basis for either the reachability spaces or the observability
spaces.

Definition 4 One says that the minimal realization of a system s in input
normal form, when all its [ Ar By } are co-isometric (i.e., A A/ + BpB], =
I). Dually, one says that the realization of a minimal system is in output

normal form, when all its [ ék } are isometric (i.e., AL A + C/Cy =1).
k

As we shall see, these choices amount to finding an orthonormal basis for
either the reachability or the observability spaces of the system (i.e., the
co-range, respect. the range, of the Hankel operator Hj at index k). To
determine such bases from the transfer data is not immediately easy: we are
dealing with infinite indices. So it makes sense to study how the result can
be obtained with just finite matrix calculations. Suppose therefore, we are
given a minimal, but otherwise arbitrary realization {A, B, C, D}, what does
it take to put it in one or the other normal form? To start with the input
normal form: we should find a transformation Sy, at each index point, which is
so that the resulting [ A\k Ek } = [ SkHAkS,;l Sk11By } is co-isometric,
or

Skr1ApS; (S ALShy + Sk BeBLS) L =1 (7.3)
for each index k. Let My := (S/Sy)~!, then this reduces to the recursive
equation

M1 = ByBy, + A M AL (7.4)

This latter equation is called a Lyapunov-Stein equation and it can be solved
recursively, going from k to k + 1, provided one knows an initial, starting
matrix. In view of special form M must have, it must be strictly positive
definite, so that its inverse can be factorized subsequently into S/S; with Sk
square non-singular. Let us investigate further whether such a solution exists
indeed and how it can be obtained.

To start, suppose that the system is at first empty and its first index
point at which it becomes active is ky. The state zy, is assumed empty, and
Tro+1 = DBrouk,- Hence, My, will be empty, and My 1 = BkOB,éO. Is the
latter non-singular? Well, we assumed the realization to be minimal, and
the first non-empty Hankel operator factorizes as Hy,+1 = Opy+1Bk,, which
we assumed to be a minimal factorization. Hence By, must have independent

© Patrick Dewilde 2015 107



CHAPTER 7. STATE EQUIVALENCE, STATE REDUCTION

rows and My, 1 has to be non-singular. My, 1 is actually the Gramian of
the chosen row-basis of Ry,+1 in the given realizationE].

This last property generalizes recursively. The next My, 12 = By, 1B}, 1+
Apo11Bro Bi, Ay, 41, and will again be non-singular (because
Riyr1 = [ Ao+1Br, Bro+1 } had been chosen non-singular in the realiza-
tion) and positive definite (automatically). M := diag(M}) can be inter-
preted as nothing else than the global Gramian of the reachability operator
R, but at this point we have not defined the necessary global constructs yet
to do so—we shall do that in a specialized chapter devoted to this point,
chapt. ?77. In the matrix case considered here, the recursion keeps on pro-
gressing until it terminates at the last index k,. All this will go well if
the subsequent transition matrices Ay are properly bounded, actually their
continuous product AxAj_;--- Ag,41 comes into play, which may blow up
exponentially. This eventuality is of some concern in the infinitely indexed
case and will be discussed to some extent later in this chapter.

For the output normal form, something similar happens dually (with also

. .. A\k Srr1AkSy
t d). R A - 1"
ime reversed) equiring [ C. ] [ CkSkl

leads, with Ny := S/Sk, to the backward Lyapunov-Stein equation

} to be isometric now

Ny = Aj Ny Ay + CLCy, (7.5)

and Ny can be interpreted as the Gramian of the local observability basis at
index point k—which because of minimality will be non-singular.

7.2 A square-root algorithm to compute nor-
mal forms

It is of course a pertinent question whether the Sy in the previous calculations
of a normal form could not be determined directly (not via their gramian)—
and they can, with great numerical benefits. Let us concentrate on the output
normal form (the backward recursion), the case of the input normal form is

f we also assume that the input wuy, maps one-to-one to the first non-empty state
Tko+1, then By, will have to be square non-singular as well. This is an assumption that is
usually made: inputs to be non-redundant. If they are not, then their dimension can be
reduced to the co-range of By, .
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FORMS

just dual (and with forward recursion). At stage k one assumes Sy, known,
and perform a QR-factorization of

Spr1Ar || Qi1 Qe Ry | | Qia
[ Ck } o [ Q21 Q22 1 [ 0 } B [ Q2,1 } B (7.6)

then, premultiplying both sides with their complex conjugates, one gets the
for this case relevant Lyapunov-Stein equation back, because of the unitarity
of the Q matrix. Actually, one gets more. We know already that the left-
hand side has to be non-singular, hence also Ry is non-singular, and from the
Lyapunov-Stein equation we have that actually Ry = Sk, the desired state
transformation at index k. It then follows directly that

_ { g; ] (7.7)

and the QR-factorization has simply become

Sk |
ak
Thus, a simple recursive QR-factorization solves the Lyapunov-Stein equa-
tion in square-root form (S, can be taken as an upper-triangular ‘square root’
of N, = S/S. ] In the next chapter (on canonical factorizations), also the
components ()2 and ()22 will acquire significance, see there.

Why is solving a square-root equation preferable to solving the Lyapunov-
Stein equation directly? First of all, finding Sy directly guarantees the pos-
itivity of Ny = S/Sk. However, there is more. One can show (see the
mathematical introduction in the appendix), that the condition number of
N, is the square of the condition number of S;. That means that one looses
half of the significant bits in the direct computation of N, as compared to
the computation via Sj. The result is that only the square root equation will
give results that are accurate within the range allowed by the precision of-
fered by the computer, except in the most elementary cases. The square-root
calculation must hence be preferred in almost all cases.

Ay
Ci

Ak

B,

Ay Qg

S 7.8
Br Qa: : (7.8)

Sp414r |
C o

2Strictly speaking, the square root N,i/ % of Nj is a symmetric or hermitian matrix
and is unique. However, for most applications any minimal size factorization Ny = S/.Sj
works, in which case Sy, is viewed as a kind of generalized square root.

© Patrick Dewilde 2015 109



CHAPTER 7. STATE EQUIVALENCE, STATE REDUCTION

7.3 Balanced realizations

Balanced realization theory plays an important role in model reduction the-
ory—i.e., when one want to represent a system with a reduced but still
accurate model. A balanced realization treats the input and output side
of the realization equation equally in some sense (the sense is: the ‘energy’
conveyed from the input to the state equals the energy the state conveys to
the output, where energy is measured in quadratic norm squared.). Be that
as it may, here is how the balanced form is obtained at each index point k.

We start out with a minimal realization {A, B,C, D} in input normal
form (say). The local reachability Gramian R;R; = I is then unitary. Let
the corresponding observability Gramian be Nj := O/ Oy, and let’s find its
eigen decomposition: N, = U/Y2Uy, with Uy, unitary and ¥, diagonal strictly
positive (that ¥ is non-singular is of course a consequence of the minimal-
ity assumption.). Let us now define a new realization {A\k, B, @,Dk} =
{Sk41 4855, Sky1 Br, CiSpt, Dy} with Sy, == 32U Then we shall have
f{k = Ei/QUkRk and 6k = OkUk’E;l/Q (leaving Hj unchanged), and hence
the resulting modified ]\//_7k =Y and Nk = > as well. Both the reachabil-
ity and controllability Gramians have become diagonal positive definite, and
equal to boot.

It can pretty easily be shown that the realizations so obtained correspond
to an SVD of each Hankel operator H,—actually, this would be a way to
derive them as well, be it not that the Hankel operators have infinite indices
in general. In the case of finite matrices, the update of the Hankel matrices
can be done recursively and combined with the generation of a realization,
but that is still an operation with potentially high numerical complexity.

7.4 Reduction to a minimal realization

The next point we have to discuss, is how to reduce a non-minimal realization
to a minimal one. Let {A, B,C, D} a presumably non-minimal realization,
how can it be reduced, without going back to the factorization of the Hankel
operators? This question often occurs when systems are being combined with
each other, e.g., when their transfer operators are being added, put in cascade
or more generally, combined into a connected network—"‘cancellations’ may
occur between the systems, for example: when a system is cascaded with its
inverse, just a direct feed-through results.
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What is needed is a method to discover superfluous parts of the state
space. There are two main ways the dimension of the state space may be
too large: (1) some states (at some index k) cannot be generated from the
input (they will be called ‘unreachable’), and then (2) some states cannot
be discriminated by future observations (their difference is ‘unobservable’).
These notions can be made more precise by looking at relevant gramians,
which will be singular when the state dimension is too large (we already
encountered gramians in the previous discussion.).

Let us start with reachability. The given realization will have reachability
operators for each k

Rp=[ " Ap1ApoBrs Ap1Bro B ] (7.9)

and related Gramian M}, := RyR;. When the rows of Ry, form a basis, and
hence M}, is non-singular, then all states x; are reachable with appropriate
inputs running from the beginning point of the system to k — 1. However, if
Mj, is singular, then there exists a (actually many) non-singular matrix Ry
such that

M Rj
My=[ Riy Rus ] { i 8] [sz (7.10)

with ]\/4\k square non-singular. For later use, let us be more precise. The
columns of Ry ; must form a basis for the range of Mj. It really does not
matter what Ry is, so long as it complements the basis generated by the
columns of Ry ;. It may be useful, but not strictly necessary, to choose the
columns of Ry o to form a basis for the kernel of M. In that case one shall
have that

| Rri Rig ]71 = (7.11)

T7
Ry,

in which the dagger’s stand for the respective Moore-Penrose inverses: R,chl =
(Ri1Re1) "Ry, and similar for Ryo. However, whatever the choice of an

appropriate Ry, we can always have M, = (Ri1)! Mk‘R;:,l for any pseudo-
inverse R,J;l (]\/4\1@ is largely not unique, and can even be diagonal.).

Consider now, at each k, the transformation x; = R,;lxk. Then we have
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~

T = [ Ri1 Ryo ] [ ;Z; ], and subsequently, with

Ay B | _ [ RiL AR, RZL By (7.12)
Cy Dy Cy Ry, Dy, '
and using the induced partitioning at each index point k
{ Trt1,1 } _ A:lc;l,l gm,z { Tk ] Em "
Th+1,2 Ak;271 Ak;zg Tk,2 Bk;Z (713)
~ ~ T
w = |G G [ o } + D
Tk,2

and, as the forward recursion on My, is My1 = BypB{ + ArMiA], we also
have

M, 0 _ Ek;l Y] Y A\k;l,l A\k;l,2 Mg O 212;1,1 21;;2,1
[ 16+1 0 } - [ Ek;z } [ Bk*l Bk;2 ]+ [ A\k;2,1 A\k;Z,Q } |: Ok 0 } |: ’312;1,2 A’ ] :
It immediately follows from the zero’ing of the (2,2) entry and the non-

singularity of ]\/Zk that Ek;g =0 and A\k;Q,l = 0, so that the hatted realization
has the form N R R
Ak;l,l 4}6;1,2 Bk;;l
0 Agoa| 0O . (7.15)
Cix Cipe ‘ Dy,

The state T2 (at each k) will always remain zero, because there is no input
that can change it (at least when it started out zero in the first place: it
could lead a life all by itself, of course.). Hence it can be cancelled out and
we have found a reduced realization for the system, which is reachable:

A\k;l,l Bk;l
Ck;l Dk

As before, one would execute the reduction to a reachable system using a
square-root algorithm, directly on the state transformations Ry:

. (7.16)

| AkRi Bi | = Rig11|0 ] { g; g;z } (7.17)
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for some @ still to be identified. To avoid ambiguities with pseudo-inverses,
let us now work exclusively with Moore-Penrose inverses. E.g., as Ry.; has full
column rank (for each k), we have RLI = (Ri Ri1) 'Ry, To complement
Ry,.1, one then chooses Ry.» columnwise orthogonal on Ry, i.e., R,;’IR;C;Q =0,
and then one has

1

[ Req R }T = [ Rea Rip] = (7.18)

which provides for coherence between the pseudo-inverses. Actually, we do
not have to compute the Ry, at all, since

A = RL+1;1AkRk;1§ B = R11;+1;1Bk‘;1; Cr = Cy Ry (7.19)

are solely dependent on Ry ; and Rjy4q.1.

A dual operation will reduce the non-minimal state-space realization to
one that is observable. This is immediate, because observability is reachabil-
ity in the dual system and vice-versa, of course with time reversal. Again, the
reduction can be computed using a square-root algorithm, this time progress-
ing backward in time—we leave the details to the reader. When a minimal
realization is desired, then one must proceed in two steps: first a reduction
to a reachable system with a forward recursion, followed by a reduction to
an observable system on the already reduced reachable system. It turns out
that together this will result in a minimal system (the second reduction to
observable does not destroy the reachability.). A detailed analysis of the
overall result can be found in [10], p. 102.

7.5 LTI systems*®

The main difference between an LTV and an LTI system is the fact that for
the latter one needs fixed point solutions when solving recursive equations.
Otherwise, algebraic manipulations on the state space are the same. E.g.,
when figuring out the reachability gramian, instead of recursing My, =
BB, + A MpA][, one has to find M so that

M = BB’ + AMA’. (7.20)

This is a set of linear equations in the entries of M, which can be solved
directly, but at the cost of numerical accuracy, as we know already. Because
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of the importance of this equation, let us investigate further. When A is
strictly stable, i.e., all its eigenvalues are strictly inside the unit complex disk,
then the unique positive definite solution of this equation is the reachability
gramian

o0
M =Y A*BB'(A"). (7.21)
k=0
Thanks to the strict stability, A¥ — 0 exponentially and the sum converges
(there can be solutions in the non strictly stable case, but these go beyond the
present treatment. In that case the sum will not converge and the equations
have to be solved directly.).

There are several methods to solve for M that are more efficient or stable
than a direct inversion of the linear equations , but none of them is
without some flaws, unfortunately. There are two main difficulties with the
evaluation. First, the equation is a linear equation in 6% unknown, when
0 x 0 are the dimensions of A, so solving the equation in a traditional way
requires O(§°%) operations, which is forbidding in applications where A is
large. Secondly, when eigenvalues of A are close to 1 in magnitude, then
the system becomes ill-conditioned and the series solution converges slowly
as well. The various alternative methods deal with these issues in different
ways.

Direct evaluation in square root form

One way to stabilize the system of Lyapunov-Stein equations is by
converting A to its Schur form (there are numerically stable and reasonably
efficient algorithms to do so). Let A = USU’ with U a unitary matrix and S
its lower triangular Schur form (which has the eigenvalues of A on its main
diagonal), then eq. transforms to

M = BB'+ SMS' (7.22)

with M = U'MU and B = U'B. Suppose S, EAand hence M are all scalars,
then the equation reduces to (1 — |S|*)M? = |B|* and M = (1 —|S|*)"!|B|.
In the matrix case, a recursion can be set up on the “square root version” of
this equation. Because of its independent interest, we give an algorithm in
appendix of this chapter.

The procedure has been proven to be numerically stable, see the bibli-
ographical notes for further references. The important point is that it is a
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square-root procedure, inheriting its numerical stability properties. The dis-
advantage of this direct method is the necessity to compute the Schur form
of the state transition matrix A, which, in case of even moderately large sys-
tems can easily be prohibitive and would be hard to streamline on a parallel
processor. The procedures to be discussed next do not have that problem,
however at the cost of being iterative.

Iterative algorithms

From eq. ([7.20) and its solution eq. (7.21)) it is immediately obvious that an
iterative computation of the solution M is possible. This can be done either
with a linear iteration:

My = BB’ + AM, A’ (7.23)
with starting matrix M; := BB’, or a “doubling” iteration
My, = My, + AF M (A" (7.24)

also with the same starting value, yielding M = limj_,o, M} (in the second
case the k’s will be powers of 2). The problem with these simple recursions
is that they compute M rather than a square-root L of M with M = LL’.
However, it is equally easy to see that these recursions can be converted to
recursions on the square-root of the L-Q type:

for the linear iteration:

[ B ALy ] = [ Ly O } Qx (7.25)
and for the doubling iteration:
[ Ly AFLy | =[ Lo 0] Qs (7.26)

both with starting value L; = B and appropriate Lj and @ (caution: not
the same in each formula), and where k goes up with powers of 2 in the
doubling case.

Although these are attractive formulas, they may be inconvenient. The
linear iteration may converge very slowly (although it eventually converges
exponentially, assuming A stable of course; with large matrices it may be
problematic to reach that regime). The doubling iteration converges much
faster but involves the computation of the matrix (A*)? for k’s that are
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powers of 2, which in some cases may also be a clumsy and intensive oper-
ation. Be that as it may, the doubling procedure in square-root form is a
simple, effective and numerically stable operation (and might best be done
by first converting A to its Schur form!). Improvements on the iterations are
possible—but for that we refer to the bibliographic notes.

7.6 Infinitely indexed LTV systems™

One issue still to be settled about solving the Lyapunov-Stein equation re-
cursively, is the question of a starting value (so far we assumed a cold, empty
start.). Although this question cannot be settled in general (it is type-of-
system dependent), we can state some important properties of the initial
condition. Concentrating on the reachability gramian and the forward equa-
tion: My = BpB| + ApMiA;, and assuming some starting value Mj, is
known, we see that its contribution in the solution for M, with k£ > kg is
given by Ap | My, (Ag )", which goes exponentially to zero for k — oo
when the system is w.e.s. (remember: Ag |, = Ag, -+ Ag_1.). So, for a
u.e.s. system the initial condition does not matter if one starts early enough.

For systems whose behavior at —oo is known in the case of the reachability
gramian, or 400 in the case of the observability gramian, much more can be
said. In that case, the initial value can be computed by solving a fixed-
point equation, and the recursion starts as soon as the system becomes time-
varying—of course, also in this case the initial value will not matter much if
the system remains stable (u.e.s.).

The observations just made apply for the respective square-root algo-
rithms as well—proof of this is maybe a bit too technical: we skip it.

7.7 Discussion topics

e The Lyapunov-Stein recursion is not invertible. The forward Lyapunov-
Stein recursion for the reachability gramian will be unconditionally
numerically stable when the state transition operator A is u.e.s. (con-
sidering the LTV case). This means that any error made early on in the
recursion will die down when progressing with it. The inverse propo-
sition does not hold: the Lyapunov-Stein recursion cannot be inverted
in that case. In fact: because of this property, the eventual values of
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the gramian become fully independent of the initial values after a few
steps. Conversely: the initial values cannot be determined from later
values.

e Balanced model reduction: based on the balanced form, and at each
index point, an approximate (local) system with a smaller amount of
states can be derived by neglecting small singular values in the joint
diagonal reachability /observability gramian. Would it be possible to
derive error bounds that describe how well the behavior of the reduced
system approximates the original?

7.8 Notes

e The determination of the dimension of a collection of vectors of the
same dimension and the calculation of a basis (often an orthonormal
basis) is often a key step in a computation for digital signal processing.
Important and often used algorithms have been developed for that pur-
pose. We mention in order of precision: QR, rank-revealing QR and
the singular value decomposition (SVD), the latter being the method
of choice when the highest possible accuracy is desired because of its
inherent numerical stability when executed well. However, in many
practical cases QR may suffice (but it remains up to the design engi-
neer to decide whether accuracy is sufficient, of course). For reference
to these techniques, basic books on Numerical Analysis may suffice, see
e.g., [15] [43] 341 135].

e In the case of LTV system identification and state space reduction, the
issue is little bit more involved, as it concerns not just one estimation
of a single basis, but a recursive set of such: for each index point one
typically needs a basis for the actual reachability or observability space
at that point. The Lyapunov-Stein equation provides the link between
the subsequent stages, and it can be solved with a recursive QR- or
SVD algorithm. In the LTI case the situation is even more involved,
because then a fixed-point solution has to be found. Many methods for
this have been proposed, and we have treated a few salient ones in this
chapter. For a survey of what the numerical community proposes in
this respect, see [32]. An alternative, and often effective way is by the
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doubling procedure and its derivatives, proposed and much exploited
by Kailath and his group [24].

e In the subsequent chapters, we shall see that the Lyapunov-Stein equa-
tion plays a central role in Dynamical System Theory. Actually, this
distinction should be awarded to the square-root algorithm that solves
the inner-outer factorization problem, which we shall treat at length in
chapter [0 but there also, Lyapunov-Stein plays a role on the back-
ground. This is not surprising, in the view of the importance of reach-
ability and observability in characterizing the dynamics of the system
and the derivation of state space realizations. This importance will of
course extend to control, optimization and synthesis problems, also to
be treated in further chapters.

e Using the sign matriz: In the control literature, another method to
solve the Lyapunov-Stein equation has become popular: the sign method.
More information on the use of this method in our context can be found
in [29].

7.9 Appendix: Square-root algorithm for the
fixed-point Lyapunov-Stein equation based
on the Schur form*

We give a brief summary on how to find the square-root fixed point solution
of the LTT Lyapunov-Stein equation based on the Schur eigenvalue form of
the transition operator A, both because of the importance of the issue and
the interest of the algorithm itself (which may not be so well known). The
equation to be solved is:

M = BB’ + SMS' (7.27)

and we assume that S is in lower Schur eigenvalue form—i.e., S lower trian-
gular with of course its eigenvalues on the main diagonal (in case the original
A does not have that form, it can be converted to it via a unitary state
transformation: AU = US with U unitary, and B must then be adapted as
well. Finding U and S is done with what is known as a numerically stable
algorithm.). We want to find a ’square-root” L of M, i.e., a lower triangular
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matrix such that M = LL’. The recursion is possible thanks to the following

observation. Suppose a block subdivision of S and L as S = Si1 0
Sa1 S22

Liy O

and L =
t [ Loi Las

} with both S;; and L;; square of dimension k X k,

B

B, 1 , we find equally

and conformally B = [

Ll,lL{,l == BlBll + Sl,lLl,lLLlSl/J (728)

so that one can move from stage k in the recursion to stage k + 1 by adding
a new row to By, S;; and L, ; and solving just for the last row of the latter.
This can be done in square-root form, as we show now. We have generally

B SL}{L%,}:[L 0]{%/] (7.29)

where L has been augmented with zeros to match the dimensions of [ By SL ]
and hence there exists (at least one) unitary matrix (A may have complex
eigenvalues!) such that

_ Qi1 Qe
(B SL]=[L 0] {Qm QQ,J (7.30)

in which the columns of [ Qi1 Qe ]/ form an orthonormal basis for the
co-range (corresponding to the row space) of [ B SL } and the columns of
[ Q21 Q2 }/ for its kernel (which the array that has generated @ so far
produces automatically).

To keep notation simple, let us now just add a row (and adjoining column
where needed) to the last equation, indicated with lower case symbols—
the situation being typical for the move from k£ to k + 1, with the new S

written as { 61 3021’ the new L as [i Z}, and the new () as @ =
Qm Ql,z AO
Q21 Q22 Q31 | with fitting dimensions:
Q31 Q32 Q33
0
B SL 0] [L 0 0 %l’l %1’2 5 (731)
b 31L+82€1 5252 - fl 62 0 ¥21 %22 %31 '

Q3,l C23,2 Q3,3
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Notice that in this new expression the original [ Qi1 Qe } can be re-
tained, because an orthonormal basis for [ B SL } is still needed, but now
augmented with a scalar 0, while a new row is added to accommodate the
new data and the kernel is accordingly modified as well. Notice also that the
entries s, and ¢ are just scalar, and /5 in particular has to be non-zero if
the pair {A, B} is reachable (for the more general non-minimal case, addi-
tional considerations must be made, which we skip here for brevity.). In this
expression b, s; and sg are known as well as ()11 and )y 2, while £ and the
@—entries have to be determined (as before, they will follow automatically
from the LQ-array, that we now proceed to update.).

Postmultiplying with the hermitian conjugate of the @-array (assuming
we know it) we find

' A7 Y
B SL 0 g}@ %2;1 %‘f’l pop [ L0 0] gy
b 81L + 8281 8252 1,2 A2/’2 A3/’2 o £1 fg 0 '
0 @3 Qi3
From the first block column (which has & columns) we obtain
bQ1 1+ 51LQ1 5+ 5201Q1 5 = 11 (7.33)

in which the only unknown is the (row) ¢;. Since s, is scalar (it is an eigen-
value of S), we find hence

0= Q11 + 51 LQL)(T — Q1) (7:34)

and good arguments can be made for the existence of the inverse, in the
non-singular case (normally, both s, and @) 2 are strictly contractive—but
it is enough that s, is in the open unit disc!).

From this point on, the normal LQ-factorization algorithm applies: one
passes the newly added row [ b siL + soly  Sols }, through the orthogonal
array build so far (still leaving ¢ to be determined), and the result then
has to be followed by a compression of the columns k£ + 1 to the end—
standard procedure for an LQ-factorization. More precisely, when pass-
ing the partially known [ b siL+ soly sols } through the already existing

Qi1 @2,
array | Qiy (g9 , out comes [ 1 bQj, + (s1L + 5201)Q45 s2la |,
1
and the new array layer has to orthogonalize the part [ T Soly } with
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v = bQs, + (s1L + s2£1)Q;3 5 known. The compression boils down to pro-
duce [z s3ly | =Ll [ qin qr2 ] with [ 11 @iz | co-isometric. Using a

positive choice for £, this requires ¢o = zz'/1/1 — |s3]?, which determines
5 as well as the next layer in the array. The new contribution to the array

forms a unitary matrix

becomes

-~

Q= d11 q12

42,1 G222

Q2 di2 , and the updated transformation matrix
| 92,1 92,2
Qi1 Qg Q11 Q1,2 0
Q2,1 Q2,2 = C]1,1Q2,1 C]1,1Q2,2 q1,2
1 QQ,1Q2,1 Q2,1Q2,2 q2,2
(7.35)

All recursive quantities have now been updated. Although the implicit de-
termination of the missing data for a straight LQ factorization may seem a
bit cumbersome, only L and () 2 are k X k matrices, all the other quantities
(matrices) have typically a small size (depending on the size of B of course).
So the order of computation at each step is a bit more than O(k?).
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Chapter 8

Elementary operations, special
matrices

One of the main purposes to consider semi-separable systems
or systems described by state-space realizations is that such de-
scriptions lead to efficient algorithms, i.e. algorithms that are lin-
ear rather than quadratic (or even worse) in the overall dimension
of the transfer operator. In this chapter we show how elementary
matrix operations, namely matrix-vector multiplication, addition
of matrices and multiplication of matrices, are done using state
space representations. More complex operations, such as ma-
trix inversion, low complexity approximation of matrices and the
computation of matrix eigenvalues have to wait to later chapters,
but they also will have essentially the same property: numerical
efficiency and preferably ‘linear complexity’ in the overall size of
the transfer operator.

Menu
Hors d’oeuvre
Algebraic minimality

First course
Matrix-vector multiplication

Second course
Reduction to minimal
Addition of semi-separable systems
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Third course
Multiplication

Cheese dish
Elementary inversion

Dessert
Inner functions

8.1 Algebraic minimality

Before starting on the efficiency path, one very important issue has to be
dealt with first, and that is that the state space realizations given so far are
not algebraically minimal. To illustrate the point: suppose you have a scalar
LTT system with (irreducible) transfer function

bz + -+ bz

T(z):=d 8.1
() imd s —EE (8.1
then a minimal realization in companion form would be
[0 1 0 0 [0]
0 0 1 0 |0
A B . . " e :
= : ' : : 8.2
[ cC D } 0 0 0 1 10 (8.2)
—Qn —Qp1 —Op-1 - —ap |1
B bn bn—l bn—l e bl d 1

(it is a good exercise to show that this realization is ok!-—hint: use LU-
factorization to find (I — zA)™!), and we see that the algebraically free pa-
rameters in the realization correspond exactly to the free parameters in the
transfer function—in other words: the realization is algebraically minimal,
by which is meant that the number of free parameters (coefficients) in the
transfer operator corresponds exactly to the number of free parameters in
the realization, which would not be the case when the matrix A were a full
matrix. From the point of view of computational complexity this is optimal.
However, it is probably far from optimal from an accuracy or sensitivity point
of view (in particular, it is well known that pole location is very sensitively
dependent on the companion form, especially when the poles are close to
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each other as is often the case in practice.). Whether better forms exist that
are also algebraically minimal is an interesting and important issue that we
shall discuss in a later chapter (Chapt. ?7): it is actually the gist of high
performance system and circuit design as well. In this chapter we shall not
consider this non-trivial point further, and just assume that we dispose of
realizations that have the additional useful properties needed by the con-
crete problem at hand. If they are indeed algebraically minimal, additional
computational benefits will ensue.

8.2 Matrix-vector multiplication

Let us start with an LTV causal realization T = D + C(I — ZA)"'ZB,
assuming that one wants to compute y = T'u, with u starting at some point
ko in time (i.e., empty before kq). Then one can simply put the recursion
Tpr1 = Aprr+Brug, yr = Crrr+ Diug to work starting at k = kg with zy, =
— of appropriate dimension', and keeping on recurring. If the dimensions of
A at any point k are dgiq X 0k, of ug then the number of multiplications
(and additions) will roughly be ;110 + ng (5 + my — 1), i.e., square in the
state dimension and linear in the input and output dimensions (in a more
optimized case it could be linear in the state dimension.).

In case of a double sided matrix with a causal and an anticausal realiza-
tion: T =D+ Co(I —ZA.) ' ZB.+C,(I — Z'A,)"'Z'B,, the multiplication
splits in a forward recursion (for the causal part) and a downward recursion
(for the anti-causal part), totally independently from each other except for
multiplication with the constant term, which of course has to be done only
once.)

8.3 Adding two matrices

] Al Bl A2 BQ
Let us start with the causal case. Let T} ~, [ C D, 1 and T ~, [ Cy, Dy |’

then a potentially non-minimal realization for T" := T7 +T5, assuming match-

+oo

b= o> hence an

!The overall x is a column stack of the individual x: x = col(xy)
empty xp is a 0 X 1 entry.
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ing input and output dimensions, would be

A 0| B
Tre| 0 Ay| By (8.3)
Cl 02 ‘ D1 + D2

i.e., the global state is the concatenation of the two states. However, this
new state may not have minimal dimension, and might hence be reduced.
As we saw in the previous chapter, the reduction is based on reducing the
reachability and observability gramians to non-singular. Suppose that we
already know the individual gramians of 77 and 7%, then the new gramians
can be computed with less effort, as follows.

Let’s look at the reachability gramian (the observability case is just dual).
Suppose M, and My, are the respective local reachability gramians of 7
and T and M, the local reachability gramian of T; + T, then we find

My Mo }

Mtk = /
Mt,k;l,z MM

(8.4)
in which the entry M, ;. o satisfies the Lyapunov-Stein equation My j41.12 =
By By + Ay M, 1 2A). Hence, solving just one more Lyapunov-Stein equation
produces the reachability gramian of the sum (this can of course be done with
a square-root algorithm, we leave details for the discussion.). For example, in
M, M,

M, M, }’
which is of course singular with the same dimensions as the original.

The theory generalizes easily to double sided matrices as the causal and
anti-causal parts can be treated independently from each other.

case T} = Ty, we would have for the new reachability gramian [

8.4 Matrix-matrix multiplication

The next case would be T = T5T}, assuming that the output dimensions of
T7 match the input dimensions of 75, and let us first look at the causal case,
i.e., assuming both T} and T5 causal. It is easy to see that a realization for
T is again obtained by concatenating the states and is given by

4 B I 0]0 A 0] B A 0| By

[Ct Dt:|2: 0 AQ BQ 0 I 0 = BgCl A2 BQDl

L 0 Co|Dy | [ C1 0Dy D,Cy Cs | DDy
(8.5)
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and, again, this realization may not be minimal (that will happen when
there are ‘cancellations’ between the ‘numerators’ and the ‘denominators’,
but these notions are not really useful anymore in our LTV context.).

Again, the overall gramians will have to be reduced if one wants to obtain
a minimal realization for the product. Here also, some additional efficiency
may be obtained from the original gramians, but not as much as in the
previous case (we leave details for the discussion.).

For general systems with both causal and anticausal parts the situation is
more complex: we get four terms in the product: causal times causal, causal
times anti-causal, anti-causal times causal and anti-causal times anti-causal.
As we know already how to deal with causal times causal, and the anti-
case is just similar, let’s now look at e.g., anti-causal times causal: T' = T5T)
where Ty = Cy (I —ZA,) "' ZBy and Ty = Co(I — Z'Ay) "1 Z' By (the constants
Dy and D5 do not contribute to the mixed form, they can best be taken with
respect. the causal and anti-causal part of the originals.). The result is worth
a lemma:

Lemma 1 Decomposition by parts lemma. Let Ay and As be uniformly
exponentially stable, Cy and By (conformal) bounded diagonal operators, then

(I-Z'Ay) " Z'BoCi(I-ZA) ' Z = (I1-2"Ay) 1 Z" AsM+M+MA,(I-ZA,) "' Z

(8.6)
where M is the unique diagonal operator M = diag[My], which satisfies the
Lyapunov-Stein equation

M1 = By Ch g + Ao s M Ay . (8.7)

Proof

By premultiplication with (I — Z'A,), post-multiplication with (I — A7),
and using Z(I — A1Z)™' = (I — ZA,)"*Z, check that the first equation
reduces to

ZMZ' = ByCy + Ay M A, (8.8)

which is exactly the Lyapunov-Stein recursion given. All these operations
are legal because, even in the case of infinitely indexed systems, the inverses
exist as bounded operatorsﬂ and the Lyapunov-Stein equation has a unique
solution thanks to the u.e.s. assumption. QED

2See chapter ?7.
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It follows that the mixed term then decomposes additively in a strictly
causal, constant and strictly anti-causal term as

Co(I — Z'Ay) P2 AyM By + oM By + Oy MA (I — ZA) ' ZB,  (8.9)

Similarly, a product of a causal with an anti-causal term will decompose
additively, but now a backward Lyapunov-Stein equation will have to be
solved. Altogether one gets a lot of terms in the results, which may appear
to be a bit messy. We shall see in the chapter on inversion, that in many
practical situations the decomposition by parts comes in very handily.

8.5 Elementary inversion: arrow reversal

Returning to the causal case, let us consider a system T = D + C(I —
ZA)"'ZB in which D is square and invertible. (In that case the input and
output dimensions are equal.) An easy inverse is obtained just by “arrow
reversal”:

{ Tpy1 = Axy, + Brug (8.10)

U, = —Dk_lC’kxk + D,;lyk

see fig. (5.4). In the schema for the inverse, uy, is computed first, and then
used to update the state, all with roughly the same computational complexity
as for the original system (except the computation of D; ).

This way of proceeding may seem extremely simple and obvious, but
there is a serious problem: the resulting inverse system may not be stable,
and will indeed not be stable in many cases, leading to erroneous results. To
see this, eliminate u; from the first equation to obtain the actual state space
realization of the inverse system:

A = B’ilD’;lO’“ B’“l}’f_l (8.11)
—D, " Cy D,
and we see the Schur complement of D, appearing as state transition matrix
of the inverse system. There is no reason why this matrix should be u.e.s.
In the LTI case (where this theory is equally valid), it turns out that the
eigenvalues of A := A — BD~'C correspond to the zeros of the system, and
these may have arbitrary locations (to be precise: if a is an eigenvalue of
A, then 1/a is a zero of T'.). So this means that the elementary realization
of the inverse is only computationally valid when A is in some sense stable,

128 © Patrick Dewilde 2015



8.6. INNER MATRICES

e.g., when A is u.e.s. In such a case, T is said to be outer—in the next
paragraphs we shall meet what we shall call ‘inner’ operators, which will
play an important role in the inversion theory of the subsequent chapters.

8.6 Inner matrices

As in almost all numerical analysis, isometric and unitary matrices play an
important role, think about QR-factorization or the SVD. That is also the
case with semi-separable or LTV systems, not to talk about circuit theory,
where the notion of ‘losslessness’ plays that role. The concept of ‘inner’ has to
do with the combination of causal and isometric, co-isometric and/or unitary.
To avoid confusion later on, it is important to distinguish these cases. Here
are the definitions:

Definition 5 We call an operator left-inner, when it is causal and isometric.
Right-inner when it is causal and co-isometric. Bi-inner (or just inner) when
it is causal and unitary. Similar definitions hold for an anti-causal operator,
in which case it is called left co-inner (or left conjugate inner), right co-inner
or co-inner respectively.

Our interest will of course mostly go to such operators which are also semi-
separable, or, equivalently, which have finite state space realizations. The
following theorem summarizes the important properties relating the operator
to its possible realizations.

Theorem 2 A semi-separable left-inner operator has a minimal realization
that is isometric and u.e.s.. Dually, a semi-separable right-inner operator
has a minimal realization that is co-isometric and u.e.s.. A semi-separable
operator that is inner has a minimal realization that is unitary and u.e.s..
Conversely, a causal system that has an isometric and wu.e.s. realization s
left-inner. It will be right-inner if it is u.e.s. and has a co-isometric realiza-
tion, and bi-inner if it is u.e.s. and has a unitary realization.

Proof

The full proof of this theorem is somewhat delicate and has to be relegated
to the chapter on infinitely indexed systems. Let us suffice here to give a
number of relevant indications that make the result plausible. Actually, the
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property is easy to prove in the case of finite matrices, where the issue of
a minimal realization being u.e.s. is automatically fulfilled. So let us start
with that case, and consider the left-inner case.

So, let T'T" = I semi-separable, and let us consider a minimal realization
for T' in output normal form (that is, with all the observability operators Oy

isometric or O/ Oy = I for all k). This choice already makes the pair [ ék ]
k

isometric, since Oy = [ Ok?f A, } , and hence
0,0, =1=C[Cy + A0, 10p11 4 = CCy + AL A (8.12)

Next, consider the South-West (or left-bottom) corner of the transfer opera-
tor T" which contains Dy as its right-upper top element:

{ CrRy Dy }

8.13
Oit1AkRy, Opp1 By, (8.13)

The last column has to be isometric and orthogonal on all the previous, due
the isometry of T'. It then follows:

(2) (DCy + B;O; 10341 4,)Ry, = 0

and hence also B} Ay + D/C} = 0, making the realization fully isometric, be-
cause we assumed the realization to be minimal, and hence Ry, right invertible
(it forms a row basis.). The converse property, namely that a minimal iso-
metric realization of a finitely indexed operator makes the operator isometric
is even easier, and is left as an exercise (hint: conservation of “energy” along
the realization). All the other properties claimed are mutatis mutandis shown
in a similar way.

What now with infinitely indexed systems? The difficulty is that now
energy can disappear at infinity: so there may be local conservation of energy,
but not global. This actually happens when the state transition operator is
not u.e.s. We discuss this matter at length in the chapter on Hilbert space
theory for infinitely indexed systems (chapter ??7). QED

A consequence of the previous is that a left-inner (respect. right-inner)
operator can be embedded into an inner one, just by augmentation of the
local isometry to unitary. More precisely: suppose é g is an isometric

realization of a left-inner operator (it has to be u.e.s.!), then there exist
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A B By

Bs and Dy such that [ C D D

} is unitary, thereby creating a second

transfer operator T, with realization [ é gQ } such that T; = [ T T, ]
2

is inner. These issues will be discussed in more detail in chapter 7?7 using a
“geometric” framework.

8.7 Topics for discussion

e Suppose you add two identical causal systems. How can the direct
realization be reduced? Suppose you multiply them. Can the direct
realization still be reduced? Under what conditions would a product
of two systems be reducible?

e 7 is an inner factor, maybe the most trivial one except for unitary
diagonal matrices. It is interesting to study its matrix representation
in a number of cases.

e Finite dimensional inner factors: a lower triangular finitely indexed
matrix with scalar entries is necessarily diagonal (do you see that?).
What are the consequences for inner factors?

e A question, which one may already raise at this point is whether a
system that has a contractive input-output map (which we called ‘be-
havior’) has a contractive realization (the converse should be pretty
easy to show). We shall consider this somewhat delicate issue in a fur-
ther chapter (chapter ??, where we shall show that this is indeed the
case, and we shall derive a method to determine such a realization.).

8.8 Notes

e Although much of the material in this chapter is pretty standard, a
couple of issues deserve highlighting. First, there is the LTV ‘decom-
position by parts lemma’: this is the key technical property that makes
much of the whole theory work. It allows, in this precise setting, for
‘dichotomy’: the splitting of a mixed causal-anticausal term in a causal
and an anticausal part—an operation that is bread-and-butter for sys-
tem theory.).
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Next, on ’elementary inversion’: one should resist the temptation to
think that D non-singular is a necessary condition for system inver-
sion. The shift operator Z has the simple inverse Z’ and illustrates the
fact that a causal (bounded) operator may very well have a bounded
anticausal inverse. When a bounded, causal system has a bounded
causal inverse, then it will belong to the class of ‘outer’ systems. In the
case of finitely indexed systems, the existence of the inverse Dy (and
hence also that Dy is square) is necessary and sufficient for the system
to be outer. In the infinitely indexed case, the situation is much more
complicated.

e [t should also be apparent from the section on inner matrices, that such
matrices always have a unitary anti-causal inverse, which could rightly
be called anti-inner or inner for the shift Z’. In the more general case,
system inversion requires figuring out what the causal and anti-causal
parts of the inverse are—this will be a topic that we shall consider in
detail.
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Chapter 9

External and coprime
factorizations

This and the next chapter are devoted to classical factoriza-
tion theory in the non-classical setting of time-variant systems.
Factorizations have played a major role in the development of sys-
tem theory, and they remain important, because they not only
represent a major type of matrix operation, but also because
they are instrumental in solving many problems in control the-
ory and numerical algebra, as shall be demonstrated in many of
the subsequent chapters. We start out in this chapter with what
is traditionally called ‘coprime factorization’, that is the repre-
sentation of a causal system as the ratio of two matrix factors,
one of which (the denominator) characterizes the dynamic be-
havior of the system. We consider two important cases: one in
which the denominator is an inner operator (i.e., causal isomet-
ric or unitary), and one in which the denominator is polynomial
in the shift Z. These two characterizations have different uses,
which we discuss to some extent. The polynomial factorization
involves an operation called ‘deadbeat control’, which is perhaps
the simplest possible and hence most fundamental control action
one might imagine, and is therefore important already just from
that point of view. Since, strictly speaking, we are not only al-
lowing factorizations that are coprime, we have termed this type
of factorization ‘external’, in contrast to the factorization to be
considered in the next chapter, known as inner-outer factoriza-
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tion, which will play an equally fundamental but complementary
role in solving system theoretical problems like estimation and
tracking theory.

Menu
Hors d’oeuvre
External factorizations with inner denominators.

First course
LTV representations as ratios of matrix polynomials.

Second course
The LTI case.

Dessert
Historical notes

9.1 External factorizations with inner denom-
inators

Given a causal and semi-separable LTV system T, we already figured out that
we could determine realizations by choosing matching bases for the reach-
ability and the observability spaces. E.g., we could choose an orthonormal
basis for each reachability space (i.e., the range of H/ at each index k), deter-
mine the corresponding observability space and a realization according to the
precepts of chapter [l This produces A, B, C' and D in input normal form,
i.e. such that AA’+ BB’ = I. The orthonormal bases for the reachability
spaces are given by R := B'Z'(I — A’Z’)~!, and the causal part of TR is
given by (with II; projection on the present and future):

I; [(D+CU—-ZA)'"ZB)B'Z'I1—-A'Z") | =C(I-ZA)™" (9.1)

the response one gets with zero as present and future inputs, the latter being
the matching observability bases, given by O (notice that in this case
(I-ZA)'ZBB'Z'(I-A'Z"Y ' =(I-ZA) '+ A'Z'(I1-A'Z")"1) (9.2)
With [ A B } co-isometric, one can easily find matrices Cyy and Dy such
that A
B
v A B o
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is unitary. In the matrix case, the corresponding causal operator U = Dy +
Cy(I — ZA)"'ZB will be unitary (as shown in the previous chapter) and
hence inner. Let us now consider TU ' = TU:

TU' = (D+C( — ZA)""ZB) (D}, + B'Z'(I — A'Z')~'CY)
= (DB'+CANZ'(I — A'Z")"C! + (DD}, + CCY})
+O(I — ZA) "' Z(AC), + BDY},)
— (DB'+CANZ'(I — A'Z')"'C}, + (DD}, + CCY)

(9.4)

where the second equation is obtained through decomposition in parts and
the third by using the orthogonality of the realization for U. Hence, A’ :=
TU™! is anti-causal (A is defined causal) and

T=AU=AU)" (9.5)

Hence: we have represented the causal T as the ratio of two anti-causal
operators, the right one of which is unitary. This is what we call a right ex-
ternal factorization, often called right coprime factorization in the literature,
although the latter term requires coprime-ness between the factors, which
is not necessary for such a factorization to exist, but is often assumed. In
fact: U is an inner factor that pushes T" to anti-causality from the right, and
it is actually ‘minimal’ in doing so, meaning in this context that it has the
smallest possible state dimension at each index k to do so (to actually show
this we need some more theory, which we do in chapter ?7.).

Similarly, and starting from an output normal form, we could obtain a
left external factorization. This would produce T = VA with V' unitary
and A, anti-causal (A, causal). One starts out, dually, with a realization

. Al . .
in output normal form and [ C } isometric. Again, one may complete the

isometric basis to unitary, thereby defining V' = Dy + C(I — ZA)"'Z By,
and work out the product

V'T = (DL, +BLZ'(I-A'Z)'C")(D+C(I — ZA)'ZB)
= B{(I—-ZA'Z'(A'B+C'D)+ (D{,D + B/ B)
+(D{,.C + BL,A)(I — ZA)"'ZB
— BLZ'(I-A'Z"Y"Y(A'B+C'D)+ (DD + B|,B)

(9.6)

where the causal term disappears again because of the unitarity of V' and its
realization. To find the two canonical external forms one puts the realization
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in input, respect. output, normal form, which in each case requires the
solution of a Lyapunov-Stein equation, a forward, respect. a backward one.

Does all this have any significance? Let’s investigate a bit more. Consider
the case for U. Let II; ), be ‘projection on present and future’ at index point
k, and consider an input v such that II; ;v = 0—i.e., v, = 0 for £ > k. Next,
take as input v := U'v, then we have as output y := Tu = A’v and hence
II;ry = 0, an output signal that lives in the strict past w.r. &, just like
u = U'v since by construction, also IIy,U’v = 0. Conversely, if y = Tu is
such that both II, sy = 0 and II; yu = 0, then there is a v with II;,v = 0
such that v = Uv. In plain words: U’ characterizes the co-kernel of the
Hankel operator at each position k. Dually, V' characterizes the kernel of the
Hankel operator, through a similar reasoning, now on the dual system 7", for
which H' is the (anti-causal) Hankel operator, whose co-kernel is the kernel
of H.

9.2 Fractional polynomial representations: the
LTV case

In this section we develop an alternative to external factorization with a con-
jugate inner function in the denominator, namely a factorization theory for
a causal semi-separable transfer operator or matrix as a ratio of two mini-
mal polynomials in the shift Z (or dually Z’). Such polynomials represent
lower triangular matrix with a staircase form, i.e., matrices with zero entries
as soon as a certain (entry dependent) distance from the main diagonal is
reached, and such that the support of non-zero entries form a staircase. Such
matrices can be represented by polynomials in the shift operator, assuming
that there is a uniform bound on the allowed non-zero distance (which will
always be the case for finite matrices, but might be violated in the infinite
indexed case). We shall of course aim at minimal representations. It is a re-
markable fact that such representations do exist in the time-variant case, and
that they can easily be derived as well, providing for an alternative external
factorization theory, much in the same spirit as the celebrated polynomial
representations for the LTI case.

The key to generating polynomial representations is a simple method
called ‘dead beat control’. Let us assume that we dispose of a minimal
system realization {A, B,C, D} (now with diagonal operators), and let us
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position ourselves at some index k. Consider now the problem to generate,
from the index point k on, a set of inputs u, aiming at bringing the state
xp at k to zero in as few steps as possible. If successful, this will produce a
control law that ‘beats the state to death’ as fast as possible. Before deriving
the general law, let us make a couple of observations.

First of all, any state x; that belongs to the kernel of A; does not need
to be beaten to zero, A, already does that in the present stage k. Next,
suppose the state x; belongs to the pre-image for Ay of the range of B;ﬂ
then there will be inputs u; such that xiy1 = Arxr + Brup = 0, namely
uy := — B, Ay, where B} is any pseudo-inverse of By; hence uj, = —F}, 11y,
with Fy1 = B;" Aj. (This can be seen to be true, since by definition of pre-
image there exists a uy such that A,z = —Bjuk, and hence Apxy + Bruy =
([ — BkBlj)Ak-rk = —([ — BkB,j)Bkﬁk = O, since BkB;:Bk = Bk) We can
compute the necessary pre-image using the following, almost evident, lemmaﬂ

Lemma 2 A wvector x belongs to the pre-image of B by a matriz X iff for
some vector y, [ _xy ] belongs to the kernel of [ X B }

Let now & be a basis for the kernel of Ay, let (&y,&1) be a basis for the
pre-image by Aj of By, and consider a full RQ-factorization of the pair

_ Ql,l Q1,2
[Ax Be]=][0 R}[Qm Qm} (9.7)

then all 2, € \/ Q{; will be in \/ (&, &1). Moreover, V (£, Q1) =V (&,&)
and, for any zy € \/ (&, &), the corresponding uy = — B} Ay, for any By .
This procedure can be made recursive. Let us concentrate first on the
recursive generation of the basis for the pre-images by A;. Suppose that in
the next stage k + 1, z;.1 can be beaten to death by some w1 in just one
step, then x;,; belongs to the pre-image by Ay of the range of By, and
all such xp, form a subspace—let 1 be a basis for it (notice: \/7n contains
the kernel of Ay1). Now consider the pre-image by Ay (call it §) of the sum

!Suppose a : X — Y is a map from X to Y then a pre-image of any element y € ) for
a is an element x € X such that y = ax. In the case of linear maps, the notion extends to
spaces: if S} is a subspace of ), then its pre-image for a is the largest subspace S such
that ax € Sy for all x € S.

2Given two subspaces \/ £ and \/ 7, then the easiest way to compute their intersection
is by finding the orthogonal complement of the sum of their orthogonal complements:

VE) V) = (V(En)*.
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Figure 9.1: States that can be beaten to death in two stages.

of the spaces ‘range of B, and \/n (i.e., S = preimy, [\/(B,n)]), then for
any zy € S there shall be an input u; that maps any vector in S to \/ 7. In
stage k + 1, this vector can then be beaten to death by the procedure of the
previous paragraph! See fig for an illustration. The procedure to obtain
a basis for S extends the procedure of the previous paragraph, as follows.
We aim at obtaining an R(Q factorization of the type

[ A, B n]=[0 RREEW Q"W (9.8)

and this recursively, since we already have a partial result, eq. Starting
from eq. , rewriting [ 0 R } as [ 0, R } to keep track of the dimensions
of the kernels, and producing an RQ factorization

_ new d11 412
[R n]=[0 R }{qm fm} (9.9)

we combine the two factorizations to obtain

Q1,1 Q1,2 0
[ Ay B, n]=[01 00 R*V ]| 11Q21 @11Q22 12 (9.10)
02,1Q21 21022 G2

It follows that the new contribution to the state space A} of states that
can be beaten to death, now in two steps, is given by \/(Q3,¢{ ), while we
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already had \/(&,&1) = V(, Q1) We can now determine a new basis

component &, by the rule V(0. &1,€2) = V(E. Q1 (@4,4{1)) and reducing
to a basis at each step. The result of this step follows from applying A; to

&, is (anticipating somewhat on the notation to come)

Apxy, = ByF + nA; (9.11)
with R
F

2 =—[B. n] A (9.12)
!

for any pseudo-inverse [ By n ]+, just as in the previous step, but now
[ By n ] replacing By, and the arguments remaining the same (the pseudo-
inverse can be obtained through simple QR factorization or RLS). And the
procedure can be repeated, adding another 7, to [ Ar Br n } using the
newly obtained QMW

To get the global result, let us now define at each time point a basis
& = [ Sko Sk1 o Sk ]for the state space X}, at index k, such that 1.,
ko spans the kernel of Ay, 2., [€x 0, 1] spans the subspace that Ax maps to
the span of \/(&k+1.0, Bk), etc... or, in short: &, 1= [ o Ek1 o i ]
spans the subspace of the state at time k& that lies in the pre-image of
V[€k+1.0, Bi, - - - Ek+1,1:i-1] by Aj and hence can be brought to zero by ad-
equate inputs in at most ¢ steps.

At issue is now whether any state, at all indices k, can be beaten to death
in a finite number of steps or, in other words, whether for each k there exists
a ¢, such that & :=\/ [ ko k1 ke ] spans the whole state space
X, and this at each index point k. The answer to this question follows
from the input-controlled state evolution, and we state this as a separate
proposition. To state the proposition comfortably, let’s use the continuing
product notation: A,irc,k = Agie_1 - Ag for an integer ¢ > 1.

Proposition 2 Any state x;, at any index k of the system described by
Try1 = Agxp + Brug can be brought to zero in ¢ steps, if and only if for

each k
VA% 1Be B ] C\ Ao (9.13)

A sufficient condition for this is that the system is reachable at any index k.

3In this chapter, we adopt the following notation: a basis for a space S is a matrix &
whose columns form the basis; hence S = \/ £, where the symbol ‘\/’ stands for ‘span’.
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Proof
The proof is immediate from the global input-output relation, starting from
a state z; and using inputs uy, - -+ , Ugs.—1 for some integer ¢ > 1:

Thve = Afper®h + | Aler1Br -+ Bhrgeo1 | Ukikte—t (9.14)

and a reasoning similar as before. The sufficiency claim follows from the fact
that if the system is fully reachable then the partial reachability matrices
[ A,irc_lBk <o+ Brie } have to reach full rank for some c¢. For ¢ one
chooses the minimal value ¢, at each k (in the case of an infinite number of

indices, one might require the ‘horizon’ ¢; to be uniformly bounded). QED

Definition 6 We call a system controllable iff condition|9.15 is satisfied for
some ¢, at all k.

We see that the controllability condition is weaker than the reachability con-
dition. (This is typical for discrete time systems. In continuous time systems
driven by an ordinary differential equation, the two conditions coincide.)

Now consider the bases for the state at time points k£ and k£ + 1. As
Ay, maps & ; to the span of [By, &k+1.0,Ek+1.1, -+ 5 Ekr1,i—1), we shall have, for
some matrices A\fﬂf,i and ]/5,“ (for i = 0 we just take ﬁk’o = 0 when & is not
empty)

A& = §k+1;0:i—1121\f;k,i + Bkﬁk,i (9.15)
with

Fi +

~ = - [ By, §k+1;0:i—1 } Ak (916)

Af;k,i

Taking full bases &, &1 and stacking the vectors from ¢ = 0 to ¢, we get
globally

Ay = fk—&-lA\f;k + By, [ ﬁk;o ﬁm F\k;ci } = fk—l—lA\f;k + ByFy, (9.17)

Assuming full bases for all state spaces X; = \/ §;, for which then & and &4
are invertible, we find, with Ay, = fk—&-lAf;kg];l and Fj = Fkﬁk’l

Ay = G App& + BuFW& " = Ay + By (9.18)
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CASE
in which, in the &-basis,
[0 Apgon A;f,k;O,Z fgf,k;o,ck |
. 0 0 Af,k;l,Q e 4f,k;1,ck N
Af;k - 0 0 0 Af,k;27ck ) Fk =10 Fk:;l Fk;ck
| 0 0 0 e 0 ]
(9.19)

with both Ay, and /Alf;k, turn out to be nilpotent because they map any state
xk to zero in a finite number of steps.

The computation of the &, as well as Ay and Fj, goes, in a first pass,
by a determination of pre-images by a backward recursion: assume knowl-
edge of &.1, and with a second, now local recursion, compute a basis, in
sequence, first & for the kernel of Ay, then an additional basis {&x.0, k. }
for the pre-image by Ay, for \/{&x+1,0, Bi}, and then a further additional basis
{&k:0, &k:05 €k } for the pre-image by Ay of { By, &ki1.0,&k+1.1} ete... This can
be done in one shot by RQ-factorization executed in the right order, as we al-
ready argued before (the full algorithm, although straightforward, gets a bit
unwieldy). The second pass consists simply in the recursive determination
of a pseudo-inverse, e.g., by QR factorization (the RLS algorithm). These
two steps are unrelated to each other, as they involve different types of basis
determinations (viewed from the position k41, the first pass looks backward,
while the second pass looks forward, so that the two passes involve unrelated
data.).

Ratios of polynomials

The deadbeat construction annihilates any state xj in at most c; steps.
This means, in particular, that the diagonal block matrices ZA; and, equiv-
alently by state equivalence, ZA; are nilpotent, because, for each k and
each zy, the continuous product As e, -+ Afrr1Arrzr = 0, and hence also
Afptep - - Arr+1Asr = 0. Now consider the operator

A—BF B
P ~. { F 7 } . (9.20)
It is polynomial in Z! And its inverse
A B
-1
P~ { i } (9.21)
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is a causal system, with causal (because polynomial) inverse! Let us now

define A := TP, then

A=[D+C(I—-ZA)"ZB)[I-F(—ZA;)"'ZB] = D+C — DF(I-ZA;)"'ZB
(9.22)
(by direct expansion) and hence

A—-BF B } (9.23)

A {C—DF D

is itself an operator which is polynomial in Z, and we have obtained an ex-

ternal representation of the original operator T" as a ratio of two polynomials
in Z: T=AP™L

Bezout identities for the LTV case

Bezout identities play an important role in determining the properties of
the factors in the just derived external factorizations. In particular, they
are helpful in proving co-prime properties of the factors, by which is meant
that the factors do not have common, non-trivial divisors. These properties
are then further exploited in deriving various control laws, a topic that we

leave for later. Let T = A,P7! with P, ~, 14]’; ? }, Ay .= A— BF
Yy B
C—-DF D
A, -G
C 1

nilpotent and A, ~. [ ] and let a dual (left) factorization be

T = PNy, Py~ [
[ A, B—GD

], with Ay := A — GC nilpotent and Ay ~,

C D
the rows instead of the columns, or, equivalently, on the transpose without
time reversal). Now consider the joint polynomial matrix

] (such a factorization is similarly obtained by working on

A | B
—A f
[ p }Nc —(C_—FDF) _]D (9.24)

and let this matrix be completed so that its inverse is polynomial as well.
This defines two new polynomial matrices M and N by

A; |-G B
Hg _PA] i~. | =(C—DF)| I —-D (9.25)
—F 0o I
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The state transition matrix of the inverse of this operator is now

P e B]{J DH—(C—DF)

- = }:Am (9.26)

hence also nilpotent, and we find as realization for the inverse

A, |-G B-GD
C |1 D NC{PE Af}. (9.27)

F 10 I RS

The LTV Bezout relations follow:
P Ay M A |1
S e 025
or, in detailed form:

{P@M—I—AZN =1 (9.29)

~RA+SP = 1

From these it follows that P, and A, are left-coprime in the sense that any
common left polynomial factor in Z has to be uni-modular, i.e., has to have
a polynomial inverse as well, and dually for P and A, which have to be right-
coprime. To put it differently: there cannot be a meaningful cancellation
in the factorization Pg_lAg nor in AP~!, reflecting the minimality of the
factorizations.

9.3 Polynomial representations for LTI sys-
tems™

LTI systems are not fundamentally different from the matrix case, some sim-
plifications and some complications occur as usual. In a nutshell: the Hankel
operators at each index point are equal, but they have infinite indices, so that
orthonormal base vectors have infinite indices as well, but finite dimension if
the system has a finite-dimensional state space. Nonetheless, we know that
we can obtain an {A, B,C, D} realization from a restricted version, after
which the realization can be converted to input normal form (respect. out-
put normal form) by solving P = BB’ + APA’ for the reachability gramian
P (respect. Q = C'C' + A’QA for the observability gramian)—preferably
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in square root form, see chapter [7| on how to do that. These fixed point
Lyapunov-Stein equations are solvable under broad conditions, but in order
to obtain converging bases for the reachability and controllability spaces, we
have to ask A to be strictly stable. Here, A is just a constant matrix and
the notion of strict stability (i.e., all eigenvalues of A are strictly inside the
unit disc of the complex plane) and uniform exponential stability (u.e..s.)
coincide.

Therefore, the question arrises: what can be done when the stability con-
dition is not satisfied? In that case one cannot reasonably speak of a decent
Hankel operator without making further assumptions. Previously, our strat-
egy was to restrict the Hankel operator to finitely indexed submatrices, but
that is what one could call an ‘ad hoc’ solution. It may be that the fixed point
Lyapunov-Stein equation is still solvable, so that either an operator P or ()
is well defined, although not obtainable through a series development, and,
moreover, they may (or will) not be positive definite anymore. For a scalar
example: let B =1 and A = 2, then we would have P = 1 + 4P and hence
P = —1/3—there is no positive definite solution. From the theory of solving
fixed point Lyapunov-Stein equations (see the Mathematical Introduction)
we know that the Lyapunov-Stein system of equations will be non-singular
iff the eigenvalues \; satisfy the condition 1 — \;\z#0 for all relevant ¢ and
k. If they do not, there is likely no solution—as can already be seen by the
simple example A =1 and B = 1.

Hence, a different approach is called for to handle unstable systems, gen-
erally defined as systems for which the input-output (behavioral), or equiv-
alently, Hankel map is unbounded. We already know how to derive real-
izations for such systems, but we now want to develop a ‘system theory’
for them that, like in the stable u.e.s. case, characterizes reachability and
observability spaces. It turns out that this can be elegantly done with poly-
nomial representations. In the remainder of this section we give a complete
account of the LTI-theory, using the same method as for the LTV case. The
approach we present is therefore different from the classical approach based
on module theory, because the latter does not extend to LTV systems (they
do not generate modules in a straightforward way). The ‘dead beat con-
trol” method has the advantage to produce the desired forms directly, using
numerical algebra, rather than indirectly, using algebraic properties of rings
and modules. The use of polynomial representations is ‘natural’ in the un-
stable context, because it only handles one-sided series or operators (series or
operators whose support does not extend to —o0), so that they can multiply
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each other meaningfully.

Let us then consider causal discrete-time LTI systems, and assume that
they have a well-defined response for every input with a finite time support.
Let the input dimension (which is now constant over all time) be m, output
dimension n, and let e; be the i*" natural vector in R™, i.e., eir = 0, for
k=1---m. Then T} := Te; will be the i*" impulse response, which, because
of causality, will only be non-zero from index & = 0 on. Writing this as
Ti(2) == Y 7 2*Ti1 and stacking inputs and outputs we obtain the n x m
transfer function T'(z) := [ Ti(z) --- Twn(z) |. All this is well defined,
whether or not the system is stable—in case of an unstable system, the
magnitude of the T;; will keep on increasing with k, often exponentially.
With some abuse of notation we can also write T(z) = Y ;= 2T}, the T},
now being constant n X m matrices (in each context it should be clear whether
Ti(z) or T; is meant.).

The easiest way to construct an external factorization for this type of LTI
transfer functions, assuming they possess a finite dimensional state space, is
to use ‘dead-beat control’, based on a preliminary realization: we already
know how to obtain a minimal {A, B, C, D} realization from a finite version
of a sufficiently large partial Hankel matrix

T, T, - T,
T T oo

Hy := Han(Ty, Ty, - -+ , Top1) := .2 3 . k~+1 (9.30)
Ty Teyr -+ Top

so let us assume that we have this realization available. We may then define
(I—2A)"' :=T+2A+22A%+- - and we shall have T'(z) = D+C(I—2A)"'2B
as a one-sided formal series in z, in which A* may grow exponentially, de-
pending on the location of the eigenvalued!] of A.

From a given and reachable pair {A, B}, the dead-beat analysis detailed
in the next subsection produces a matrix F' such that A — BF is nilpotent
(i.e., such that there is an integer k for which (A— BF)* = 0) and hence P ~,

{ A:JfF ? 1 is polynomial. Hence P(z) = I — F(I — z(A — BF))™'2B

4One-sided series, for example series in z* with k > K for some K can be multiplied
with each other, even when their coefficients become unbounded when k — oo, because
the multiplication of two such series only involve finite computations of the convolution

type.

© Patrick Dewilde 2015 145



CHAPTER 9. EXTERNAL AND COPRIME FACTORIZATIONS

(as a matrix polynomial in z) and we may compute, as formal series:

A(z) == T(2)P(z)=[D+C(I —2A)"'2B|[I — F(I — 2(A— BF))"'2B]
= D+ (C—DF)(I—-=z2(A—BF))":B

(9.31)
so that also A(z) is polynomial and, again formally in one-sided series calcu-
lus, T'(2) = A(2)P7!(z). One can check directly that P(z)~! ~, ? ? =

I+2FB+2?FAB+---:= Q(z) formally, since P(2)Q(z) = Q(2)P(z) =1, a
product of a finite series in z with a formal series in z, for which the computa-
tion of individual terms is finite and hence well defined. The same is also true
for the formal product A(2)Q(z) = A(z)P(z)~!. Hence we have a consistent
z-series algebraic theory (a so-called module) and T'(z) has a fractional rep-
resentation as A(z)P(z)~!, which we would call a right factorization, to be
denoted henceforth as A, (z)P.(2)~!. Likewise, one may define a left factor-
ization T'(z) = Py(2) ' Ay(2). This factorization can also be expressed as an
“external” product, e.g., T'(z) = (27"A.(2))(27*P,(z))~!, where & is chosen
as the largest of the orders (largest exponent in z) occurring in either P,.(z)
or A,(z). Note that the realizations given for the P’s and the A’s do not have
to be minimal. E.g., if T'(2) is already polynomial, the P’s would disappear,
and likewise if T'(z) happens to be the formal inverse of a polynomial.

Dead-beat control

An adaptation of the method developed for the LTV case in the previous
section gives also the L'TT solution. The procedure reduces to finding the &’s,
Ay and F recursively, where now &, = {;11. The strategy goes as follows:
1., & is simply a basis for the kernel of A: any vector in \/ &, is killed in
one step by A itself, and the corresponding Fy = 0, while Afy = 0. 2., & is
a basis for a space of state vectors that can be brought to zero in one step
using an input u such that, for x € \/ &, Az + Bu = 0; we get the control
law v = —Fyx with F; = BTA. 2., in the next step, the same procedure is
followed to produce a next extension & to the state space basis one has been
constructing, namely such that for x € \/ & @ Az + Fou + §p1Afe = 0. The
general step then extends &g, to & and produces F; and Ay,; as before. We
leave the details to the reader—see also ref. [12]!

When A is invertible, an alternative description is as follows: using A1

we have \/& = 0, V{&, &} = V{&, 47! [ o B }}, V [ o & & ]

146 © Patrick Dewilde 2015



9.3. POLYNOMIAL REPRESENTATIONS FOR LTI SYSTEMS*

VA{&. &, A7 [ & B |} ete... To compute this, one has to recursively com-
pute the increasing basis (actually orthonormality is not needed, but perhaps
advisable for numerical reasons). Warning: the procedure may not work
with A", because AAT(Bu + £y;_1¢) is not guaranteed to be a member of
V(B,&.;—1). However, when {A, B} is reachable we can indeed extend the
procedure to AT. For this we need a couple of properties:

Lemma 3 Suppose {A, B} is reachable, then the kernel KK[A B] = 0.

Proof

For the reachability operator we have \/ R = \/[ AR B | spanning the
whole state space. Hence also [A B] spans the whole state space, making the
kernel zero. QED

Let us now consider the equation Ax + Bu 4+ £a = 0 needed to bring
vectors in the state space to \/ £ using a control by B. Using the lemma on
[A; €] with A; = [A B] we find that any solution will be of the form

[ A B}{ﬂ%a:o (9.32)
with
[ﬂ ——[A B ¢ (9.33)

Using reachability and the Moore-Penrose pseudo-inverse for convenience, we
get

{ } } - { éi } (AA’+ BB') ¢a. (9.34)

It follows that the basis £ can now be further extended with additional base
vectors generating \/ A’(AA’ + BB’)71¢. The advantage of this procedure
is that only the recursive computation of these subsequent base extensions
is needed. Further elaboration of this procedure is left to the reader as a
research project!
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Example
1 0 0 1
Let A= |0 —1 0| and B = | 1 |. We see immediately that & =
0 0 O 1
[0
0 The second step requires the pre-image under A of [ & B } =
1
[0 1 7
0 1 |, which is immediately seen to yield & = —\% by direct evalu-
11 0
ation (find z, u and « such that Az + Bu+ §ya = 0). Hence A& = a1 +
1
C ?ﬁ 0 1 ! 1 1
B(F&), giving 5| =10 (—75)%— 1 (75), and hence a1 = — 5
0 1 1
1
V2
and F& = \/Li The final step produces easily & = \/LE , ago = 0,
0
0 0 1
aos = 1 and F& = 0. Hence F = FE€' = [0 L 0] % -5 0
1 1
VRV
1 1
5 3
[% —% 0 },andonecancheckthat the resulting A—BF = —% —% 0
1 1
—5 5 0
2 2
is nilpotent of order 2. Applying the £’--- ¢ state transformation, we find
0 00 1
in this case A = 001,§: 0 ,ﬁ:[() —\/§O}and
010 V2
0 —\/% 0
a=A—-—BF = |0 0 1|, which is visibly nilpotent. The example
0O 0 0

shows that it is not easy to assess the form of Ay and BF a priori, both can
be full matrices in general.
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Bezout identities

In many classical treatments of LTT system theory and control, Bezout iden-
tities play an important role. Typically they are derived using a FEuclidean
algorithm that determines greatest common divisors, here we derive them just
from the previous treatment (and the system theory we have developed so
far). Using dead beat control, we have obtained the factorization T'= AP~!,

i Af B ._ . Af B
WlthPNc{_F [],Af.—A—BlepotentandANC - DF D}
Of course, a dual (left) factorization is equally possible, in which T' = P, 1Ay,

Ay -G - o [ A, B—GD
Py~ [ C T } , Ay := A— GC is nilpotent and Ay ~, c D }

(such a factorization is obtained in the same way as before, but now working
on the rows instead of the columns, or, equivalently, on the dual: 7" = AP’
as functions of z’; the time reversal being impliced in the prime). How are
these two factorizations related to each other? One very direct but somewhat
artificial approach goes as follows. Consider the joint polynomial matrix

A | B
AR ] = -
{ P(2) } c (C_FDF) ]D (9.35)

(the minus sign on A is for later convenience, sorry for the anticipation!),
and let us try to complete this matrix so that its inverse is polynomial as
well. So let us define two new polynomial matrices M and N by putting

A |-G B
M(z) =A@R) ] = =
{ N(G:) P2 ] c ((J_FDF) é ID (9.36)

The state transition matrix of the inverse is now

o sI[1 2[5

hence also nilpotent, and we find as realization for the inverse

A,| -G B-GD

c R SR] e
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The famous Bezout relations follow:

59 S91058 A1) e

or, in detailed form:

{P@(z)M(z)+Ag(z)N(z) = I

—R(2)A(z) + S(2)P(z) = I (9.40)

From these it follows that Py(z) and A,(z) are left-coprime in the sense that
any common left polynomial factor has to be uni-modular, i.e., has to have
a polynomial inverse as well, and dually for P(z) and A(z), which have
to be right-coprime. To put it differently: there cannot be a meaningful
cancellation in the factorization P(2)'A,(z) nor in A(z)P(z)7!, reflecting
the minimality of the factorizations.

9.4 Discussion items

e Elementary examples: external factorizations are somewhat peculiar
in our setup, in particular with semi-infinite or infinite indices, which
are worth considering in an exploratory way. Look at related examples
to see the peculiarities. For example, try the left and right external
factorizations of the following causal matrices:

_
1/2 1 121

1/2 1 ’ 1/2 1 ’
I 1/2 1 o 9.41)
_ .
2 1 2 1

2 1 ’ 2 1
I 11

where the second and last matrix are half infinite.

e Nerode equivalences with polynomials: consider the external factori-
zation with polynomial matrices. How can such factorizations be in-
terpreted in terms of ‘Hankel type’ maps, i.e., maps for strict past to
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future or strict future to past? What would be appropriate spaces to
apply such maps on?

e An interesting issue is how to control the state optimally. The dead
beat control is a minimum time control, but it seems to have major
drawbacks as a control strategy. Which would those be? Much ‘trajec-
tory control’ (e.g., the Appolo mission, or having an airplane keep to
its planned trajectory) uses a ‘differential model’ i.e., a model where
the state is actually the deviation from the nominal trajectory in the
global state space. ‘Keeping to the trajectory’ is then trying to keep
the deviation small. Often this has to be done with a limited energy
budget. How can this be done? Let us discuss this point a bit further,
anticipating somewhat on the chapter on optimal control.

To begin: we should be sanguine about our model, in particular how
it deals with ‘energy’, since the various components of both the input
and the state may have different physical dimensions (for example: the

state may be of the form x = [ Z with 7 a position and v a velocity).

It pays to normalize variables so that we, as engineers, know where
we stand energy-wise (in the example, we may want to characterize
the kinetic energy of the system as ||v]|?, where v is then a normalized
velocity v := \/?UT with v, the actual velocity). The same thing may
happen with the inputs. We might assume that each input requires
some energy, normalized as ||ul|? (using the Euclidean norm). With
the state the situation may be more delicate: there we may have to
use a ‘semi-norm’ to characterize the energy properties of the desired
trajectory. For example: one may want to restrict |[v||* only. Or else
(maybe more to the point), the minimal input energy needed to bring
x to zero (typically x would be a deviation from a nominal trajectory
rather than the absolute position). In that case the state variable x
and the operators {A, B} would be chosen in such a way that |z
represents that minimal input energy. Such issues may force a more
delicate analysis than what we discuss in the next paragraph.

So, let us assume that the goal of the control is to reduce ||z||* using an
input on which there is an energy limit at each step: ||uy||* < L for each
k—henceforth we just put u := uy for the control at a specific step k.
Let us also assume 1., that B has full column range (otherwise one can
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reduce the input space) and 2., that we have already established that
the one-step unconstrained minimal norm optimal control u = — BT Ax,
with BT the Moore-Penrose inverse of B, is too large with [jul|? > L.
What is then the one step minimal norm optimal control with |ul|? =
L? Tt would be given by solving a constrained optimization problem
on the control u with Lagrangian

L= (x'A"+u'B")(Azx + Bu) + ANu'u — L) (9.42)

and A as Lagrange multiplier on the constraint (see the mathematical
notes on optimization with Lagrangians).

Requiring V£ = 2B’Ax 4+ 2B'Bu + 2 \u = 0 at the optimal point, we
find
Uops = —(A+ B'B) ' B’ Az (9.43)

and the control law is now given by —Fx with F = (A + B'B)"'B’A
instead of B'A = (B'B)"'B’A. ) parametrizes the norm reduction,
and it obviously reduces the input norm which has to be

|ul|? = 2'A'B(\ + B'B)"*B' Az = L. (9.44)

At this point, one can start playing all sorts of control games. We
see that the last expression is dependent on r—e.g., when Ax = 0 no

control is needed, which we know already from the deadbeat control,
and if | BT Az||*> < L then u = —BTAx would do as well.

However, often one wishes a control that works for all states within
a certain range, say ||z|| < M (using Euclidean norms throughout).

This one obtains by requiring ||(A + B’B)"'B'A|| < /£, taking the
smallest possible A that satisfies this equation (the bigger A, the smaller
the norm. If B is just a vector and 8 = B’B we could take A =

\/ LB’ Al — 8 when positive.). How good is the solution then? One

extra criterion that is often used, is to require stability of the system
under the feedback law, so whatever F' is chosen, one would require
A— BF to have all its eigenvalues inside the unit disc. This requirement
is automatically satisfied for the deadbeat control (where all eigenvalues
are zero), but needs extra attention in the more general case (it may
even be that there is no solution, of course). Let’s explore this issue
further for the LTI case.
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e Companion form: in classical or traditional control methods for sin-
gle input—single output systems, the companion form for A and B in
‘controller canonical form’ corresponding to a transfer function

Cs_12 0 ez + g

T(z)=d 9.45
(=) T Fa 5270t 4 a7t + ag (9:45)
is given by
[ 0O 1 0 0 i
0 0
T(2) ~e B (9.46)
0 1 0
_a/O _al DY ... _a5—1 1
| CO Cl DY DY C(S—l d ]

It is pretty straightforward (and a good exercise) to do a deadbeat-
control analysis on this form! The form is very popular with con-
trol engineers, because it allows easy pole placement. Using F =
col[Fy, Fy,- -+ , F5_1] we find

[ 0 1 0o --- 0 i

Ay =A—-BF = . :
0 1
| —ao—Fy —a1—F1 -0 e | —asoy — Fsoq
(9.47)
For example: putting all F; = —a; produces dead-beat control, and
an arbitrary denominator for the controlled system is achieved by set-
ting F; = —a; + p; for a desired characteristic polynomial x,(A\) =
N+ ps At + -+ 4 py of Ay, The approach can be generalized to
LTT multiport systems thanks to the Heymann-Hautus lemma-—see the
literature on this matter [I§]. Needless to say, working on the charac-
teristic polynomial has its numerical problems (ill-conditioning of the
roots), and is only suitable for low-dimensional problems. We postpone
further discussions on ‘optimal control” to chapter [12]
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9.5 Notes

What we call ‘external factorization’ is usually called ‘coprime factorization’
in the literature. The reason to introduce a new term is that an external
factorization as we conceive it does not have to be coprime in the usual al-
gebraic sense—‘coprime’ means: the factors have no common divisor (in the
matrix case one must distinguish between right and left divisors.). Coprime
factorizations, and in extension, external factorizations have played an im-
portant role in the development of dynamical system theory, in the wake of
the seminal book of Kalman, Falb and Arbib [26]. It was recognized early
on that in the LTI case, rational matrix functions and in particular, polyno-
mial matrices in a single variable z provide the algebraic framework needed to
characterize important objects related to system theory, such as kernels, state
characterization, state equivalence, canonical forms for the state transition
operator etc... This realization provided a valuable link with the pre-state
space approach, which was entirely based on rational matrix functions, and
in particular the characterization of their dynamic properties through Smith-
Macmillan forms and other algebraic devices based on algebraic structures
called ‘rings’, ‘principal ideal domains’ and modules (as a multiport general-
ization of polynomial or rational algebras). All these lead to many results in
electrical engineering, in particular in control theory and network theory.
Unfortunately, even though module theory produced many nice and im-
portant results, it does not provide the correct framework for time variant
or non-linear systems (for which, as we shall see in further chapters, time
variant theory plays an important role.). This is mainly due to the fact that
the general shift operator Z does not commute with ‘instantaneous’ opera-
tors, which in our case are the diagonal operators A, B,C' and D. Hence:
no module, but, as already mentioned, an Arveson ‘nest algebra’. Remark-
able now is that most algebraic properties needed still work in that setting,
at the ’cost’ of using more elementary methods than are common in ring
and module theory. The biggest casualty of the reduced algebraic structure
is eigenvalue theory, but most properties and techniques needed for system
analysis remain: coprime factorization, inner-outer factorization (the topic
of next chapter), reachability, controllability and then more elaborate topics
such as embedding, interpolation and model reduction. The reason why most
properties needed still work is to be found in their ‘geometric foundation’,
that can be properly explored by just using simple matrix calculus. This is
the approach we have been taking and, we hope, already pretty convincingly
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at this point.

All this works fine, but a new question appears: whether some of the key
results of the polynomial theory can be reproduced, without resort to divisi-
bility methods (the Euclidean algorithm) that lie at the basis of the classical
canonical form theory. It turns out that the notion ‘dead beat control’ as
proposed by P. Van Dooren brings exactly what is needed [12]. We shall
see, in the chapter on polynomial models, that it easily generalizes to LTV
systems. So we shall dispose of two quite different types of external factor-
ization: the ‘inner’ type, that uses inner denominators, and the polynomial
type, that uses matrix polynomials in the shift. The two types lead to similar
results under certain regularity conditions, but their domains of applicability
can be very different, as will appear in the following chapters.
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Chapter 10

Inner-outer factorization

Inner-outer factorization is probably the most fundamental
and most important operation in system theory. It certainly
solves major problems in almost all areas of interest: system in-
version, estimation theory, control. On the face of it, it seems not
much more than the application of something like QR~factorization
or SVD on a system description, aiming at determining impor-
tant system subspaces, which then play a central role in solving
the issues just mentioned. Its power is due to the fact that it
leads to a linear recursion and stable numerical operations. In
this chapter we simply concentrate on the algorithm itself, leav-
ing its use in major problems and applications to later chapters.
We start with working out a sample case, which will turn out
to be of direct use in the applications treated in the subsequent
chapters, then move on to the underlying theory and end up with
‘geometric’ considerations that will improve our general insights.

Menu
Hors d’oeuvre
QR-factorization

First course
A prototype Outer-Inner factorization

Second course
Semi-separable Outer-Inner factorization

Dessert
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Infinitely indexed systems

10.1 Introduction: echelon forms

Let us start out with a simple algebraic exercise: rotating a unitary (column)

(75} 2 _ 1
U2

and with non-negative real first element u; to the positive first axis, which we

call e; generically (ignoring its dimension)—e; is then a vector of dimension

n+1. The following orthogonal (or unitary in the complex case) matrix pulls

the trick:

of dimension 1+ n, with [Jul|? = |ui]* + >, |uas

vector u =

/
(75} —Usg
= 10.1
Q= [ (10.1
and we shall have v = Q,e; and Qu = ey, which is easily verified directly.
The matrix @), has det (), = 1—it is a generalized rotation matrix. One can
actually show that it can be produced by a sequence of elementary rotations
(often called ‘Givens rotations’), but a direct application of such a matrix to
I

- with x; scalar—produces the following
2

an arbitrary vector—say xr = [

‘efficient” computation:

UL T, — UGTo
T + ug(x) — 1+u1)
in which the inner product ujz, should be executed only once.
A more general non-zero vector a = [ Zl of dimension 1 + n can of
2

course also be rotated to the direction of the first unit vector e;. It turns
out to be useful to do that a bit carefully in the general complex case. Let
|la|]| be the euclidean norm of the vector and a; = |a;|e’® (with j = /—1),
then v = aﬁ will be like u before, and the effect of ), on a will be

Qua = eq||al|e?® (it is useful to retain the norm of a and the phase of the first
element for further use.). Let, for a general non-zero vector a, @), be defined
consistently as @), := @ .—jo.

@ all
Suppose next that one disposes of a collection of vectors A = [ a; - Gy ]
of dimension 1+n (say columns of a matrix), and suppose that we are entitled
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to apply rotations to them (i.e., to the left). Suppose a; is the non-zero vec-
tor with the smallest & and that its first element is ax; = |ay1|e/?*. Applying
(a4, to the stack now produces the following typical form:

c/zk[al crc Ak—1 Ak Qky1 v am]
=[0 - 0 ellae™ Qpap - Qlan ]

O PPN O HakHe](bl * e * (103)
10 - 0 0 bryr -0 b

WUy

where the “«” indicate entries that have been modified (and will remain
unchanged later one), and the [ bier - bm } is a new collection of vectors,
now of dimension n, and on which the procedure can be repeated without
producing new fill-ins in the zero elements obtained so far, now with one
dimension less (some of the zeros shown above may disappear, e.g., when a;
is already non-zero.). Continuing this way, now on the b’s and realizing that
products of rotation matrices remain orthogonal or unitary, after a number
of steps one obtains a so called echelon form:

R
A=]Q1 Q] { 01] (10.4)
in which
o --- 0 RLk’l * * * *
Rl - . 5 (105)
o --- 0 0 ..o 0 0 o 0 R&,kg

0 is the rank of A, () is orthogonal or unitary. One sees easily that the
columns of ()7 form a basis for the range of A, while the columns of R{ form
a basis for the co-range (i.e., the range of A’), and the columns of @), for the
co-kernel.

A similar, even more powerful result could have been obtained by SVD
(Singular Value Decomposition) of A:

> 0 VY v/
A=[U UQ][OOHV;,]:[(A UQ}[ 01} (10.6)
01
at the cost of more computations. Here X = . are the singular
0s
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values of A in order: o1 > 09 > --- > 05 > 0, the columns of U; form a basis
for the range of A while the columns of V; and V;X for the co-range.

The example in the next section (and many in subsequent chapters) actu-
ally uses a variant of the QR-algorithm just presented, namely an algorithm
that starts at the bottom right corner and produces an RQ factorization,
with R again an echelon matrix and ) an orthogonal or unitary matrix. The
procedure now starts out with a collection of rows rather than columns, it is
dual to the preceding:

A=10 Rz]{Ql] (10.7)

Ry is obtained by compressing towards the last column starting with the
bottom row (skipping it when zero), it will look like

R(;,ké *
0
0 RQJCQ *
0 0 * (10.8)
0 0 R
0 0 0
0 0 0 |

these columns now forming a base for the range of A. Also in this case, a
more accurate result can be obtained through SVD, when needed.
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FACTORIZATION

10.2 A prototype example of Outer-Inner fac-
torization

Let us work simply on a 4 x 4 block-lower triangular (i.e., causal) matrix
whose realization is given. Hence, let

C1 By Dy
CQAlBO CQBl D2
CgAQAlBO CgAzBl CgBQ D3

(10.9)

be our prototype system, with the use of the realization given explicitly. Our

Vi = Ty Vi such that V'
Vs

is causal unitary, T, is left invertible and V; co-isometric, with right inverse
VY, and, for doing so, to work solely on the realizations. We shall discover
that realizations for T, and V' are just as simple as the realization for T', and
can easily be derived from it via a linear forward recursion.

The procedure works column by column starting with the first (actually
it works on the main block diagonals downwards, but that will soon be ap-
parent.). All blocks of the first column except the first share By, let us see

goal will be to find a factorization T' = [ T, 0 }

what an RQ-factorization of [ go } achieves. Let
0

Qi1 Q2
By | |0 Yy By ' ’
miofon al (e gl

Q3,1 QS,Q

in which Y; and D,; are left invertible, () is unitary and all quantities of
the right hand side are computed from the given left hand side quantities by
the RQ algorithm (this is commonly called ‘array processing’. In the next
section we shall see what the blocks in @) actually mean.).

Applying Q' to the first block column (i.e., to the right) of 7' now produces
(you can just as well exchange the order of By and Dj)

0 0 D,

0 g C1Boo

0 C2A1Y1 CgAlBOQ
0 C34,A1Y7 C34,A1By

(10.11)
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The columns of the last (third) sub-column form a basis, because D, is left
invertible. Let us permute the second and third columns (the latter will
become part of the final left factor) leaving the zero columns to the left. The
remainder, combined with the rest of the matrix that has been left untouched
is now

C1Y; D, | 0 o0
CoA1Y;  CoBy | Dy (10.12)
C3A2A1Y1 0314231 C3By; Ds

(actually, diag|@7,I,--- ,I] is the orthogonal transformation applied to the
full matrix.) One leaves the first block row intact and moves to the second
block row, noticing that the dimensions of the diagonal element (and hence
of the second block column) have changed. The next step is now to reduce
the new first diagonal element [ CciYr D }, taking into account that the
effect has to be propagated down the combined column (this is the “generic”
step!). Compute therefore a new RQ factorization, with a new ) structured

as before
A1YV1 B1 . 0 3/2 Bol Q
C\Yr Dy 100 Doy
Application of this @’ to the right of the new first column (it has to be

verified that this will not change any of the other elements that have already
been set aside: there are no “fill ins”) produces the new second sub-column

(10.13)

0 0 D,
0 Y5 CyB,; (10.14)
0 C34Y) C3A:By

and, again, the columns of the third sub-column form a basis. Again, we
permute relevant columns and move the zero column to the far left. Let’s
check the overall result, after application of the two subsequent @Q':

0 0 Do 0 0 0 0
0 0 C1 By D, 0 0 0
0 0| CbAiBy CoBy | GYa Dy 0 (10.15)
0 0| C342A1By C3A3B,1 | C3AyYs C3By; Ds

The next operation takes place on block sub-columns 3 and 4, with again a
new QQ, similarly as the previous:

A)Ys By
CoYs Dy

(10.16)

0}/3B02
0 0 Dy
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and produces

0 0 0 Do 0 0 0 0
000 C1 By D,y 0 0 0
00 0| CbABy CoBy Dp | 0 0 (10.17)
0 0 0]C342A1B, C349B8, 3By | C3Ys Dy

The final step is simpler, with a last () for which [ C3Ys Dg } = [ 0 Dy }
with D,3 left invertible, giving finally

00 D 0 0 0
00 C1 By D, 0 0
0 0| CyA;By CyB D, 0
0 0] C345A1By C3A3Bs1 C3Bs Dy

(10.18)

o O OO
o O OO

The operations so far have produced a global RQ-factorization T' = [ 0 T, } Q
in which T, is left invertible and @) is orthogonal or unitary. In addition,
T, has partly inherited the state space structure of T, we have obtained
T, = D,+ C(I — ZA)'ZB,. As already explained in chapter [§] a left in-
verse for T, will have the same state structure as T, itself, and because all the
D, are by themselves left invertible, a realization for a left inverse is simply
Tfr = Df —CDf(I — ZA)"'ZD/B,, in which A = A — B,D}C. Notice
that the realizations of T, and T, are not necessarily minimal, it may even
be that T, is purely block diagonal.

What about the overall ()7 Backtracking, we see that each () just operates
on the first block-column of the subsequent matrices, which corresponds to
subsequent block columns of the original. However, part of the result is
propagated further on, but in a limited way: just to the next block column.
This is a strong indication that also the ) matrix has a limited state space
structure. It is very well possible to track the structure of () down in detail
from the previous, but there is an attractive short cut, using our diagonal
algebra, presented in the next section.

10.3 The general matrix case

Let us try to factor the original causal T = D + C(I — ZA)"'ZB into
T = [ 0 7, ] V' in which T, is left invertible and V' is causal unitary, with
unitary realization V = Dy + Cy (I — ZAy) ' ZBy (we have put the zero’s
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out front for further consistency.). Let also T, = D, + C,(I — ZA,)"'ZB,
a proposed realization for 7,, and let us see how we can determine all these
realization components so that the factorization equation is satisfied. As V
is going to be unitary, we can invert it and write TV’ = [ 0 17, }, or, using
realizations

D+ C(I—ZA)'ZB)[D}, + BLZ'(I — AL Z")"1CY)]

—[0 D, |+[0 C | (I-2A,)"ZB, (10.19)

Let us first look at the “quadratic term” (I — ZA)"'ZBB{,Z'(I — A, Z")".
It is easy to see (and we did this ‘decomposition in parts’ already before)
that it is equal to (I — ZA) ' ZAY +Y + YA Z'(I — A,Z’)"! with

Y<"'> = BB/, + AY A{,, (10.20)

by pre- and post multiplication with respect. (I — ZA) and (I — A, Z").
Hence, the first member becomes

(DD{, + CYC{)+C(I — ZA)"'Z(BD{, + AY CY{,) 1091
H(DBL + CY AL Z'(I - ALZ')1C (10.21)
and this should now be equal to the second member of eq. . First,
we can get the anti-causal part of the product zero by requiring DBy, +
CYA], = 0. Next, we can choose A, = A and C, = C. Finally, further
unknown quantities such as D, and C, can be identified from [ 0 D, } =
DD|, + CYC{, and [ 0 B, | = DBy, + CY AJ,. Putting all the equations
together we find

[AY BHAfV

oy pl|| Bl (10.22)

C‘l/ Y<—1>
Dy, } N l 0

0 B,
0 D, |’

This already resembles very much our previous example, except for some or-
dering of the columns (as one would expect since we juggled around with the
order in the example.). To see this, one should realize that if one specializes
the equation to a specific index k, one actually gets

|:AkYk; Bk} {A{/k C‘l/klz[YkH 0 Bok}

CvYr Dy Bl | Dy 0 |0 Do (10.23)

which shows that once Y} (and of course the realization for 7" at index k) are
known, an RQ factorization will produce the local realizations for V' and T,
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as well as the new value Yj;1. One extra observation (which we shall soon
confirm), is that in the example we can choose Y <7 such that it is also
left invertible. Although such a choice is strictly speaking not necessary, it is
useful because it clearly puts the co-kernel in evidence, as we shall see. So, let
us require Y<71> to be left invertible (i.e., has smallest column dimension),

/ /
and split Cy, and D, accordingly, actually rewriting them as { g?/v g“i ]

for some new, to be defined W. This produces:

AY B A 1C, L1 _[Y<*>|0 B, (10.24)

cYy D B/ | Dy, D{ | 0 0 D, |’ '
and then moving the zero block column in front, we finally get

AY B Civ| A, ¢, ] [o|ly<> B, (10.25)

cYy D Dy, B, D, | |0 0 D, |’ '

in which both Y<7!> (hence also Y') and D, are left invertible. With T, =
Do+ C(I — AZ)"ZB,, V = Dy + Cy(I — ZAy) ' ZBy and W = Dy +

Cw(I — ZAy)™'Z By, the final result is T = [ 0 T, } ?// =T,V, with

T, left causally invertible, V' co-isometric and the co-kernel of T' consisting
of all output vectors in the range of W'.

10.4 Infinitely indexed systems

What happens with the inner-outer or outer-inner factorization of a causal
operator T = D + C(I — ZA)~'ZB when the indices run from —oo to +o00?
First of all, as the operators are now all infinite dimensional, we need to
put some boundedness assumptions on 7" and the diagonal operators A, B,
C and D. Let us just assume that 7" is indeed bounded as a map from an
input /5" space to an output ¢§ space (see chapter ?? for further explanations
on the notation: ¢y’ just means ‘quadratically summable’ and ‘m’ (respect.
‘n’) is the sequence of input (respect. output) indices), together with the
assumption that 7' is causal and semi-separable. Next, we can, e.g., choose
a realization for 7" in input normal form, by choosing an orthonormal basis
for the co-range of each (by definition finite dimensional) Hy. This leads
to an A and a B that are contractive (and hence bounded), but it is very
well conceivable that A so obtained is not u.e.s.. Let us therefore put the
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extra requirement that the resulting A is indeed u.e.s. so that the expression
for the realization makes sense (the inverse (I — ZA)™! exists as a bounded
operator.). If then also the C' operator (and of course also D—but this
would be automatic) is bounded, we would have a realization in which all
four realization operators are bounded and A is, moreover, u.e.s.. Conversely,
suppose a realization exists with bounded A, B, C' and D and, in addition, A
u.e.s., then each state transformation with bounded operator x = Tz would
also yield such a realization, in particular: both the input and output normal
forms would be such as well. Therefore the following definition:

Definition 7 A causal system T is called reqular, if it is semi-separable and
has a realization T = D + C(I — ZA)™'ZB with bounded A, B, C, D and A

u.e.s.

Once we deal with regular systems, the outer-inner factorization of the
previous section just goes through, and has the added benefit that the inner
and the outer factor obtained will be regular as well. However, this is not
true of the left-inverse of the outer factor as we show by example in chapter
??. The discussion of this delicate question would lead too far here, let us
suffice with a somewhat imprecise definition:

Definition 8 We say that a causal operator T is left-outer, if there exists
a causal operator TT (potentially unbounded) such that TTT = 1. T is said
to be right-outer, if there exists a ‘causal’ T (potentially unbounded) such
that TT+ = I. T is said to be outer if it is both left- and right-outer, or,
equivalently, iff it has a ‘causal’ inverse T—' (potentially unbounded).

The notion of ‘causality’ will have to be extended to a limited class of
potentially unbounded operators, and this is done in the chapter mentioned,
where we give precise definitions. The issue of boundedness of the inverse
of the outer factor plays already for some simple LTI systems, take e.g.
T(z) = 2(z—1), then z is the inner factor and z —1 the outer factor; (z —1)~*
is unbounded, but may be considered causal as the limit of (z — (1 +¢))™!
when ¢ > 0 goes to zero. In continuous-time LTI systems, this situation
occurs when there are zeros on the imaginary axis in the original operator, a
case that is very common in electrical circuit theory. Such systems are only
invertible in a weak sense.

Summarizing: in the previous section we have established the fact that
an arbitrary causal and regular operator T always admits a factorization
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T =1T,V,, in which T, is left-outer and V, is right-inner. Such a factoriza-
tion is called an outer-inner factorization. Dually, 7" admits an inner-outer
factorization T" = V,T,,. with V, left-inner and T,, right-outer. When T is
already left-outer, then the outer-inner factorization is trivial, with V,. = I.

10.5 Items for discussion

e As in the chapter of external factorizations, it is interesting to work
some simple examples, and study inner-outer as well as outer-inner
factorization of a few ‘simple’ cases, particularly the matrices

1/2 1 1/2 1 2 1
1/2 1 ’ 1/2 1 ’ 2 1
1 /2 1 . . . '
(10.26)
Several interesting phenomena appear, that will motivate quite a few
further developments! Compare also what happens in relation to the
external factorizations discussed before.

e With respect to the introductory section: numerical analysts have de-
veloped a method called ‘Householder transformation’ to bring a given
vector in the direction of the first axis. The method presented here
is based on a (generalized) rotation. It has several advantages over
the Householder transformation, which uses a reflection instead of a
rotation. It is interesting to compare the two approaches.

e Riccati equation: when one squares the square-root equation|10.22|(i.e.,
multiply it to the right with its conjugate) one obtains, with M := YY"’

AMA'+ BB' AMC'+BD'| [ M~'>+B,B! B,D,
CMA'+ DB’ CMC'+ DD’ } - { D,B! D,D!
(10.27)
Since D, has to be minimal, it will have a left inverse D!, and we
will have B, = (AMC' + BD')(D})" as well as (D,D))t = (CMC' +
DD")t. Tt follows that M will be a (semi-)positive definite solution of
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the ‘Riccati’ recursion

M~ = AMA'"+BB'—(AMC'+BD")(CMC'+DD") (CMA'+DB’)

(10.28)
In the matrix case, the recursion would start with ‘empty’, and it should
be recognized that it does not have to produce a strict positive definite
solution, since the dimension of M depends on the dimension of Y,
which may disappear. One may argue that it is not wise to solve this
recursion directly, as it produces the needed Y only indirectly and in
quadratic form, thereby losing numerical accuracy (do you know why?)
and requires the computation of a pseudo-inverse as well.

10.6 Notes

e Although inner-outer or outer-inner factorization are maybe the most
central operations in dynamical system theory, they have not been rec-
ognized as such in many treatments, because their far reaching effects
have often not been seen clearly, especially in the engineering commu-
nity. However, already in the early times of Hardy space theory its
importance was recognized by the mathematicians working on com-
plex function analysis, leading first to the Beurling theorem and then
later, when matrix functions were considered, to the extension of the
Beurling theorem known as the Beurling-Lax theorem. In a sweep-
ing generalization of the basic ideas contained in Hardy space theory,
Arveson [4] set up the a new algebraic category called “Nest Algebras”,
for which the basic concepts behind inner-outer factorization, namely
the properties of a special type of nested invariant subspaces, hold. In
more recent times, it has been realized that these concepts even extend
usefully to non-linear systems, especially the work of Willems [?], Ball
and Helton [5] and van der Schacht [38] and their students have shown
the way into that still not fully explored and very promising direction.

e A different approach (leading to the same effects) has come from es-
timation theory, and in particular the work of Kailath and his early
students. When studying the Kalman filter and its somewhat pedes-
trian way of computing state estimations, they realized that a more
direct way would be based on the propagation of the square root of a
covariance rather than the covariances themselves. This then lead to
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the famous “square root algorithm” for the Kalman filter [21], which, as
we shall see in the chapter on Kalman filtering, is nothing but a direct
implementation of inner-outer factorization on the assumed model.

e In the following chapters we shall encounter many applications of inner-
outer factorization theory: to estimation theory (the Kalman filter and
the LU-factorization), to system inversion theory and to control. In all
these cases, what the factorization mainly achieves is what one could
call a dichotomy on the inverse of the system, if it exists, and otherwise
a substitute for the inverse. Dichotomy produces a segregation of the
causal and the anticausal components: the causal part goes into the
outer factor and the anticausal part in the inner factor. It is remarkable
that this can be done with a linear recursion, or, to put it differently:
no need to compute eigenvalues (in the LTI case). As a side effect,
the theory generalizes to timevariant and even nonlinear. This does
not come without some cost: there may be ambiguity when the outer
factor turns out not to be invertible (in the LTI case: when there are
zeros on the boundary). Nonetheless, the theory remains valid even
in that case, but produces a result that has to be carefully interpreted
and does not necessarily give complete answers, which then are very
hard to get.
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Chapter 11

The Kalman filter

Menu
Hors d’oeuvre
Linear state estimation

Main course
The Kalman filter as outer-inner factorization

Dessert
Discussion issues

For a long time it has been common knowledge that the celebrated
Kalman filter [25] can be considered, for discrete-time systems, a case of
Cholesky factorization on a special matrix (i.e., positive definite LU, LL’ or
Cholesky factorization) numerically executed on the state-space description,
and that it can be obtained via a square root algorithm. This insight goes
back to the pioneering work of Morf and Kailath [28], who have derived many
additional properties relating estimation theory to efficient and numerically
attractive algorithms. Following this path, the connection with outer-inner
factorization then becomes almost obvious.

We shall follow the reverse path: from outer-inner factorization of the
specific Kalman case, to the interpretation as estimation and innovation filter.
However, this admittedly non-historical approach is likely the most direct.
It provides an easy proof for the Kalman filter formulas and leads easily
to nonlinear generalizations as well. For extensive reference to the classical
Kalman filter literature, see [22]. We change our notation on outer-inner
factorization a bit to conform to what is commonly used in the literature.
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Also traditionally, the filter situation considered is time variant (the Kalman
filter was probably the first great success of time variant system theory!),
assumed to start at index 0 and recursively being updated from k > 0 to
k + 1 as long as necessary, without putting a limit on how far it goes, but
always keeping the situation finite. In a separate chapter, we consider the
corresponding LTT situation and the connection with spectral factorization
and Wiener filtering.

11.1 Linear state estimation basics

The classical Kalman filter situation starts out with a given stochastic linear
and time-varying system model. We restrict ourselves here to the discrete
time case, described, by a minimal, linear, discrete time realization:

(11.1)

Trp1 = Apzp + Brug
ye = Crap+ 1y

As before, z;, is the state of the system at index point k, but the inputs
are now assumed to be stochastic vectors (i.e., unknown except for their
statistical properties) and described respectively by uy, the vector of input
noises and vy, the vector of measurement or output noises. In the original
formulation, these noise processes are assumed of zero mean and uncorrelated,
with given covariances. Moreover, one assumes that the process starts at
k = 0 with as initial input not only wug, but also x(, the initial state, which
is also assumed to be stochastic, zero mean and having a given covariance
Py uncorrelated with all other inputs. The goal of the Kalman filter for such
a given process is to find an estimate ;.1 recursively for each state xjyq
based on the measurement of the outputs from k£ = 0 to the actual k, which
minimizes the statistical quadratic error.

Let us make these assumptions more precise. We write the mean of a
stochastic vector or matrix with the expectation operator E and assume
E(x¢) =0, E(ug) = 0, E(v) = 0 and all further means resulting from linear
operations on those will of course also be zero: E(y) = 0 and E(z;) = 0 for
all k£ as they are all linearly dependent on the original stochastic variables.
Covariances of the processes uy and vy are supposed known (in chapter 7?7 we
shall deal with a situation where this is not the case), we put as given, with
Ok := 1 when k = ¢ and otherwise zero: E(uu)) := Qkoyr, E(vkv)) = Ridye
and E(ugy/) = 0 for all k and ¢. Also x( is assumed uncorrelated with all
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the other noise sources and Py := E(zz() is assumed known (in a practical
situation this data would follow from a statistical analysis.).

z) now has to be determined so that Py := E[(xy — zx) (2 — )] is mini-
mized at each index k, given the measured outputs yi.x—1 := collyo, -, Yr_1]-
The vector e, := o — Ty is classically defined as the innovations at index
k, we define similarly the output innovation as e, := yr — yx, where yy, is
the least squares estimate of y; given yp.x—1. We shall also use normalized
innovations and indicate them with a bar, as e.g., in e, = P, 1 %e. The
Kalman filter will be a recursive process that reads in the y;’s in sequence,
and determines from them the least squares estimates x,.; at stage k as
efficiently as possible.

All variables in the model being stochastic and zero mean, a special
Euclidean-like inner-product algebra can be defined for them. The inner
product between two zero mean stochastic variables, say v and v, is defined as
(u,v) = E(uv’). Hence the quadratic norm of a variable ||u|?* = E(uu’) is its
covariance, and two variables are orthogonal when uncorrelated. Extending
this to (column) vectors, there is an issue on how to define “orthogonality”.
One way is to say that two stochastic vectors u = col [ Uy - Up } and
v=col[ vy --- w, | areorthogonal if E(trace(uv’) = 0). With this defini-
tion, only components with the same k, namely u; and vy (all k) are orthogo-
nal on each other. We want to require more, namely that all components of u
are orthogonal on all components of v, or, in formula E(uv’) = [Euv/].. =0
as a matrix. This is necessary for estimation problems in which all the
components are individually available, the case we have here. (One should
realize that, in practice, each stochastic variable u is actually represented as
a ‘data vector’, and in the present formalism, a data vector is a row vector.
A stochastic vector is then represented as a ‘data matrix’, it is a column of
rows, each row being a single data vector.) D

"Working with such ‘matrix’ inner products (one could write (A4, B) := AB’—a ‘matrix
inner product’ between the two matrices A and B assumed to have the same number
of columns) is not the same as working with scalar inner products defined on vectors
because there is no corresponding scalar inner product. This may seem strange, but if one
keeps in mind that there is an underlying inner product space on individual components,
then things naturally fall into place: suppose that A is an m X N matrix, and B an
n X N matrix, then the ‘orthonormality’ condition AB’ = 0 boils down to mn scalar
orthogonality conditions.
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11.2 The normalized model for the Kalman
filter

Let us first write the given equations in a normalized form, with u; and 7
normalized (i.e., uncorrelated zero mean processes with unit covariance), and
make the given covariances explicit in square-root form:

o st o]
» a’; (11.2)
w = Gt |0 Rl ][Vk]
The estimation principle used is pretty simple. Assuming all inputed pro-
cesses T, ur and v, zero mean, the estimate .1 with the smallest least
square error, measured as a covariance, is such that the estimation error
ey k+1 1s ‘orthogonal’ (component wise) on the known data, in this case yo.,
(so-called “Wiener principle”). ‘Orthogonal’ in this context is by definition
uncorrelated : two zero mean stochastic vectors w; and wy of the same di-
mension are said to be orthogonal when E(w;wj) = 0 (in case w; and/or wy
are vectors, this is a zero outer product, and all entries are zero, meaning
that the individual entries of w; are orthogonal to the individual entries of
Wy).

However, a more general approach, equivalent in the linear case, is to
just determine the a posteriori estimate Tj41ly,,, which exists also in non-
linear cases and for arbitrary distributions (so far we did not make any as-
sumptions on the distributions), and has the same orthogonality property.
This entitles us to write Ty1 = Ty, which will always be such that
El(k+1 — Tr+1)Ygs] = 0 (notice that this is not, in general, a covariance.
It is just a matrix of stochastic inner products—it will be a covariance only
when the processes are zero-mean). We shall see that the outer-inner fac-
torization will produce the necessary component wise orthogonality in all
cases.

11.3 Outer-inner factorization

The detailed outer-inner recursion for the Kalman filter then runs as follows:
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Step 0

AP ByQY? 0 | =] 0 M, B, |V (11.3)
CoP)? 0 RY? 0 0 Do

(R-Q factorization) in which Vj is unitary. For consistency purposes, Ry,

JfEO 0
v

ﬂ) A CO
_ & 0
_ \/ =5 ——> Y0
i} O _—l BO70 DO’O
€1

162 = T

Figure 11.1: The 0’th step in the outer-inner factorization of the Kalman
filter model.

Py, Qo must be (square) non-singular, and [ Ay By } must be non-singular,
which is achieved by requiring the realization to be minimal (see the simple
proof in the notes at the end of the chapter). The consequence is that both
D, and M, are square, non-singular. Let now

€1 .i'o
€9 = ‘/0 ’Zjo (114)
€3 Vo
Zo
then the unitarity of Vj together with the assumption that | @ | are nor-
2

malized uncorrelated, makes all the epsilon’s normalized and uncorrelated as
well. Filling in the epsilon’s in equation [11.3| one has:

yo = Coxo+ 1y = D,pe3
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The output least squares estimate based on previous outputs (there are none
and the only thing known about xq is that it is zero-mean) is trivially o =
0 and has covariance D,oD;, = Ry + CoFyCy, so that e3 = ¢, is the
normalized output innovation. Next, since g is the only stochastic quantity
now known (the Kalman filter measures the output recursively starting at
index 0) and ey les, we have that &y = B,ges = B,0€,0 and hence the
estimation error on x; is x1 — y = M€y, with covariance Py = M; M/ and
normalized innovation €,; = €. This identifies M; = Pll/ 2, while B, is
traditionally called the normalized Kalman gain at this stage.

The first stage leaves us with a cascade of a unitary section and an outer
section, and a propagation of the relevant quantities as shown in fig. [I1.1] in
which one should notice that Ez;Z{ = 0, or, in other words: the best least
squares estimate of x; is orthogonal on the (normalized) innovation, since

EC/E\L'Z'{ = BO70(E€365) =0.
Step k

The outer-inner factorization as derived from the outer-inner theory (chapter
looks as follows in the general step k:

AMy, BQY? 0
CeM, 0 R

_ {0 M1 Bog

00 Do,k}v’“ (11.6)

in which V}, is unitary and M}, stands for what we have called Y}, in chapter [10f
a change of notation because in this context, Y, will soon receive a different
meaning.

We assume as recursive hypothesis that the state input of the inner part
(Vi) is the innovation €, computed in the previous stage, and the state input
of the outer filter is the k’th estimate 7) with the property E(Zye;) = 0, to
show that the new inner and outer parts update these quantities for k+1. We
assume, in addition, that the covariance of the input innovation is My M, =
E(z; — 71)?, and have to update this property as well for the next stage (fig.
1.2

The proof follows the same pattern as in step 0, and is only slightly more
complicated. Using the k’th stage of the inner-outer factorization, let

€1 €k
€9 = Vk I_l,k (117)
€3 77k:
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A\

— _
\/ | ok, > Yk
Uk k BO k DO k

162 = €k+1 | ] Tht1

Figure 11.2: The k’th step in the outer-inner factorization of the Kalman
filter model.

we have again that the €’s are orthonormal (with the inner products we use,
this means: zero-mean, uncorrelated and of covariance one, properties that
get preserved in the product with the unitary matrix V;), and

{ Tpy1 = Mypi€e2 + Boges (11.8)

ye = CpTy + D, pes

in which D, and My, are square non-singular, thanks to (1) the non-
singularity of Ry and (2) the presumed minimality of the state space model
(i.e., the observability of {A, C}f). Remark now first that D, x5 is just zero
mean noise added to the known quantity CyZ, so that y, = C\Z}, where 7, is
the estimate of y; given yg.,_1. After measuring y;,, also €3 = D;,i(yl —) =
€y r is known, and it follows from the first equation, that Zy11 = B, 1€, and
that zp41 — ZTry1 = Mjyi1€2, in which ey is zero-means, second order white
noise. The output of the inner part Vj is hence €, and the covariance of
the estimation error ;1 — Tpr1 = Myy162 18 B(xpy1 — Tpy1)? = My M.
The square root of the covariance of the normalized output innovation is
D, ,, commonly written as Réfk, while B, is commonly known as the nor-
malized Kalman gain K. The factorization and the resulting identifications
in the more traditional notation, also with M, = Pk1 /? \ith P, the covari-
ance of the innovation in zj are shown in fig. [I1.3] The resulting Kalman
estimation filter is then the inverse of the outer factor, shown in fig. [I1.4]

2For a proof of this important but technical point, see the notes at the end of the
chapter
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—1
ch €x.k Tk

Yk

\Gl,k

—1 >y
€2k = Yy € ki1 Tr+1

Figure 11.3: Outer-inner factorization for the case of the Kalman estimation
filter.

Smoothing

A further quantity that is worth noting is the so-called instantaneous smoothed
estimate defined as fr = E[zi|yox] (while 2, = E[zk|yo.x-1]), and given
by fk = f%k + Pka/R;]lc(yk - Ck.i‘k), so that ‘%k-i-l = Akfky because KpJg =

AkPkC,;R; i/ 2, which follows directly from the outer-inner factorization. The
important thing is that x;,; only depends on z; and y; (and not on xy,). It
is a numerically stable dependence because of the invertibility of the outer
factor, V) taking the role of handling the innovations. This principle can
be generalized to nonlinear systems, as is outer-inner factorization, see the
chapter on particle filtering for a first approach. S

11.4 Discussion issues

e We have required minimality of the Kalman model filter. It is in-
teresting to see how this assumption is used. Let us first check the
time-variant case.

In stage 1, minimality amounts, perhaps surprisingly, to \/(Bo, Ao)
spanning the full dimension of z; (or, w’[By Ag] = 0 = w’ = 0).
This is because the almost trivial -1 stage is lacking in the treatment.
In that stage the state, which for a strictly orthodox time-variant treat-
ment is needed, the (zero mean stochastic) state xy with (non-singular)
covariance Py = MyM; is generated simply by inputing it. The model
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X,
R12 _Ck
E ek y
vk k
p.k Ak
xk+1

Figure 11.4: The Kalman estimation filter is the inverse of the outer factor.

and outer-inner factorization for stage -1 is then simply

R Rt R T

That makes B_; = PO1 / 2, the other entries in the system model empty
and My = P01/2. The reachability matrix R = [ By AoB_ } is hence
to be supposed non-singular for the system to be reachable (at index
point 0).

In the general stage k, the inductive hypothesis makes M} non-singular,
and one has to prove My non-singular as well. For that it is necessary
and sufficient that [By AgMj] be non-singular. From the inner-outer
theory (or by direct calculation), we have the minimal factorization
M, = kalR\l/,k—l for all k£, which implies that both Rj_; and Ry ;1
are non-singular. That R; will be non-singular is assumed by the
condition of minimality, so the proof amounts to showing that Ry, also
has full range. However, by construction in the square-root algorithm,
Mj.y1 has full row-range, which means, for any conformal vector w,
that Mypw =0 = w=0. But, M ,w = 0= RyRy,w = 0. Hence,
suppose Ry, singular, then there would be w#0 so that Ry w = 0
and hence My jw = 0 with w#0, contradicting the minimality-by-
construction of M.
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(A more direct proof than in the previous paragraph can also be ob-
tained as follows. The ‘stage k’ can be brought back tot the ‘stage
0" case, by compressing all the stages from 0 to k into one global
stage. With the original minimal filter realization at index ¢ given

by { Ai B } then the filter section combining the steps 0-- -k has

C; D;
the (cascaded) realization { Aw B ], in which
K D
By = [ (Ag---A1By) -+ By | (=[ ABp-y B |)
C[k] = col [ Co ce (CkAk,1 T Ao) } = (COI |: C[k,” CkA[kfl] ])
Dy = Towko:k-

(11.10)
When outer-inner factored, this filter produces, as before in the initial
step, both the estimate 71 and the normalized innovation P,_ +11/ 2ez7k+1,
for exactly the same reasons as before (we do not repeat the argument,
because this cascaded filter can just be considered to be the initial step
in its own right). This brings the proof back to the proof given for
‘stage 0’, now with a complete reachability matrix [B[k} A[kﬂ reaching
up to Tyi1.)

In the time invariant case, either one may reduce the problem to the
time-variant case, where one starts out measuring at index point 0 and
assumes an initial state xy whose covariance is known. This actually
reduces the problem to the previous case, and one may then study how
the estimation evolves with increasing indices, the only difference being
that now the subsequent A, Ck, Qr and R; are all the same. In case
the model is internally stable, in the sense that lim;_,.. A¥ = 0, then
it is easy to see that M eventually reaches a non-singular fix-point
(still assuming minimality of the model representation, of course), and
the prediction filter becomes gradually independent of the initial state.
Alternatively, one may study time-invariant outer-inner factorizations
of the original transfer function directly, which would also involve some
stability conditions on the original model. This latter endeavor goes
beyond our treatment here.

Riccati equation. We have derived the Kalman filter using outer-inner
factorization. Traditionally, an opposite road is followed: one derives
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the Kalman estimation by ‘brute force’, just solving the equations that
follow from the Wiener principle mentioned at the start of this chapter
and so deriving a quadratic equation for the covariance Py, of the
innovation recursively from Py for each k. Based on these derivations,
Kailath and his coworkers [21] derived what they called the square root
algorithm for updating the square-root Pkl/ ? of the covariance rather
than the covariance itself. This square-root algorithm is nothing but
our outer-inner factorization, and, as we have done, the direct deriva-
tion of the Kalman filter from outer-inner appears to be simpler and
more insightful than the original. The resulting quadratic equation is
called a Riccati equation, in our case a recursive equation (the original
term Riccati equation was in honor of the mathematician who studied
differential equations with a quadratic term). It is easy to derive this
Riccati equation directly from the outer-inner or, equivalently, square-
root equation. From equation [I1.6], which we can write shorthand
Ty =T, Vi, we find, after post-multiplication with the transpose and
using ViV, = I, T, T} = T,,T,;, which written out produces

P+ Bop B, = ApPLA[ + BQyBy
B,D., = = AWPCY (11.11)
DoiD!, = CuPCL+ Ry

From these equations, B, and D, ; can be eliminated and introduced
in the equation for Py;. This produces in sequence D, = (C,PC} +
Ry,)Y? (which is invertible thanks to the non-singularity of R}), then
B,x = AP.CLCLP.CL + Ry,)™Y? and, finally, the recursive matrix
Riccati equation

Pii1 = A PyAL+ ByQy B — A PyCl (R + C Py CL) ' Cy PL A, (11.12)

Quite a bit of effort in the literature is devoted to study this equation
and derive properties that can often easily be obtained just from the
outer-inner factorization (like the existence of a guaranteed positive
definite solution).

e The Kalman filter in the form presented so far is purely predictive: it
does not use any future outputs. Often, and in particular in image pro-
cessing, ‘future’ information is present. Assume, e.g., that you would
dispose not only of y, but also of yx.1 at stage k. This is called in
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the literature as ‘smoothing’. A nice topic for discussion is how the
Kalman filter can be extended to that case.

e Another good topic for discussion is what to do with Gaussian processes
that are not zero mean, or, more generally, non-linear processes.

11.5 Notes

The Kalman filter was conceived and derived by a few people in parallel in
the period 1958-1961, to name: Stratonovitch, Kalman, Bucy and somewhat
earlier by Thiele and Swerling. It has played a key role in the development
of the Appolo navigation computer, as was devised by Schmidt of the Nasa
research navigation research group at Ames Laboratories in Mountain View,
after a visit of Kalman there. The great advantage of the new approach
was its recursive character: it allowed, given the available data at a certain
point in time, to make the best possible incremental choices for the next
step. This meant in the first place that one would have to estimate as accu-
rately as possible the state of the rocket, given noisy position and velocity
measurements and, next, derive from the estimates the necessary controls to
move that state forward in the desired way (the intended trajectory, or a new
updated desirable one). "Reachability’ and ‘observability’ obviously had to
play a central role there.

From that point on, Kalman started to develop the ‘state space theory’
for dynamical systems in a systematic way, focussing on these most essential
concepts (as we are also doing in this book, in the wake of the approach
proposed by Kalman). Although the first derivations of the Kalman filter
were for time variant or even non-linear systems, it soon seemed that the time
invariant case would lead to a richer algebraic content, and, moreover, most
of the community was geared towards LTI systems and input-output rather
than state space descriptions. The connection between the matrix algebra for
state space descriptions (the A,B,C,D formalism) and the traditional transfer
function approach was soon firmly established and a host of new algebraic
results followed that strengthened both sides: it provided the state space
people with the firm algebraic foundation of module theory (polynomial and
series calculus) and the transform calculus with new ways of characterizing
the ‘degree’ of a system instead of the cumbersome Smith-McMillan form.
It all seemed like an ideal symbiosis, be it that it could not be generalized
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neither to time variant nor to non-linear systems.

With the advent of numerical calculus, the situation changed dramati-
cally, and the emphasis returned from transfer function calculus to matrix
algebra. The method of choice in numerical analysis is the use of orthogo-
nal (or unitary) transformations, and it is no wonder that pretty soon after
the discovery of the Kalman filter and the rather ad hoc (Bayesian) com-
putations connected to it, came the idea of using the notion of 'innovation’
instead, which, inductively, lead to a new type of algorithm to compute the
Kalman estimation filter based on orthogonal computations: the ‘square root
algorithm’, first proposed by Kailath. It was later found out that this algo-
rithm is actually a special case of inner-outer factorization. Turning the
tables around, one can use it as a basis to develop the necessary Bayesian
innovation theory needed for the Kalman filter. This has been the approach
that we have followed in this book.
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Chapter 12

Least squares optimal control

An estimation filter looks forward: given past performance
indicators (represented as outputs) and a model of the system
including stochastic disturbing terms, it tries to estimate future
states. In the previous chapter we discovered that an outer-inner
factorization achieves this feat recursively for the linear least
square estimation error (llse). Often, one would not only like
to predict where a system is going to, but to control its behavior
‘on the fly’ so that it goes where one wants it to go, and this,
again, in a least squares optimal fashion. That is ‘least squares
optimal control’. In this chapter we explore this problem in the
context of our LTV system theory, using the classical modeling
of the optimal control problem as it was introduced by a.o. Bell-
man, using a simple stochastic model that covers the least squares
tracking problem for incremental models. Just as in the case of
optimal least square estimation treated in the previous chapter,
we shall find that a simple inner-outer factorization (dual to the
previous) solves the problem directly, and leads to the classical
results originally obtained by Bellman.

Menu
Hors d’oeuvre
The optimal control situation considered

Main course
The solution through Moore-Penrose inversion via inner-outer
factorization
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Dessert
Dynamic programming and discussions

12.1 The assumptions

Let us assume we are given a system, partially described by a state evolution
equation
Tpt1 = Apxy + Brug + wy, (12.1)

in which wy, is a zero mean noise term, assumed to be an independent, zero
mean process (e.g., Gaussian with Ew,w, = 0 for k¢, or, otherwise such that
wy and wy are independent stochastic variables for all k#£()) and a known
initial state xg, with the goal to choose a sequence of inputs ug, - -+ ,u, (an
‘effort’) so that a sequence of subsequent states z1, - - , z, 41 results with the
property that some desirable ‘cost function’ or ‘objective function’ involv-
ing these inputs and states is optimized. For each input vector u; and each
state vector x; we may choose a contribution to the cost as u; NV, Nyu; and
x) M, Myxy,, where the matrices Ny and M}, which take into account the spe-
cific circumstances of the problem (e.g., different units or scales, possibilities
etc...), may be chosen arbitrarily to some extent (see further: we shall require
the Ni to be square non-singular, for simplicity, meaning that every input
has an associated cost). The total cost function is then

n+1 n
L:=FE (Z ] M My, + Z u,;N,gNkuk> (12.2)
k=1 k=0

(we use the symbol ‘L’ to illustrate its relation to the classical ‘Lagrangian’.).
As the xj, are functions of the uy through the system equations, the problem
is to find the sequence of inputs uy : £ = 0---n that minimize £, often
written as

L. (12.3)

U = TGN, ...y

12.2 System representation

The optimal control situation admits an attractive recursive system repre-
sentation shown in fig. [12.1l Tt takes as inputs (1) the given starting state
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xo and (2) the input sequence uy,k = 0---n chosen, and produces as out-

puts the local contributions to the performance in “square root form” namely

(L] = My (with My empty), the actual full performance being
Nkuk 0:n+1

L =E(L'L). The local system description for optimization purposes is then

Tyl — Ak.'l?k + Bkuk + Wk
[ M 0 (12.4)

The overall input-output equations after n + 1 steps for this representative
system model are read from the diagram in fig. [12.1] as

Zo Ug wWo

Figure 12.1: System model of the optimal control situation.
Xozg + Su+T,w =1L (12.5)
where
- N,

M, By 0
0 0 N,

oA My A, By My By 0

XO = 1 0 , S = 0 0 N2

Mn+1An e AO MnAn_]_ . A]_BO O
0 N,
Mn+1An U AlBO MnJran ]

= .(12‘.6.).
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and i )
0
My 0
M>A My | 0
Ty = = — (12.7)
MyA,_1---Aj |- | e |- 0
| M1 Ap Ay [ [ [ | Mg |

Xoxp is given and known. S is the (causal) ‘system matrix’ for this case,
which also happens to have a left inverse (is left outer) when all the Ny
are square invertible. The overall goal is to find an input sequence u that
produces the minimal cost E(L’L). This problem is solved directly by the
Moore-Penrose pseudo-inverse ST of S, because S is left-invertible, and

E(L'L) = E[(X{ +u'S")(Xo + Su)] + E(w'T/ T,yw) (12.8)

in which the second term is a independent of u (as well as Xoyzo) and the
minimum is obtained by minimizing the first term, givingﬂ

Umin = —S5T X (12.9)

and the whole exercise reduces to finding an efficient, preferably recursive ST.
This we do in the next section by inner-outer factorization, giving S = U,
with U isometric (U'U = I) and, in this case, S, square invertible, because
the original S has already been chosen left invertible, thanks to the choice
for square and invertible Nj’s. Therefore ST = S, 1U’. The minimal error is
then given by L = (I — SS") Xy = (I — UU")X,, which is orthogonal on the
projection UU’ X, of X, on the space spanned by the columns of U, which
in turn is the range of S (see fig. . The minimally obtainable cost is
then given by

E(L ;L) = X,(I —UU") Xy + E(w'T) T,yw) (12.10)
which is of the form x{Cxy+constant term for some cost matrix C—quadratic
in x( as is to be expected.

'Proof: let h := u — Uiy, then B(L'L) = E[(I — SS")'X|Xo(I — SST)] +E(h'S'Sh)
because S’(I — SST) = 0, which will be minimum if and only if 4 = 0. Same reasoning as
in the deterministic Moore-Penrose case, now in a probabilistic context.
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Figure 12.2: The minimally obtainable cost L
of S.

is orthogonal on the range

min

12.3 Inner-outer factorization

Preliminary remark: from the analysis in the previous section, we see that
the noise term T, w plays no role in the optimization process, which only
involves the ‘system matrix’ S and not the noise processing matrix 7;,. This
section details the recursive inner-outer factorization of S, which also would
correspond to the non-stochastic case. An interpretation for the connecting
matrices Y, in the stochastic context appears in the next section. As a
consequence, the states x; appearing in this section are not the same as
those appearing in the previous section, the latter being contaminated with
noise. One shows: 7, = Ex;.

Let S = US, be an inner-outer factorization of S, then the general re-
cursion for inner-outer factorization, repeated here for convenience, is given

by

0 0

YA ‘ YB| | Bw Ay By P
S Rl e
where S = US,, S=D+C(I —ZA)'ZB, S, = D, + C,(I — ZA)"'ZB,
W = Dw + Cy(I — ZAy) ' Z By defines the co-kernel of S and U = Dy +
Cy(I — ZAy) ' ZBy provides a (causal) orthonormal basis for the range of
S. It is a backward recursion starting from the last relevant realization.
D, and Y<71> form row bases (are right invertible), and are obtained by a
QL factorization that works starting in the South-East (lower-right) corner,
working upwards.
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The recursion starts at n 4+ 1 in the present case. We simply have Y, 14

empty, and
{ 8 .}:{_'}{MHH
My || I -

Step n+ 1
(using row and column separators to indicate forced partitions in the respec-

tive matrices). Hence we have Y,, := M, .1, and S, 11 = {%‘»} .
Step n

F ] (12.12)

Y, An | YaBy
M, | 0 _[

BW,n AU,n BU,n:| 0 0
Ny,

D Cr Dy | Yot | 0 (12.13)

0 Co,n Do,n

in which D, ,, is necessarily square non-singular thanks to the non-singularity
assumption on N,,. We see that if M,, is square non-singular, then also Y,,_;
will be, but this assumption is not necessary for the inner-outer factorization

to produce a fully outer S, with present realization [ él " DB " }
-+ (like step n) ’ ’
Step 0 (almost final)
- [
= : : 12.14
{ || No Dwyo Duyyp | | Doo ( )

|| Bo }
‘ Do,O ‘

Alternatively, one can keep the last step conformal with the previous ones
(what we shall do in the sequel), which produces (with different By, and
Dy, previously there was no Ay and Cpy. However, By and Dy are the
same.)

with realization for S, given by [

0 0
{ Yo Ao | YoBy ] _ { Bwo Avo Buo ]

Y_ 0 12.15
0 | No Dwo Cuo Duyyp C:) Do ( )

Step —1
The final step is against almost trivial, but important because it settles
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boundary conditions. The backward recursion gives, with B_; = I:

RG] e

so that By _1 = I and D,_; = Y_; with all other entries empty.

The connecting sequence Y} satisfies the recursion Y, | = A[’],kYkAk +
Cpy My, with initial value Y, = M,,. Fig. displays a graphical rep-
resentation of the result (we do not show the kernel part represented by
W = Dy + Cy(I — ZA)"'ZBy.). The figure also shows the signal propaga-

o Uuo

Figure 12.3: Inner-outer factorization of the system matrix S.

tion in the factored model. This assignment is worth a separate proposition.

Proposition 3 Stage k in the inner-outer factorization of the full model

, Tk, Tht1 .
shown in fig. |12.1|) propagates _ to o , where the {T} is
( fig propag { Y i } [ YViinn } {zx}

any sequence of states in S.

Proof

Recursively. First remark that the propagation of the state in the outer
factors is the same as in the original model. Furthermore, at any stage k we
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have, applying [ ik } to the inner-outer factorization
k

_ Y. % _
Aur  Bug Y17k _ ﬁ _ | YT (12.17)
Cur Dug Co kT + Do pug, N Ly, ' '
EUE

The input at stage 0 follows from the initial step -1, inducing the recursion.
QED

Fig. shows the division of labor between the outer and the inner filter
clearly. The input of the inner filter consists of two orthogonal components:
the first entry Y_1Zo and the sequence {yox = Co Tk + Do kUi }—0:n (these
are all orthogonal on each other as different components of a single vector)
while the output of the inner filter is L, 1, whose (quadratic) norm squared
equals

IZI* = lleol (Y10, oon) I = Y120l + D 9okl (12.18)
k=0

Because the outer filter is invertible, it can set the inputs such that all
Yo = 0 by choosing u; = —Doj,icoﬁkxk, thereby minimizing the cost to
|Y_1 X0||* + [noise variance independent from inputs|. The outer filter pro-
duces the ‘feedback gain’ F), = D0_7 ;Co,k as its inverse with zero input, and the
inner filter takes care of the orthogonal decomposition and the production of
the resulting optimal cost.

12.4 Dynamic programming

Although we can produce the solution directly with the formalism developed
so far and some brute force (see the notes at the end), a more enlightening
znd adaptive approach follows the inner-outer recursion. Closely related to
the inner-outer recursion, is a recursion on the optimality of the solution,
introduced by Bellman [7] and known as dynamic programming.

Let us first observe that in the way we have stated the optimization
problem, everything depends solely on the initial state xy once the system
model is given, since the obejctive is to find the optimal input ., that will
minimize the cost £(zg, ug.,) of the evolution from index 0 to n. Both xy and
the sequence of inputs uy., determine the sequence of states xi.,41 (except
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for intervening noise), and hence the overall cost. Taking the minimum over
the inputs eliminates them as free variables and leaves the initial state vector
xo as only free variable.

This being established, the next step is to consider how an optimal tra-
jectory depends on an intermediate state xp, with 0 < £ < n. The cost
of that part of the trajectory that starts with x; is only dependent on the
states Zp.,41 and the inputs wuy.,, due to the formulation of the problem (we
do not ‘look back” and do not let future costs depend on past states except
through z). This means that the optimal trajectory from 0 to n+ 1 also has
to be optimal from k to n + 1, given the state x; as lying on that optimal
trajectory. But this latter optimal trajectory will again be solely dependent
on Ty.

As a consequence, one can recursively compute optimal trajectories start-
ing from the end point n+1. To formalize this idea, let us define the optimal
cost of a trajectory starting at state xy as L(xy, [k : n]), then we can write

L(x0,]0: n)) = min (L(z0, uong) + L(zpyr, [k +1:0])).  (12.19)
Ulo,k] » Lhk+1
The dynamic programming recursion is then obtained by applying the prin-
ciple moving from index point k£ + 1 to index point k:

Lz, [k :n]) = Jmin (£ (g, ug) + L(zpi, [k +1:n))), (12.20)
5 +1
the gain being that now the optimization can be done working on just two
parameter vectors u, and xyy1, instead of the whole sequence uy.,,.

In the case of quadratic optimization, this latter expression simplifies
dramatically! Let us fist look at stage n, and use the inner-outer factorization
described in the previous section.

Stage n
The cost of state x,.1 is simply (entering stage n+1, x,.1 is assumed known)

L(zn1)(= L(Tny1)) = 2} M My @y + E(w) M/ My qw,). (12.21)

It is quadratic in x,.;. The situation (model filter at stage n) is shown in

fig. We have

L Mn+1An Mn-l—an Mn+1
{ z“ } = M, T, + 0 Uy, + 0 |w, (12.22)
" 0 N, 0

© Patrick Dewilde 2015 193



CHAPTER 12. LEAST SQUARES OPTIMAL CONTROL

L, = [ Mnzn ] Ln—l—l — Mn—l—lxn+1
N,un,

Figure 12.4: The model filter at stage n.

where now x,, is fixed and w, is statistically independent of everything else.
The overall cost will be quadratically minimized for the optimal control ,
given by

[ Mn+1Bn ! Mn+1An
Uy = — 0 M, Ty (12.23)
| Ny 0
The inner-outer factorization with Y,, = M,,., provides for this:
YnAn Yan 0 0
M, 0 =U,| Yo1| O (12.24)
0 Nn Co,n Do,n

in which D, is square invertible by a similar assumption on N,. It follows
that (the pseudo-inverse is unique in this case)

Mn+1Bn f Mn—l—lAn 0
0 = [ 0 0 D;}L ] U, and M, =U, | Y1
N, 0 Con
(12.25)
and hence the optimal control u,, = —F,z, with F,, = D;}LCo,n-

What about the optimal cost with x, given and assumed fixed at this
point? We have z,.1 = A,z, + Byu, + w,, hence 7,1 = A,x, + Byu,
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applying [ Z" } both sides of eq. [12.24} using the unitarity of U,, and putting

Con®n + Doy, = 0 (the optimal choice for each fixed x,,), we obtain, using
this optimal control
Y

n-n—1

Ynflxn — L,,;{Ln + Eé+1Mé+1Mn+lin+17 (1226)

It follows that the optimal cost, given z,,, for stages n and n + 1 is

L(zp,[n:n) =2V, Yo 12, + E(w, M, M, 1w,), (12.27)

hence, quadratic in x,, and with an input independent noise variance.
Concluding the discussion of stage n, we see that the inner-outer factoriza-

tion gives exceedingly simple expressions for the optimal control w, = —F,x,

with F,, = D;,}lC’o,n as a direct feedback on the state x,,, and the propagation

of the optimal cost L(z,,[n : n]) = x) Y, Yo 1z, 4+ c(n), where ¢(n) is a

state independent constant term.

Stage 0 < k < n:

With the notation introduced at the end of the treatment of stage n, the

situation of stage k becomes identical, with £ replacing n. In summary:

Initial data: optimal downstream cost x; Y,/ Yi@r11 + c¢(k + 1) [the recur-

sion hypothesis].

Inner-outer factorization:

0 0
Yiii| 0 (12.28)
Co,k Do,k

Result:

feedback gain on stage k: u, = —Fjx;, with Fj, = D;,iC’O,k.

new optimal cost: .Y, | Yi 12+ c(k) with c¢(k) = E(w]Y,/Yywi) +c(k+1).
Stage 0:

Stage 0 is somewhat special because xg does not participate in the overall
cost, as given initial state. This can of course simply be handled by the same
formalism as before, putting My = [-], but a quick analysis produces the same
result, of course.
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12.5 Computational aspects

Traditionally, the dynamic programming update is done through the recur-
sion, obtained by squaring the inner-outer expression (putting for simplicity
Lk = Yk/yk>

L, + Col,kCO,k Co/JgDOJ{; . Mk,Mk + AéLk_HAk A];Lk_HBk
D;.Cog D; Do } B [ ByLy 1Ay NNy, + By Ly 41 By,
(12.29)
To solve the resulting system of equations, one first factorizes N Ny+B/Cy By,
D/ Dok (which is square non-singular by assumption), and then eliminates
C,1 to obtain the discrete time Riccati recursion

Ly = MM, + A L1 A, — A{Cri1 Bu(N/ Ny + B/ L1 By) ' B{Lyy1 Ag
(12.30)
which produces a positive definite result Ly (as can be proven easily). Com-
putationally, one finds the feedback matrix
Fy, = (N/Ny + B/Lj11By,) ' B/Lyy1 Ay, first and then performs the Riccati
update, thereby leaving C,; and D, implicit.

However, this way of doing things is not advisable for two reasons: (1) the
square root recursion produces Ly =Y, ;Y;_; in square root form using a
single QL factorization, thereby avoiding needless products, an inversion and
an awkward subtraction and (2) loss of numerical accuracy, the conditioning
of Ly being the square of the conditioning of Y;_; (the conditioning says
how sensitive the result is to inaccuracies in the data—an important issue as
much of the data used in system theory is often approximate.)

12.6 Discussion items

1. Just as with the Kalman filter, what could be called the ‘Bellman’ filter
is the result of a simple inner-outer factorization (in the Kalman case:
an outer-inner factorization). So: formally, one can be considered the
dual of the other. Or, more precisely: the Bellman filter is a Kalman
filter on the dual system. This should be more than a pure technical-
ity: both filters solve the same generic optimization problem but in a
different context!

2. We have approached the optimization problem purely from a ‘Moore-
Penrose’ approach (except in the section on dynamic programming,
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where we briefly worked on a Lagrangian). A different approach could
be called ‘Hamiltonian’, proposed by Bellman and extensively discussed
in the classical book of Luenberger [27], and which has found wide ac-
ceptance in the control community, e.g., in the not less classical treat-
ment of Anderson and Moore [2]. This approach is considerably more
general than our Moore-Penrose shortcut, which can be considered a
special case. Here is briefly how the Hamiltonian approach works, spe-
cialized to deterministic case (i.e., with all noise terms put to zero).

One considers the Lagrangian of eq. in its unadorned form, and
adds the system equations as constraints. This produces the augmented
Lagrangian, with an added Lagrangian multiplier vector A:

n+1 n n
Ea = ZxéM];kak + ZuéNk'Nkuk — Z )\,2 (xk—i-l - Akl’k — Bkuk)
k=1 k=0 k=0

(12.31)
Requesting the gradients to be zero (a necessary condition for a min-
imum along the constraint trajectory is that the gradient of the cost
function be parallel to the gradient of the constraint) produces:

Vxn+1£a . 2M7;+1Mn+1xn+1 — )\TL+1 =0
kalk:Oana . 2Mk{kak - )\k71 + A/;)\k =0
vuk“g:o...nﬁa . 2N,€’Nkuk + B,é/\k =0

VAk:k:O-unﬁa D T — Apwr — Bru, =0

(12.32)

i.e., a forward recursion for z;, with initial condition z and a (coupled)
backward recursion for Ay with initial condition A, still to be deter-
mined (to meet the terminal condition given by the first equation in

1232 >\n+1 = 2Mn{+1Mn+1xn+1):

Aot = Al + 2M] Mz, (12.33)

This then leads to the ‘Hamiltonian system of equations’, often cited
in the literature:

Th41 . Ak —Bk(QNk/Nk)_lBé Tk
{ et } = {QM,ng Al A (12:34)

This system cannot easily be solved as it is: it has partial boundary
conditions at both sides. One way of dealing with it is dynamic pro-
gramming: one starts from the far end and solves recursively for the
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‘optimal return cost functions’, which one actually knows at the far
end and which can then be determined recursively by a backward re-
cursion. The optimal cost function at some intermediate point k is a
function of the state xj reached at that point and which is unknown
until the initial state is reached. In the quadratic case the optimal cost
function has a simple form: z/Ljxy, so that the recursion reduces to
a recursion on Lg, namely the Riccati recursion [12.30, which, in turn,
reduces to the square-root recursion and as a result Ly, = Y,/Ys.
This makes the circle round, and one can surmise from our previous
treatment (or prove directly) that

)\k+1 = 2Yk/kak+1 = 2Lk+1xk+1 (1235)
which basically propagates the cost function backwardly.

. Our treatment has been a purely LTV treatment with a finite hori-
zon. Other flavors, like LTI and an infinite horizon can pretty easily
be accommodated using the same basic principles, be it with further
assumptions. It is interesting to discuss various alternatives.

. What about ‘optimal time control’ given constraints on the inputs
and maybe on the states as well? Considering the noise-free case
again, the simplest instance would likely be getting the state to zero
with a prescribed energy budget. This can be done using the least
squares theory of this chapter, with some adaptations. Let the en-
ergy necessary to bring an initial state zy to z,,1 be measured as
|uo.n |3 (a different quadratic norm can easily be accommodated), then
the minimal energy needed to bring a state xy in the pre-image of
By zero in one step is given by ||BlAyzo|2. By the same reason-
ing, in two steps it would be || [ A1By B ]TAlAOxOHQ for states that
can be brought to zero in at most two steps, etc... with |ug.,||*> =
[ [ A, A By ‘ e ‘ B, ]TAn -+ Ayz0]|? for states that can be brought

to zero in at most n steps. A computation of RILH =] A, A1 By ‘ e
is hence necessary. R, is the reachability operator of a system with
an n + 1 horizon starting at 0. An interesting issue is how to deal
with this case efficiently. {A, B} can be brought to input normal form
by a backward recursion, starting at position n and recursing down to
position 0. This is reasonably efficient, but has to be redone when one
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moves to position n 4 1 etc... Is it possible to use results obtained at
stage n to update to stage n+ 17 Once this is done, then one can make
diagrams of minimal times needed to bring various states to zero given
an overall energy budget for the inputs, an issue that is also very much
worth exploring further.

It seems that we have reached the possibilities of quadratic optimization
at this point. If one wants to go further, and e.g., investigate what
minimal time control would be given a bound on the maximal power
available, then the whole optimization process becomes non-quadratic
and simple formulas for the return cost functions are lost. Nonetheless,
the dynamic optimization principle remains valid and will still lead to
adequate feedback laws, e.g., the famous ‘bang-bang’ control laws. For
a nice exposition on these questions, see [13].

5. There are many examples of dynamic programming in different con-
texts. Omne very common one is the ‘Viterbi algorithm’ in decoding
theory, namely to decode convolutional codes used in various coding
schemas for telecommunications. Interestingly, the Viterbi algorithm
uses a state space description to model the statistics (transition prob-
abilities) of state propagation, rather than the propagation itself and
searches for the most optimal path in a probabilistic sense.

12.7 Notes

1. The treatment of the optimal control problem as defined here was orig-
inally proposed by Bellman [7], who was inspired by the Lagrangian-
Hamiltonian approach in modern mechanics. This seminal work gave
a new boast to control theory, which so far was mostly based on input-
output considerations, with root-locus techniques playing a major role.
The big difference in the new approach is the use of state-space mod-
els and state feedback. A huge literature and many novel applications
followed. For excellent if not classical introductions to the subject we
already mentioned the books of Luenberger and Anderson-Moore. Our
approach in this chapter is much more modest and aims only at showing
(1) the connection with the basic numerical algebra methods we propose
for dynamical system theory, at least in the more restricted quadratic
setting and (2) that inner-outer factorization plays the central role.
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Although it was clear from the start what the connection is between
inner-outer factorization and quadratic optimization, this has not been
the approach chosen in most of the literature, which has been heav-
ily biased towards deriving and solving the resulting Riccati equation.
Both from a theoretical and a numerical point of view this approach
is questionable, because the move to the Riccati equation weakens the
original form (with a disastrous loss of numerical accuracy) and thereby
omits essential properties. This will become the more apparent when
we treat more involved problems such as generalized Moore-Penrose
inversion or spectral factorization in the next chapters.

. Optimal control in the form presented in this chapter is not the only
control issue, not even the only optimal control issue. In later chapters
we shall consider other interesting forms of control such as H-infinity
or robust control, where the cost to be optimized is not expressed in
terms of state and input quantities, but in terms of operators mapping
various inputs to various outputs. However, traditionally control was
viewed mainly as a stabilization method, whereby output-input control
is applied to stabilize the input-output transfer function of the system
under consideration.

. The discrete time, linear treatment given here is exemplary for the
basic mechanisms occurring in an optimal control situation. However,
the original treatments (like the one of Bellman, o.c.) were put in a
continuous time, non-linear setting. This yielded a very powerful and
general theory. One may wonder whether the inner-outer approach we
followed can be extended to such settings, and that appears indeed to
be the case, following the lead proposed by Ball and Helton, see [6]. We
shall come back to this issue in a later chapter. Even further extensions
are very much possible and do not seem to have been exploited in
the literature, e.g., to discrete-event or so-called hybrid systems: these
are systems that combine discrete-time components with continuous
evolution in between. There are good arguments for the statement
that, from a numerical point of view, all these more general situations
can be reduced (with quite a bit of effort) to the inner-outer situation
we have described in this chapter.
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Chapter 13

Appendix 1: Applied Linear
Algebra Summary

13.1 Preliminaries

In this section we review and give a summary of the algebraic concepts and
notation used in this book. For more information, look up a basic textbook
in linear algebra like [36] and one on numerical linear algebra like [15].

Logic and sets

All mathematics is based on an underlying understanding of logic and set
theory, see e.g., [I7]. The most elementary form of mathematical logic is
proposition logic, which only handles a simplified algebra of “truth values”
and is closely related to Boolean algebra. The extension of proposition logic
to predicate logic provides the common framework in which most basic math-
ematics is formulated. We borrow from it its basic notation, and its basic
modes of reasoning. Predicate logic extends proposition logic by the intro-
duction of quantors, informally constructed as follows:

Quantor, Variable and Scope : Property(Variable)
V(x € human) ; will die(x)
V(x € male)3( y € female) : married(z, y)
Yi=1:n ; w;

The latter in short notation:

D it Wi
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The first of these propositions is thought universally valid. The second is
not true. The third is not a proposition. It would be one if one would write
> ie1.n Wi = 10, which, given values for the u; could be true or not.

Quantors are not commutative, in particular: V3#3V—one must interpret
Vedy @ -+ as Vo (Jy: )E] Brackets must be used for nesting when the
meaning is unclear. Most mathematical objects are described by a construct
of predicate logic:

Sets: {x[€ Scope] : logic specification of the set of x’s}.

Example: {z € Integers : Jy € Integers(z = 2y)} specifies the set of even
integers.

Numbers

We will commonly use the following sets of numbers:
Integers Z o, —1,0,1, -
Reals R -

Complex numbers C

for a € C:

conjugate: <

!Consider, e.g., Yoy married(z, y) = Jy¥o married(x,y)?
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Vector Spaces

A vector space X R or C as “base spaces” is a set of elements
called vectors on which an operation “addition” is defined with its normal
properties (i.e., the inverse exists, a neutral element called zero (0) and the
addition is commutative and associative—it forms a so called abelian group),
and on which, in addition, multiplication with a scalar element of the base
space is defined as well, with a slew of additional properties (such as (z+y)a =
xa + ya, xab = bax = (ra)b and 0 = 0, in which z,y are vectors and a,b
numbers).
Concrete examples are common:

5
R? -3 ;
1 5 x
Yy
S+
C* | —3-6j ~ RS
2+ 2j

The addition for these is defined as:

1 Y1 1+
T Y2 To + Y2
T =]

and the scalar multiplication:
acRoracC:

T i axr
a Yy = Yy a = ay
z z az

(where only the middle term is a matrix multiplication—see further.)
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Example

The most interesting case for our purposes is where a vector is actually a
discrete time sequences {z(k) : k = 1--- N}. The space that surrounds us
and in which electromagnetic waves propagate is mostly linear (except when
relativistic effects play a role). Signals reaching an antenna are added to each
other.

Composition Rules:

Here is a summary of the most important consistency rules for vector spaces:
r+y = vt commutativity od addition

(x+y)+2z = x4 (y+2z) associativity of addition
0 neutral element
z+(—z) = 0 inverse of addition
(r+y)a = xa+ya distributivity of * w.r. +
x %0 = 0
x*1 = consistencies
(x*xa)xb = xxab

Relations between sets

Let X and Y be sets, a relation R is a subset of the set of all ordered pairs:

RCcXxY

It establishes a correspondence between some elements of the two sets. A

relation has:
adomain: {reX:(JyeY:(x,y) €R)}

arange: {yeY:(Frxe X:(x,y) €R)}
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Important special attributes of a relation can be:
univocal: [(z,y1) € Rl&[(z,y2) € R] = [y1 = o]
[called a partial function]
one to one (set isomorphism): univocal & [(z1,y) € R]&[(x9,y) € R] = [r1 = 2]

Functions or maps

A function (map) is a relation with the additional properties:

{ (1) its domain equals X

(2) it is univocal

Important special attributes of a function can be:

one-to-one
onto
isomorfism = one-to-one and onto

The set of all functions:
X—-Y

is a set of relations, hence a subset of the power set P(X x Y'), the set of all
possible relations between X and Y.

Vector space of functions

Let X be a set and Y a vectorspace and consider the set of functions

X =Y.
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We can define a new vector space on this set derived from the vector
space structure of Y

(fi + f2)(z) = fi(2) + fa(x)

=
>
=
+
<
1l
~
=
+
oy

[z1@2an] +[y1y2 - yn] =[T1+y1 22+ Y2 Tn + Yn]

As already mentioned, most vectors we consider can indeed be interpreted
either as continous time or discrete time signals.

Linear maps

Assume now that both X and Y are vector spaces, then we can give a
meaning to the notion ’'linear map’ as one that preserves the structure of
vector space:

flx1+22) = f(21) + f(22)
flax) = af(z)

we say that f defines a 'homomorfism of vector spaces’.

Bases

We say that a set of vectors {e;} in a vector space form a basis, if all the
vectors in the space can be expressed as a unique linear combination of
elements of the basis. It turns out that a basis always exists, and that all
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the bases of a given vector space have exactly the same number of elements.
In R™ or C" the natural basis is given by the elements

- 01
0
€ — 1
0
L 0
where the ’1’ is in the & position.
If
xy
X2
T = .
L,
then
xr = TLCL
k=1:n

As further, related definitions and properties we mention the notion of
span of a set {vy.,} of k vectors in a vector space V' (denoted ‘\/ vy,’): it is
the set of linear combinations {x : = ), ajv;} for some scalars {oy, }—it is
a subspace of V. We say that the set {v;} is linearly independent if it forms
a basis for its span.

Matrices

A matrix (over the field R or C) is 'a row vector of column vectors’ (we use
a MATLAB-like notation to indicate ranges of indices)

A= [a:,la:,Q % n]

)

where
a1 k
Q. =

Ak

© Patrick Dewilde 2015 207



CHAPTER 13. APPENDIX 1: APPLIED LINEAR ALGEBRA
SUMMARY

and each a;j is an element of the base field. We say that such a matrix
has dimensions m x n. (Dually the same matrix can be viewed as a column
vector of row vectors.)

Given a m x n matrix A and an n-vector x, then we define the matrix
vector-multiplication Az as follows:

T

T2
[a:,l to a:,n] . = .17 +-+ Q: nTp.

Tn

The vector x gives the composition recipe on the columns of A to produce
the result. (A dual, equivalent definition says that a matrix is a column of
rows etc...)

Matrix-matrix multiplication

can now be derived from the matrix-vector multiplication by stacking columns,
in a fashion that is compatible with previous definitions:

T Y1 o 21
Ty Yz - 22
[a:,l Q.o af:,n] .
xn yn N Zn
= [ Axr Ay -+ Az ]

where each column is manufactured according to the matrix-vector multipli-
cation recipe.

The dual viewpoint works equally well: one then defines row recipes forced
by the right hand side on the left. Remarkably, the result is numerically the
same! The product AB can be viewed as “column recipes given by the
columns of B” acting on the columns of A, or, alternatively, “row recipes
given by the rows of A” acting on the rows of B. Although the order of
operations is different, the results are the same provided multiplication and
addition are associative and multiplication is distributive w.r. to addition,
they do not need to be commutative (hence the rules can be extended to
block matrices—see further).

208 © Patrick Dewilde 2015



13.1. PRELIMINARIES

Linear maps represented as matrices

Maps C™ — C™ are represented by matrix-vector multiplications:

The way it works: map each natural basis vector ¢, € C" to a column
a.r € C™. The matrix A build from these columns will map a general x € C"
to Az, where A =[a.1 -+ a.p)].

The procedure works equally well with more abstract spaces. Suppose
that X and Y are such and a is a linear map between them (notation con-
vention: we use caps (A, B, H, ---) for matrices representing linear maps,
and lower case (a, b, h, ---) for (mostly) the corresponding ‘abstract’ oper-
ators i.e., the operator independently of the choice of basis in the domain
and image spaces.). Choose bases in each space, then each vector can be
represented by a ’concrete’ vector of coefficients for the given basis, and we
are back to the previous case. In particular, after the choice of bases, a will
be represented by a 'concrete’ matrix A mapping coefficients to coefficients.

This mechanism can easily be represented using formal matrix calculus,
as follows. Let a basis in the domain be {ej}r=1.,, then we may assemble
these abstract basis vectors (which all have the same dimension) into a vector

e = [ er -+ ey ], and suppose that we have also chosen basis vectors
{fr}k=1.m, collected into a matrix f := [ fi o fm ], then we can write
ae:[ael aen}:f[aﬂ a:,n:| (13.1)

thereby defining a “concrete” matrix A representing a. Given a vector £ = ex
with the numerical representation x in the e-basis, a§ = aex = fAx = fy for
a concrete representation y of the image ny with y = Ax—using the property
that f is a basis of the image space
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Operations on matrices
Important operations on matrices are:
Transpose: [A']i; = Aji (real space)
Hermitian conjugate: Nij = A, (complex space)

A
Addition: [A+ B] Al j+ Bi;
Scalar multiplication:  [aA];
Matrix multiplication: [AB]; ; Zk i kB j

Special matrices

We distinguish the following special matrices:
Zero matrix: 0,,xn, shorthand: 0
Unit matrix: 1, shorthand: [

Working on blocks

Up to now we restricted the elements of matrices to scalars. The matrix
calculus works equally well on more general elements, provided addition and
multiplication make sense, are associative, and multiplication is distributive
w.r. to addition, e.g., with block matrices provided dimensions match (but
other cases of multiplication can work equally well).

Operators

Maps which correspond to square matrices, e.g. a map between C" and itself
or between an ’abstract’ space X and itself represented by an n X n matrix,
are often called operators (although the notion even extends to more general
‘algebras’ of maps, which can be combined with each other by addition and
concatenation):

AeC"— C".
An interesting case is a basis transformation:

lerea--en] = [fi faro ful

such that frp = e1S1k + €289k + « - - €, produces a matrix S for which holds
(using 'formal’ multiplication):

[flfn] — [61---€n]8
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If this is a genuine basis transformation, then there must exist an inverse
matrix S7! s.t.

v e = [fre )87
Basis transformation of a matrix representation

Suppose that a is an abstract operator, and n = a&, while for a concrete
representation in a given basis [e; - - - €,] we have:

n 1
| =4
Yn Tn
(abreviated as y = Ax) with
[ T | [ Y1 |
5:[61...611] ’n:[el...en]
Tn Yn
then in the new basis:
[ 7 ] [ ]
E=1fiful | 2 |sm=1fiful |
Ty YUn
and consequently ) ) ) )
57\1 T
: - S
Ty Ty,
[ U1 | [ hn ]
. — Sfl .

J=S8"ly=5"Ar = S'AST = A%

with R
A=8"1tAS

by definition a similarity transformation.
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Determinant of a square matrix

The determinant of a real n X n square matrix is the signed volume of the n-
dimensional parallellipeped which has as its edges the columns of the matriz.
(One has to be a little careful with the definition of the sign, for complex
matrices one must use an extension of the definition—we skip these details).

The determinant of a matrix has interesting properties:

detA € R (or C)

det(S71AS) = detA

CL171 * s *
0 o9 *°* *
o det : = H?:l Qi
. *
0 (n.n
° det[a:71 e a:’i e a/:,k e a/:’n] — _det[a:71 e a:’k‘ e a:,i e a:,n]

detAB = detA - detB

The matrix A is invertible iff detA#£0. We call such a matrix non-
singular.
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Minors of a square matrix and minor matrix M

For each entry ¢, 7 of a square matrix A with ¢ and 7 € 1 : n there is a minor
mi ;.

k% % k%

— det — [ ithrow 1 i+j
* k% * %
L jthcolumn

(i.e., cross out ith row and jth column, multiply with sign.).
This leads to the famous Cramer’s rule for the inverse:
A~ exists iff det A#0 and then:
—1_ 1
detA

[m.]

(Note change of order of indices!)

Example:
137 1[4 -3
2 4 -2 -2 1

Another interesting property involving minors is the expansion of the
determinant along a column (or, dually, a row):

n
det A = Z Qi 10 5

i=1

(note that the result is independent of j!).

The characteristic polynomial of a matrix

Let: A be a variable over C then the characteristic polynomial of a square
matrix A is (for z a complex variable)

xa(z) = det(zI, — A).

Example:

[rae s

= (z—1)(2—4)—6

= 22—-52-2
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The characteristic polynomial is monic, the constant coefficient is (—1)"
times the determinant, the coefficient of the n-1th power of z is minus the
trace — trace(A) = >, a;;, the sum of the diagonal entries of the matrix.

Sylvester identity:

The matrix A satisfies the following remarkable identity:

xa(A) =0

i.e. A" depends linearly on I, A, A% ---  A™! (see the section on Schur
similarity for the indication of a proof).

Matrices and composition of functions

Let:
f:X—=>Y g:Y—>Z

then:
gof:X —=Z:(go f)(x)=g(f(x)).

As we already know, linear maps f and g are represented by matrices F' and
G after a choice of a basis. The representation of the composition becomes
matrix multiplication:

(9o f)(x) = GFx.

Norms on vectorspaces

Let X be a linear space. A norm || - || on X is a map || - || : X — R™ which
satisfies the following properties:

a. |zl =0
b. |z =0&2=0
c. |laz| = |a| - ||z

d |z =z < llz =yl +ly — =]
(triangle inequality)
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The purpose of the norm is to measure the ’size’ or 'length’ of a vector
according to some measuring rule. There are many norms possible, e.g. in

C": The '’ norm: .
[EE e
i=1

The quadratic norm:

n 3
]2 = [Z WQI
i=1

The ’sup’ norm:
2]l = sup (|:])

i=1--n

n 2
Iz, = [Zmr%]
=1

(it does not satisfy the triangle inequality), but it can be used to measure
sizes as well—it, and its siblings of the form [|z||, with 0 < k& < 1 have an
important role to play in signal processing: they strongly favor the directions
of the natural basis.

Unit ball in the different norms: shown are the respective ‘unit balls’
{z:[lzfl = 1}.

Not a norm is:

~ - _ Bo
\\“BQ
|- - -
\\ /31/2

An interesting question is: which norm is the strongest? (A norm that
constraints more is stronger! In the definition here we have ||z]|s < [|z]l2 <
|z|l1, hence ||z||; constraints the most: it may still be pretty large when the
others are already small!))

The general p-norm has the form:

1

el = [l (0= 1)
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P-norms satisfy the following important “Holder inequality”:
Let p>1, ¢=p/(p— 1), then

n
E TiYi
i=1

< [lzllpllyllq

Inner products

Inner products put even more structure on a vector space than norms and
allow us to deal with 'orthogonality’ or even more general angles!

Let: X be a vector space (over C).

An inner product is a map X x X — C such that:

a. (y,2) = (2,9)
b. (ax +by,z) =a(zx,z)+ by, 2)
c. (z,2)>0

d. (z,2)=0&2=0

Hence: ||z| = (z,2)? is the Buclidean norm ||z]|s.

Question: when is a normed space also an inner product space compatible
with the norm?

The answer is known: e.g., in the real case, when the parallelogram rule
is satisfied:

lz+yl1* + llz = yl* =2 (lllI*+ [ v |I°)

(Exercise: define the appropriate inner product in term of the norm!)
The natural inner product on C™ is given by:

o

n ) ) i o

(@,y) =Y afi=y'r=[n T | .
i=1 .

Tn

The gramian of a basis is defined as
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Definition 9 Let: {f;}i=1..n be a basis for C", then its Gramian G is given

by:
G = (1)
fi
= | | i Sl
fa
A basis is orthonormal when its Gramian is a unit matrix:
G=1,

Hermitian matrix: a matrix A is symmetric (in the real case) or hermitian

(in the complex case) iff
A=A’

ie., in all cases: [A'];; = A;;—this becomes, in the block case, [A];; = A],

Definite matrices

Definitions:

Definition 10 Let A € C™ ™ be hermitian (or, in the real case, symmetric)
then, given any inner product, A is positive (semi)definite if

Vo : (Az,x) >0
A is strictly positive definite if
Vo#0: (Ax,x) >0

(the property is independent from the inner product chosen.)
The gramian of a basis is always strictly positive definite!

Operator norms
Let X and Y be normed spaces, and
f: X—=>Y
a linear map, then
f(@)lly
o ” IIECH))! e 7]

is a valid norm on the space X — Y. It measures the longest elongation of
any vector on the unit ball of X under f.

1F1l =
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Operators on an inproduct space

Let
f: X—=Y

where X and Y have specific inproducts (-,-)x and (-, +)y.
The adjoint map f* is defined as:

Y = X Vavy[(f(y), ) x = (v, f(2))y]

(note that it depends on the specific inproducts!)

(F*(y), ) = (v, f())

On matrices which represent an operator in a natural basis there is a
simple expression for the adjoint: if f is y = Az, and (y, f(z)) = y' Az, then
y' Az = (A'y)'x so that f*(y) = A’y. (This also shows quite simply that the
adjoint always exist and is unique, given the inproducts).

The adjoint map is very much like the original, it is in a sense its 'com-
plex conjugate’, and the composition f* o f is a “square” or a “covariance”,
depending on the context.

We say that a map is self-adjoint it X =Y and f = f*, and that it is
1sometric if

Va || ()] = =]

in that case:
ffof=1Ix

It is said to be co-isometric iff its adjoint is isometric.
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Unitary (Orthogonal) maps

A linear map f is unitary (orthogonal in the real case) if both f and f* are
isometric:

[fof=1Ix
and
foft=1y
In that case X and Y must have the same dimension, they are isomorphic:
X=~Y.
Example:

1

o A= | V2 ] is isometric with adjoint (in the natural inner product)
V2
1 1
Al =[——
[ 7 \/5]
e The adjoint of
A—

-
Sl

in the natural inner product, is

1 1
A= |
V2o V2

Both these maps are isometric and hence A is unitary, it rotates a
vector over an angle of —45°, while A’ is a rotation over +45°.

Norms for matrices

We have seen that the measurement of lengths of vectors can be bootstrapped
to maps and hence to matrices. Let A be a matrix.

Definition: the operator norm or euclidean norm for A is (consistent with
the previous definition):

Az
”AHE = sup H H2
a0 [z
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It measures the greatest relative elongation of a vector x subjected to the
action of A (in the natural basis and using the quadratic norm).
Properties:

o |Alle = supy,= [|Az]2
e A is isometric if A’A = I, then ||A||g = 1, (the converse is not true!).
e Product rule: ||FG|lg < ||F|e|G| E&-

Often, when the matriz norm is written without an index (as ||A||), the
euclidean norm is meant—the context should make that clear.) Note that the
euclidean norm is not a quadratic norm (in contrast to the Frobenius norm
that we define below): it does not satisfy the parallelogram rule.

Contractive matrices: A is contractive iff ||Al|z < 1.

Positive real matrices: A is positive real if it is square and if

Vo (A+ ANz, z) > 0.

This property is abbreviated to: A+ A’ > 0. We say that a matrix is strictly
positive real if 2'(A+ A")z > 0 for all 20.

If A is contractive, then I — A’A > 0.

Cayley transform: if A is positive real, then S = (A — I)(A + I)7! is
contractive. Conversely, if (I —S) is invertible and S is contractive, then
A:=(I+ S)(I — S)7!is positive real.

Frobenius norm

The Frobenius norm is the quadratic norm of a matrix viewed as a vector,
after rows or columns have been stacked into a single vector:

|AllF = [Z |am~|2]

ij=1
Properties:
o ||A]|% = trace A’A = trace AA’

e ||Allg < ||Al|F, the Frobenius norm is “stronger” than the euclidean—
when the Frobenius norm is small, then the euclidean norm will a
fortiori be even smaller (i.e., small Frobenius = small euclidean).
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Kernels and ranges
Definition 11 Let A be a matriz, interpreted as a linear map X — 'Y, then
o kernel of A: K(A) ={x: Az =0} C X
e range of A: R(A)={y: (FTxr e X:y=Ax)} CY
e co-kernel of A = kernel of A’: {y: Aly=0} CY
e co-range of A = range of A': {x: Fy:z=A'y)} C X
(similar definitions hold for an abstract operator, with “adjoint” instead of

“conjugate”.).

Orthogonality

All vectors and subspaces considered in this subsection live in a large inner-
product (Euclidean) space.

e vectors: x Ly < (x,y) =0
e spaces: X LY & (Ve e X)(VyeY): (z,y) =0

o direct sum: Z = X @Y & (X L Y)&(X,Y span Z), ie., (Vz €
Z)(Fr € X)(Fy €Y) : z=x+y (in fact, x and y are unique projections
of z on respect. X and V).

Example w.r. kernels and ranges of a map A: X — Y
X =K(A)®R(A")
Y =K(A") @ R(A)

Projections

Let X be an euclidean space, with natural inner product.
e P: X —Y is a projection if P? = P.
e a projection P is an orthogonal projection if in addition:

Vee X:Px Ll ([l —-Px
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e Property: P is an orthogonal projection if (1) P? = P and (2) P = P".

Application: projection on the column range of a matrix.
Let
A= {(1;71 a.o - a:,m]

such that the columns are linearly independent. Then A’A is non-singular

and
P= A(A/A)*lA’

is the orthogonal projection on the column range of A.
Proof (sketch):

e check: P2=P
e check: P'=P

e check: P projects each column of A onto itself.

Eigenvalues, eigenspaces

Let A be a square n x n matrix. Then A € C is an eigenvalue of A and = an
eigenvector, if

Ax = .

The eigenvalues are the roots of the characteristic polynomial det(zI — A).
Schur’s similarity triangularization: for any n x n square matrix A
there exists an uppertriangular matrix

S11 -~ Sin
S =
0 Snn

and a unitary matrix U such that
A=USU".

The diagonal entries of S are the eigenvalues of A (including multiplicities).
Schur’s eigenvalue theorem is easy to prove by recursive computation of a
single eigenvalue and deflation of the space. Schur’s theorem can be used to
show that x4(A) = 0 where xa(z) is the characteristic polynomial of A.

A bit more difficult is Jordan’s theorem.
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Jordan’s theorem

Jordan blocks are square matrices of the form

Al 0

A A
o1
0 A

A is the eigenvalue, if the block has dimension ¢ then A has multiplicity o
but defect 6 — 1 since the block has only one eigenvector.

Jordan’s theorem: A is similar to a block-diagonal matrix of Jordan
blocks, i.e. there exists an invertible matrix 7" such that

Ay 0
A
A=T 2 7!
0 Ay |
where
Ai 0
Ai = A

1

0 A

Because of its importance for dynamical systems, we give an indication
of how a proof is constructed. First, one defines what is a called an extended
eigenspace attached to a given eigenvalue A. When A\ is indeed an eigenvalue,
then ker(A—\) is not empty. Next, it may be that ker(A—\)? (which contains
ker(A — \)) is strictly larger than ker(A — ). Continuing in this fashion, one
finds a smallest integer r > 1 for which ker(A — A\)" = ker(4 — X\)™Y. One
can then show that K := ker(A — \)" = ker(A — \)*® for all integers s > r. K
is by definition the extended eigenspace belonging to .

Next, let R = ran(A — \)", and let U be the full space on which A is
defined. One shows: (1) U .= K@ R; (2) AKX C K (i.e. K is an invariant
subspace for A); (3) AR C R (or R is also an invariant subspace for A);
(4) X is the sole eigenvalue of A|x; (5) A is not an eigenvalue of A|g. The
consequence of all this is that A can be transformed by similarity to a block
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decomposition , whereby A has A as sole eigenvalue and A is not

Ay
an eigenvalue of the reduced block Aj.

The next step is then to determine a structure for A. This is basically
achieved by determining what is known as Jordan chains. Let R now be the
range of (A — \)""Y£0, with (A — A\)” = 0, and let #,70 be a vector in R.
Then (A — A\)t; = 0, and ¢ is an eigenvector of A. Next, presuming r > 1,
and because of the range assumption for ¢;, one finds a vector t5 such that
(A — ANty = t1, and then, presuming r > 3, t3 such that (A — \)t3 = to,
etc... until ¢,5#0 is reached, for which (A — \)t, = ¢,_; and the chain has to
end because otherwise one would have ¢; = (A — \)"t,,; = 0, contrary to
the original assumption on t;. The vectors ty,ts,--- ,t,. form by definition a
Jordan chain, and, because of the construction, we have the relationship
SO -

A

Al ty ot G ] =t b2 b ] N
Al
A
(13.2)
in which one sees a first Jordan block appearing. It is not hard to show that
the just defined ¢, are linearly independent, and that their span is an invariant
subspace for A. Moreover, only t; can be a vector in R. If dimR > 1, then
another non-zero vector in R can be found, independent from t¢;, and the
construction of a Jordan chain of dimension r can be repeated. This can
be done until exhaustion of the dimension of R, and one shows that all the
vectors so obtained are linearly independent (tedious, but straightforward
proof.) This may not yet exhaust all possibilities. We certainly have ran(A —
N1 c ran(A — A\)"=?) (assuming 7 > 1), so it may be that the collection
of vectors of type t, obtained in the previously constructed Jordan chains
do not span the whole space ran(A — A\)"=2) and one can find more vectors
to generate (smaller) Jordan chains, and again invariant subspaces spanned
by vectors that are independent of all the previous ones. This process can
be continued further, gradually decreasing r, and necessarily ends after all
possibilities have been exhausted, and the complete space of definition of A is
spanned by all the (generalized eigen-)vectors determined. Although the full
proof is quite technical (as one can imagine at this point), the construction
of Jordan chains has independent interest and good use in the theory of
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stability of ordinary differential equations and the solution of Lyapunov-type
equations.

11l conditioning of multiple or clusters of eigenvalues

Look e.g. at a 'companion matrix’:

0 —Po
A= |t
.0 :
0 1 —DPn—1

its characteristic polynomial is:
xa(z) = 2"+ pu12" o+ po.

Assume now that p(z) = (2 — a)" and assume a perturbation p.(z) =
(z—a)™ —e. The new roots of the polonymial and hence the new eigenvalues
of A are:

a+ en ™

Hence: an € error in the data produces an error of size en in the result

(take e.g. n =10 and € = 1075, then the error is ~ 1!)

13.2 Systems of Equations, QR algorithm

Let be given: an n X m matrix 7" and an n-vector b.
Asked: an m-vector = such that:

Tx=0b

n > m more equations than unknowns
Distinguish the following cases: n =m square
n < m less equations than unknowns
Although all these cases are important, we look first at the cases n > m.
The general strategy for solution is to use orthogonal transformations on
rows, because these are numerically desirable, and choose them in such a way
that the system becomes simpler. Let a and b be two rows in a matrix, then
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we can generate linear combinations of these rows by applying a rotation
matrix to the left (row recipe):

t11 tio — a — . t11a+t12b
ta1 too +— b — | | tara+tnd

or embedded:

[ 1 17 +— - — ] [ «— —
1 — — — - —
t11 t12 — a — . ti1a + tlgb
1 — - = | = —
to1 t22 — b — tgla + tng
i Lil+— - — | | — - — ]

Jacobi transformations

Assuming real arithmetic, the Jacobi elementary transformation (often called
Givens rotation) is:

cos¢ —sing

sing  cos¢
It represents an elementary rotation of a two dimensional vector over an
angle ¢:

A Jacobi transformation can be used to annihilate an element in a row
(with ¢ = cos ¢ and s = sin ¢):

c —s ap az -+ Qm | | cap —sby cag —sby -
S C b1 bg bm o 8(11+Cb1 SCL2+CZ)2
- \/|a1]2+|b1]2 ) ooeee ok
0 * ek
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when sa; + ¢b; = 0 or

which can always be done (of course, one does not compute the tangent, but

rather put
a b1
c —s a 2
[s c ]:{_Cb_l ﬁ] (13.3)
with ¢ = /a3 + b3!)

QR Factorization

A cascade of unitary transformations is still a unitary transformation: let
Qi; be a transformation on rows ¢ and j which annihilates an appropriate
element (as indicated further in the example). Successive eliminations on a
4 x 3 matrix (in which the - indicates a relevant element of the matrix, and
(--+) the previous result):

* x x * Kk %
Qe | L = [T T Qut) s [ L [Qute)
* x *
0 0 x * 0 « *
10 3 Q23(- ) 00 % ; Qo) — 00 - s Qsa(- )
0 ~ =% 0 0 0 =
n 0o - -
0 0 =%
0 0O

(The elements that have changed during the last transformation are denoted
by a 'x’. There are no fill-ins, a purposeful zero does not get modified in
subsequent operations.) The end result is:

R
@31024Q23Q14Q13Q12T = [ 0 }
in which R is upper triangular.
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Solving the system Tx =0

Let also:
Q34+ Qr2b =0
then Tz = b transforms to:
i1 Ti2 T13 51
a1
0 1roo 723 z | = B2
0 0 33 T /63
0 0 0 3 By

The solution, if it exists, can now easily be analyzed:

1. R is non-singular (ry;%#0,- - ,7,,,70), then the partial set

b

RI = /82
Bs

has a unique exact solution for any x obtained by backsubstitution:
~1
11 Ti2 T13 B ) .
r=| 0 roo 723 By | = | r9a(B22 — 12373303)
0 0 733 B3 7’3:31,63

(there are better methods, see further!), and:
1. if 5470 there is no exact solution for the original system,
2. if B4 = 0 we have found the unique solution.

2. when R is singular further analysis is necessary (one or more of the diag-
onal entries will be zero yielding more possibilities for contradictions—
we skip this case temporarily).

Least squares solutions

But... there is more, even when 3,70:
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provides for a 'least squares fit” it gives the linear combination of columns of
T closest to b i.e. it minimizes

Geometric interpretation: let
T = [t:,l t:,2 T t:,m]

then one may wonder whether b can be written as a linear combination of
t.1 etc.?
Answer: only if b € span{t.1,t.0,- -+ ,t.;n}!

Otherwise: find the “least squares fit”, the combination of ¢.; etc. which
is closest to b, i.e. the orthogonal projection b of b on the span of the columns.

Let us analyze these statements further: a QR-transformation rotates all
the vectors t.; and b over the same angles, with as result:
r.1 € span{e; },
.o € span{ey, ea}

etc., leaving all angles and distances equal. We see that the projection of the
vector 3 on the span of the columns of R is actually

b
Ba
Bs
0
Hence the combination of columns that produces the least squares fit is:
b
r=R"| f
Bs
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Formal proof

Let @ be a unitary transformation such that
R
r-aly]

in which R is upper triangular.
Then: Q'Q = QQ' = 1 and the approximation error becomes, with

B
Qb‘{@

conformal with the QR~factorization:

R
M%—M@=WTU¢—M%=H[O}x—mﬁzwm—ﬁﬂ?HWﬂi

If R is invertible a minimum is obtained for Rz = ; and the minimum
error is || B2z
Application: adaptive QR
The classical adaptive filter:

Tl Tk2 Tk3 Tkm

— ceee —=

® i& -0

Yk

Adaptor LO%%
1

T.m

At each time-index k, a data vector z(k) = [x1 - Tgm) of dimension m
comes in (e.g. from an antenna array or a delay line). We wish to estimate,
at each point in time, a signal y;, as Y, = ), Wy Tr,; — a linear combination
of the incoming data. Assume that we dispose of a “learning phase” in
which the exact value dj for y; is known, so that the estimation error we
are making e, = Y — di is known also (typically the estimation error is due

230 © Patrick Dewilde 2015



13.2. SYSTEMS OF EQUATIONS, QR ALGORITHM

to inaccuracies and undesired signals that have been added in and which we
call 'noise’).

The problem is to find an “optimal” wy;, given the sequences received in
the learning phase and the corresponding errors. We choose as optimality
criterion: given the data from ¢t = 1 to ¢t = k, find the wy; for which the
total error is minimal when the new weights wy; had indeed been used at
all available time points 1 < i < k and this in least squares sense (many
variations of the optimization strategy are possible).

For i <k, let yx,;, = >, x;pw;e be the output one would have obtained if
wy,; had been used at that time and let

11 T12 - Tim

To1 X222 -+ Tam
Xy = . . .

Tk1 T2 - Tkm

be the ’data matrix’ contained all the data collected in the period 1---k. We
wish a least squares solution of

kak,: —dyk = €1k

It

R )
Xk:Qk[ Ok],dlszQk{éz’;}

is a QR-factorization of X} with conformal partitioning of d and R upper-
triangular, and assuming Rj; non-singular, we find as solution to our least
squares problem:

-1
Wg. = Rk 5;{71

and for the total error:

k

Z[ek,i]2 = Vel QrQper,: = [|0r2

i=1

2

Note: the QR-factorization is done directly on the data matrix, no covari-
ance is computed. This is the correct numerical way of doing things.
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Recursive computation (RLS)
Suppose you know Rjy_1,0,_1, how to find Ry, d, with a minimum number of

computations?
We have:

. Xk—l o dl:k—l
Xk:—[ xk,m:|7d1:k—|: A },

and let us consider

Qr110
0 |1
as the first candidate for Q.
Then
- - Ry_
Qi [0] [ X | _ |5
0 1 1L Tk,

and ] o
Q],c—l 0 dl:k—l _ 5k—1,:
0 1 dk dk

Hence we do not need )1 anymore, the new system to be solved after the

previous transformations becomes:

Rk—l Wk,1
O . _ 5’6—1,:
: = i ,
k
Lk,: WEk,m
ie.
* * . *
0 * *
Wi
. 6k—1,:
0 Ce * : dy, ’
w
O k,m
BN

only m row transformations are needed to the find the new Ry, dy:
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* ok k% * *
* *
*

* ok ok x| | *
kokooko ok T * *
x T *
new values
* *
*
0 same
ok
000 0 * |new error contribution

Question: how to do this computationally? A dataflow graph in which
each r; ; is resident in a separate node would look as follows:
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Initially, before the first input, all r;; = 0. Just before step k the r;;
belonging to the first (k-1) steps are resident in the nodes. There are two
types of nodes:

< J

r
L[ A ¢
e I '} e
"\/rli»,xl
riNF +x?
Cc

vectorizing node: computes the angle ¢ from x and r

rotating node: rotates the vector { ; } over ¢.
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The scheme produces Ry, 0y, and the new error:

lewllz = /llex—l3 + 16441

Reverse QR

In many applications, not the update of Ry is desired, but of w; = R,;l(SkJ:m.
A clever manipulation of matrices, most likely due to E. Deprettere and
inspired by the old Faddeev algorithm gives a nice solution. Here is how one
gets R,;il and 041 1.:m:

Observation 1: let R be an m x m invertible matrix and u an m-vector,

then )

R ul|l | R' —R'

0 1 - 0 1 ’
hence, R~'u is implicit in the inverse shown.

Observation 2: let Q' be a unitary update which performs the following
transformation (for some new R and u, given vector = and value d):

R u R U6
Q"0 1|(=|l0 ¢
T d 0 O

(Q is thus almost like before, the embedding is slightly different—o is a
normalizing scalar which will be discounted).

Let us call R = [ R

0 1; } , similarly for f{, and ¢’ = [z d], then we have

~ I
¢ 1 0 gy

Taking inverses we find (for some a5 and ass which originate in the process):

1

Hence, an RQ-factorization of the known matrix on the left hand side yields
an update of R™!, exclusively using new data. A data flow scheme very much
like the previous one can be used.
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One pass orthogonal computation of the inverse

A somewhat similar technique yields a direct orthogonal computation of the
inverse of an invertible operator T of dimension n X n.

Observation 1: To adopt a classical notation, let us try to solve Tx = b,
assuming 7" to be invertible (the algorithm will actually show whether this
is indeed the case.). Suppose we do a QR-factorization of the augmented
T |1]0
b0 |1

system [ } , and let the Q-factor of dimension (n+1) x (n+1) be

Ql,l q1,2

2,1 422
vector and g2 a scalar quantity. Then the QR-factorization will have the

fOIIO“ iIlg fOI m:
T/ I O Q z ‘ Q/ 1 ‘ q2/71
! ' : D ‘ q/,2 ‘ Q2,2

It follows from the zero (2,1) entry in the R-factor (on the right hand side
and after pre-multiplication with Q'), that ¢ ,7" — g22b" = 0 and hence
Tqi2 = bgaz. When T is invertible, and assuming b#0, then ¢o» cannot be
zero, for, if it were also T'¢; » = 0 and hence ¢, » = 0, and @) would have a full
zero column, which is impossible for an orthogonal matrix. Hence, ¢35 is in-
vertible when T is, and we have T'q; 2q5, 5 = b giving the solution z = 71,29, ;.
Observation 2: from the previous observation it follows that an augmented
Gentleman-Kung array will yield a one pass solution to the system of equa-
tions Tz = b in “normalized form” with normalization factor ¢z 2. To obtain
the full inverse, one must compute n solutions, for each natural base vector
er one. This can be done economically, using a single Gentleman-Kung array,
but allowing for two phases of execution:

Phase 1: compute a QR-factorization of

decomposed as () = [ } , in which ¢ ; is a row-vector, ¢; 2 a column

[T'[I[o]=Q[R|Q"|0]

(where the last column is just a column of zeros), with an augmented (2n+1)
Gentleman-Kung array. This uses the array in a “setting mode”, where all
the rotation angles are being determined. Next,

Phase 2: now, keeping the rotation angles determined so far, put the array in
a new mode, to be called “single row compute”, whereby a single global row-
update operation is done, the output is computed and then the array is reset
to the result of the previous step. Do this step for subsequent row inputs of
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the type [ ek ‘ 0 ‘ 1 } Each step will produce the subsequent columns f; of

the inverse matrix: T—! = [ R } Also in this step new rotation
angles are being produced, but they are reset to their previous value after
each step.

Observation 3: the previous computation can be made more efficient, by shar-
ing some of the vectorizations and subsequent rotations between the stages.
Instead of working this out for the case treated in the precious paragraph, let
us do it for the case of the data estimation, which we dealt with in section
13.2l This will lead to an attractive architecture, in which both the R-factor
and its inverse can be updated in a single pass. To start with, let us assume
that we dispose of an upper triangular factor R, which we have to invert. The

one-pass inversion of the first basis vector e] = [ 10 -+ 0 } produces
[Q{,l G31 } { R 0} _ [R Qi1 2 } (13.4)
(11’,2 42,2 —e; 01 0 Ch/,z q2,2

the first column of the inverse of R as qi2¢,, 5 with just one single rotation.
Starting again with the original R’, one first performs one rotation on the
first and second row of R’, thereby eliminating [R'|s; = R; leading to an

update of R’ and adjoining @’ for further use:

~

QIR 1]=|R Q] (13.5)

(notice that R’ is not exclusively lower any more, there is a fill in at the
position (1,2), while the position (2,1) has been annihilated.). This is an
update step, and we now reset [ R Q' } = [ R’ @’ } (the original @’
was just I.). Next, there is the compute step, in which the —1 entry in e) can
be eliminated against (the meanwhile new) Ry - the other entries on the
second row being zero, so that no fill-ins are created in this half step. The
next update step now consists in further partial elimination of the entries
[R']13 and [R']23, to a produce a solitary [R']s3 on row 3. This is then
followed by a compute step with —ej to produce the third row the inverse.
The procedure easily continues... and yields the inverse of R’.

Putting things together

Working on the (most common and interesting) case of recursive data-updates
of section [13.2] one would first input a few data vectors to create a first ver-
sion of the m x m upper triangular matrix R, until there is confidence that
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Figure 13.1: The full array. The diagonal vectorizing blocks also contain the
diagonal elements of T = R™!, namely ¢, = r,:,lﬁ Both R and T are updated
at each introduction of a new data vector x.

the matrix is indeed invertible (to be seen at the value of the diagonal en-
tries). After this first pass, one would start working on the inverse of R,
which one would locate in a complementary adjoint array. Let T := R™!,
then one would first determine T/, locate it in a lower Gentleman-Kung type
array (this requires running a transpose operation on the array, a somewhat
awkward operation, which can be streamlined through diagonal communica-
tion), and then run through the inversion algorithm described in the previous
subsection. After this initialization of 7' (in transpose form), the updates
using new data vectors happen in parallel between the upper and the lower
array, using the same rotation arguments. The details are left to the reader,
the overall array is shown in figure [13.1

The algorithm presented may be called a true “one-pass” algorithm, because
the input data flows unidirectionally through the array, first the data be-
longing to 7', and then just the augmented input vectors e;. It has the same
overall complexity O(n?®) as any other method, but the avoidance of the
back-substitution step is a great advantage, and the algorithm is particularly
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well suited for streamlined implementation on an array processor, besides
being guaranteed backward stable (at the cost of some additional numerical
complexity, which, however, can be cleverly be dealt with.).

The underdetermined case

This case is fundamentally different from the previous: now we have insuf-
ficient data to characterize the solution, if there is any. The situation often
occurs in practice when one has to reconstruct an object (say an image) with
insufficient data. Here is a short note on how orthogonal rotation can help
in the RQ-form. So we have Tx 7 =7 b with T of dimensions n x m and
n < m. An RQ-factorization of T produces

T:[OR][%} (13.6)

in which R spans the range of 7" and ()] its kernel. It may be that R is
non-square, which would happen when the (partial) system is redundant or
even inconsistent. Let us first assume that is not the case and R is invertible.
We then have RQ.x = b and the whole collection of solutions is given by

r=QisR'b+ Q{Qv (13.7)

in which v is an arbitrary vector with the same dimensions as b (actually
one could take w := Q{Q1v, an arbitrary vector in the kernel of 7"). In case
T does not have full row-rank and hence R is not square a more delicate
analysis is needed combining both the over- and the underdetermined case,
and is left to the reader.

Francis’ QR algorithm to compute the Schur eigenvalue
form

A primitive version of an iterative QR algorithm to compute the Schur eigen-
value form goes as follows. Suppose that the square n x n matrix A is given.
First we look for a similarity transformation with unitary matrices U - U’
which puts A in a so called "Hessenberg form’, i.e. uppertriangular with only
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one additional subdiagonal, for a 4 x 4 matrix:

b e
bl D I o
Dl S I

S O x X

0

(the purpose of this step is to simplify the following procedure, it also allows
refinements that enhance convergence — we skip its details except for to say
that it is always possible in (n — 1)(n — 2)/2 Jacobi steps).

Assume thus that A is already in Hessenberg form, and we set Ag = A.
A first QR factorization gives:

Ay = QoRy

and we set A; = Ry()y. This procedure is then repeated a number of times
until Ay is nearly upper triangular (this does indeed happen sometimes - see
the discussion further).

The iterative step goes as follows: assume A;_; = Q_1Ri_1, then

Ay = Ry 1Qp-1.
Let’s analyze what we have done. A slight rewrite gives:

QolRy = A
Qo1 R = AQ
Qo@1Q2Ry = AQo(

This can be seen as a fixed point algorithm on the equation:
U = AU
with Uy = I, we find successively:

0y, = A
U2y = AUy

the algorithm detailed above produces in fact U, = Qg --- Q. If the algo-
rithm converges, after a while we shall find that U, ~ Uy, and the ’fixed
point’ is more or less reached.
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Convergence of a fixed point algorithm is by no means assured, and even
S0, it is just linear. Hence, the algorithm must be improved. This is done
by using at each step a clever constant diagonal ’offset’ of the matrix. We
refer to the literature for further information [I5] [35], where it is also shown
that the improved version has quadratic convergence. Given the fact that
a general matrix may have complex eigenvalues, we can already see that in
that case the simple version given above cannot converge, and a complex
version will have to be used, based on a well-choosen complex offset. It is
interesting to see that the method is related to the classical 'power method’
to compute eigenvalues of a matrix. For example, if we indicate by [-].; the
first column of a matrix, the previous recursion gives, with

Qn = QoQ1---Cn

and A\,11 = [Ru+1]11,

>\n+1 [Qn—l—l]:,l - A[Qn]:,l'

Hence, if there is an eigenvalue which is much larger in magnitude than the
others, [Q,+1].1 will converge to the corresponding eigenvector.

QZ-iterations

A further extension of the previous concerns the computation of eigenvalues
of the (non singular) pencil

A—-)\B

where we assume that B is invertible. The eigenvalues are values for A and
the eigenvectors are vectors x such that (A — AB)z = 0. This actually
amounts to computing the eigenvalues of AB~!, but the algorithm will do so
without inverting B. In a similar vein as before, we may assume that A is in
Hessenberg form and B is upper triangular. The QZ iteration will determine
unitary matrices ) and Z such that A; = QAZ and B; = QBZ, whereby A;
is again Hessenberg, By upper triangular and A; is actually closer to diagonal.
After a number of steps Ay will almost be triangular, and the eigenvalues of
the pencil will be the ratios of the diagonal elements of A; and By. We can
find the eigenvectors as well if we keep track of the transformation, just as
before.
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13.3 The singular value decomposition — SVD

Construction of the SVD

The all important singular value decomposition or SVD results from a study
of the geometry of a linear transformation.

Let A be a matrix of dimensions n x m, for definiteness assume n > m
(a ’tall’ matrix). Consider the length of the vector Az, ||Az| = Va'A’Ax,
for ||z|| = 1.

When A is square non singular it can easily be seen that Ax moves on
an ellipsoid when z moves on the unit ball. Indeed, we then have z = A~y
and the locus is given by y’A~'A~'y = 1, which is a bounded quadratic form
in the entries of y. In general, the locus will be an ellipsoid or it will be
an ellipsoid in a subspace, but the proof is more elaborate (e.g., it uses the

SVDI).

The ellipsoid has a longest elongation, by definition the operator norm
for A: o1 = ||A]|. Assume 01#0 (otherwise A = 0), and take v; € C™ a
unit vector producing a longest elongation, so that Av; = oju; for some unit
vector u; € C™. It is now not too hard to show that:

AUl = 01Uy
A’u1 = 0101,

and that v; is an eigenvector of A’A with eigenvalue o?.
Proof: by construction we have Av; = oju; maximum elongation. Take any

w L vy of unit norm and look at the effect of A on (vi + A\w)/+/1 + |A|2. For very
small A the latter is ~ (vi+Aw)(1—1[A?) & vi+Aw, and A(vi+Aw) = o1u +AAw.
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The norm square becomes: v{ A’ Avy + Mvj A’ Aw +  w’ A’ Avy + O(|A\|?) which can
only be a maximum if for all w L vy, w'A’Avy = 0. It follows that A’u; must be
in the direction of vy, easily evaluated as A’u; = oqv1, that o2 is an eigenvalue of
A’ A with eigenvector vy and that w 1L vy & Aw L Av;.

The problem can now be deflated one unit of dimension. Consider the
orthogonal complement of C™ & span{v;}: it is a space of dimension m —
1, and consider the original map defined by A but now restricted to this
subspace. Again, it is a linear map, and it turns out that the image is
orthogonal on span(uy).

Let uy be the unit vector in that domain for which the longest elongation
09 is obtained (clearly o7 > 05), and again we obtain (after some more proof)

that
AUQ = 03Uy

AIUQ = 092V2
(unless of course oo = 0 and the map is henceforth zero! We already know
that ve L vy and ug L u;.)

The decomposition continues until an orthonormal basis for R(A’) as
span(vy, vg, « -+, Ug) (assume the rank of A to be k) is obtained, as well as a
basis for R(A) as span(uy, us - - - ug).

These spaces can be augmented with orthonormal bases for the kernels:
Vg1 - Uy for K(A) and ugyq - - u, for K(A’). Stacking all these results
produces:
¥ 0 ]

A[UIUQ"'UkUk+1"'Um]:[u1u2"'ukuk+l"'un] |: 0 0

where ¥ is the k x k diagonal matrix of singular values:

01
02

2:

O
and o1 > 09 > - -+ > 04, > 0. Alternatively:
_ X0 /
A—U{ 00 } %
where:
U:[UIUQ"ukuk-i—l"unLV:[UlUQUkvk+1'vm]

are unitary matrices.
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Singular Value Decomposition: proof

The canonical svd form can more easily (but maybe with less insight) be
obtained directly from an eigenvalue decomposition of the Hermitean matrix
A’A. From the form it is easy to see that

[ 32 0
rA /
AA—V_O O_V
and 52 )
I 0 /
AA—U_O O_U

are eigenvalue decompositions of the respective (quadratic) matrices. Con-
versely, and starting with A’A and its eigenvectors (in descending order of
eigenvalues) V' = [vl cee Uk Vgl ottt ], with o; > 0 for ¢ = 1---k,
we may then define u; = Avi% for i = 1---k and find AA™w; = o?u,,
and for the u; with ¢« > k a basis for the orthonormal complement of the
u;, ¢ = 1---k. It then follows immediately that AV = UY with U =
[ Up v Ug Ugyy v } This produces an easy direct proof of the SVD.

The o;’s are called singular values, and the corresponding vectors u;, v;
are called pairs of singular vectors or Schmidt-pairs. They correspond to
principal axes of appropriate ellipsoids. The collection of singular values is
‘canonical’” (i.e. unique), when there are multiple singular values then there
are many choices possible.

Properties of the SVD

Since the SVD is central to the “geometry” of a linear transformation, it has
a long list of important properties.

o [Alg =01, [|Allr =/ i1 07
—1

e If A is square and A™! exists, then |[A7Y|z =0, "

e Matrix approximation: suppose you wish to approximate A by a matrix
B of rank at most ¢. Consider:

01
B:[ulué] [Ul"'UZH-

Oy
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Then
|A— Bllg =01

lA-Ble= | 3 o2
i=04 1k

One shows that these are the smallest possible errors when B is va-
ried over the matrices of rank ¢. Moreover, the B that minimizes the
Frobenius norm is unique.

and

e System conditioning: let A be a non-singular square n X n matrix, and
consider the system of equations Ax = b. The condition number C
gives an upper bound on |[0x||2/||x|l2 when A and b are subjected to
variations 0 A and 6b. We have:

(A+dA)(z + ox) = (b+ 6b)

Assume the variations small enough (say O(€)) with € small, and small
enough so that A + 0 A is invertible, we find:

Az +6A v+ A Sz~ b+ 6b+ O(?)

and since Ax = b,
Sz~ ANSb— A7 6A x.

Hence (using the operator or || - || norm):

lozl < AMIobl] + AT AN ]
< ATt eel + AT AN ]

lloll Al
and finally, since || Az|| < ||A]||=]|,
19zl _ 41 llsoll | [loA]
< [[ATI[All +
[z ol 1A
Hence the condition number C' = [|A7![|||Al| = &

A note on the strictness of the bounds: C' is in the true sense an “attainable
worst case”. To attain the bound, e.g. when ||0b]| = 0, one must choose x so
that ||Az| = ||Al|||z| (which is the case for the first singular vector v;), and
dAsothat [|[A710A x| = [|[A~Y||||6A||||z|| which will be the case if [|[§ A z|| is in
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the direction of the smallest singular vector of A, with an appropriate choice
for ||0A|| so that |04 x| = ||0A]|||x||. Since all this is possible, the bounds
are attainable. However, it is highly unlikely that they will be attained in
practical situations. Therefore, signal processing engineers prefer statistical
estimates which give a better rendering of the situation, see further.

1 K

Example: given a large number K in A = [ 0 1

09 =~ K1 so that C' ~ K?2.

], then o; =~ K and

e Generalized inverses and pseudo-inverses: let’s restrict the represen-
tation for A to its non-zero singular vectors, assuming its rank to be

01 k
A= [uy -y [Ul...vk]’zzgiuwzf
on i=1
(the latter being a sum of 'outer’ products of vectors).

The Moore-Penrose pseudo-inverse of A is given by:
AT:[U:[""U]{] [ul...uk]/_

Its corange is the range of A and its range, the corange of A. Moreover,
it satisfies the following properties:

1. AATA=A

2. ATAAT = AT

3. A'A is the orthonormal projection on the corange of A

4. AAT is the orthonormal projection on the range of A.
These properties actually characterize A" uniquely. Any matrix B

which satisfies (1) and (2) may be called a pseudo-inverse, but B is
not unique with these properties except when A is square non-singular.

From the theory we see that the smallest norm solution of the least squares
problem
min || Az — b||2
xeCn
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is given by
xz = A'b.

SVD and noise: estimation of signal spaces

Let X be a measured data matrix, consisting of an unknown signal S plus
noise N as follows:

X=8S+N
Ti1 T12 - Tim S1,1 S12 0 Sim N1,1 N1,2 N1,m

To1 T22 -+ Tam $21 S22 -t Sam N2,1 N2,2 Nz,m
= . + .

What is a good estimate of S given X7 The answer is: only partial infor-
mation (certain subspaces ...) can be well estimated. This can be seen as
follows:

Properties of noise: law of large numbers (weak version)

Let
1 n
VvV = EiilNi

for some zero mean, stationary and uncorrelated white noise process {N;}
. . o 2

with co-variance E(N;N;) = 05,6; ;.

The variance of v is:

I
|)—‘
(]
g
=
=

and hence

the accuracy improves with y/n through averaging. More generally, we have:

1

%N’N = 3 (I +0(—))

B
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(this result is a little harder to establish because of the different statistics
involved, see textbooks on probability theory.)
Assume now S and N independent, and take a large number of samples.
Then:
1X'X = L(S"+N)(S+N)
= +(S'S+N'N+N'S+S'N)
(in the long direction), and suppose that s;,7 = 1,m are the singular values

of S, then %X’X equals

0 N 1

S

n

A numerical error analysis of the SVD gives: SVD(A 4+ O(¢)) = SVD(A) +
O(€), and hence:

Q
2[\’)

2
51 2
1 o T OoNn

1
“X'X = [+ O(—=).
- Vs VS+O(\/ﬁ)

2
Pisarenko discrimination
Suppose now that the original system is of rank ¢, and we set the singular

values of X out against their order, then we’ll find:

Singular value of %XHX

A N— )
o
si/\/m N\
*  x k k%
Number
1 2 3 4 5 .- +1

We may conclude the following:
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2
1. there is a bias o} on the estimates of >
2. the error on these estimates and on Vs is O(Z%).

hence it benefits from the statistical averaging. This is however not true
for Ug - the signal subspace - which can only be estimated Ooy, since no
averaging takes place in its estimate.

Angles between subspaces

Let
U:[ul Uy - uk}

V:[’Ul Vg - vg}

isometric matrices whose columns form bases for two spaces Hy and Hy .
What are the angles between these spaces?

The answer is given by the SVD of an appropriate matrix, namely U'V.
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01

UV = A 01

Ok

0 10

be that (complete) SVD, in which A and B are unitary. The angle cosines
are then given by cos ¢; = 0; and the principal vectors are given by UA and
V B (cos ¢; is the angle between the ith column of UA and V B). These are
called the principal vectors of the intersection.

Total Least Square - TLS

Going back to our overdetermined system of equations:
Axr =0,

we have been looking for solutions of the least squares problem: an x such
that ||Az — bl|o is minimal. If the columns of A are linearly independent,
then A has left inverses (in particular the pseudo-inverse defined earlier),

solutions are given by any x for which b= Az is the orthogonal projection
of b on space spanned by the columns of A.
An alternative, sometimes preferable approach, is to find a modified sys-
tem of equations
Az =1
which is as close as possible to the original, and such that b is actually in
R(A\), the span of the columns of A.

What are A and b? If the original A has m columns, then the second
condition forces rank [ AD } = m, which then has to be a rank m approx-

imant to the augmented matrix [ A b ] The minimal approximation in
Frobenius norm is found by the SVD, now of [ A b ] Let:

[A b] = [a1--anb]

01
= (w1 Uy Ugpyq] B (01 VU]’
Om+1
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be the desired SVD, then we define

~
~

rank [ A ] = a1 G b
01
- [u:,l e u:,m] .. [U:,l T U:,m] .

Om
What is the value of this approximation? We know from the previous

theory that the choice is such that ||[A — A b — b]||F is minimal over all
possible approximants of reduced rank m. This means actually that

m ~
> llas =l + 1o — b3
i=1

is minimal, by definition of the Frobenius norm, and this can be interpreted
as follows:

The span(a.;,b) defines a hyperplane, such that the projections of a.; and
b on it are given by a.;, b and the total quadratic projection error is minimal.

Pseudo-inverses revisited

let A be an m X n matrix of rank k and let

A=[U UQ}{ggH“;ﬂ (13.8)

be its SVD, with X collecting the non-zero singular values. The Moore-
Penrose pseudo inverse AT := V; X 71U/ solves the optimization problem

AT = argmin,  (argmin, ae_o) (17]2) (13.9)

for all b, or in words: of all the ¢ that minimize the least square error ||A£ —
bl|2, ATh has minimal quadratic norm, and this property is valid no matter
what b is.

A general expression for any pseudo-inverse A* of A (i.e., a matrix A"

for which the two equations AT = ATAA" and A = AA™ A hold) is given by

AT = AT VXU + VoYU + VY SXU) (= (VST +WLY))S(27U/ + XUY)).
(13.10)
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in which X and Y are conformal but otherwise arbitrary matrices. (Proof is
by direct computation on the definition.)
Not all of those will minimize ||AA*b — b|, for all b. We find, in fact:

AATD — b= —UsUJb + Ui SXUJb (13.11)

whose norm-squared is ||Ujb]|? + ||SXUJb||?, which for all b is minimally
|UJ|I*b when X = 0 (since ¥ is non-singular)—Y remains arbitrary but
plays a role in the norm of x..

Two important sub-cases are worth emphasizing.

The system is non-singular but overdetermined

by
0
general pseudo-inverse is given by AT =V [ S7'U/ XUj |. Clearly || ATb]),
will not be minimal for all b unless X = 0: the set of minimizers reduces to
just one vector, namely VX138, with 8, = U/b.

In this case we have A = [ U; U, | V' (its kernel is zero), and a

The system is non-singular but underdetermined

!/

Now we have A = U [ > 0 } [ “;1, ] and a general pseudo-inverse is given by
2

-1
Vi 1 U’. Putting x = ATb with any Y will minimize ||Az — b2

e[V
but will not be of minimal norm itself (for all b). Although the more general
solution obtained may not have minimal norm, it may have other properties:
e.g., minimality in another norm (often ¢;) and be sparse.

13.4 Optimization

Let z € R" be areal vector and Lx a real scalar function of z—often L£(x) > 0

is a ‘cost-function’ that measures how undesirable the choice of z is in a given

problem. The first question one might ask is: which z’s minimize £(x)? To

answer that question, let us assume that £ is continuously differentiable, and

let us define 0,L := col(£%, -+, 2£). A necessary condition on z for £(z)
1 Tn

to be a (local or global) minimum is

9.L(x) =0 (13.12)
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i.e., the gradient of £(x) at such a minimum =z, is zero. This will be a
true (local) minimum if, in addition, also the Pfaffian P is strictly positive
definite, where P is an n x n matrix with

0*L

" 8:61(%:]

(13.13)

at the point z,,. If, on the other hand, the Pfaffian is strictly negative
definite, then x,, makes P(z,,) into a local maximum. (If P(xz,,) is only
semi-positive definite, then the situation requires more study. If it has mixed
inertia, then x,, will only be a saddle point.)

Optimization with equality constraints

Suppose that z is subjected to some constraints of the type f;(x) = 0 for i =
1,---¢ (and of course ¢ < k), also assumed to be continuously differentlable,
defining a manifold on which z should lie. How can the optimization criterion
be adapted to this case? It takes some thinking to realize that the condition
can now be formulated as follows: the projection of the gradient of L at a
local extremum on the manifold defined by the constraints should be zero.
This can, alternatively, be formulated as: the gradient of L should locally be
a linear combination of the individual gradients of the constraint functions,
or, algebraically: there should exist coefficients \; (i =1---{) such that

J4
0L =N0pf(=)_ Nidofs) (13.14)
=1

(this means that the local altitude line of L is tangent to the constraint ma-
nifold, because the hyperspace generated by N0, f at x,, is orthogonal to the
intersection of the f;(x) =0 manifolds).

Conditions that then produce the local extremum can then be formu-
lated using the augmented cost function £, = £ — A0, f together with the
constraints:

0,L. = 0
hilz) N ! (13.15)
fg(l") = 0
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Quadratic optimization

A typical quadratic cost function has the form £ = (z'M’'+b'N")(Mxz+ Nb)
with M and N given matrices and b a given vector. Such a cost function is
obviously positive. Application of the previous theory requires some care. We
have O,x’'MM'x = 2Mx and 0,b'N'Mx = 0,2’ M'Nb = M'Nb, everything
being assumed to be real. It follows that the problem of unconstrained
quadratic optimization with this cost function is solved by

OM' Mz +2M'Nb =0 (13.16)

or M'Mx = —M'Nb, which reduces it to what has been said of pseudo-
inverses already. The solution will be unique when MM is definite.
Suppose a constraint Px = p is added, where P is another matrix and p

an appropriately sized vector p. Constrained optimization now gives (with
L, =L+ N (Px—p)and 0,\'Px = P’'))

2M'Mx+ P'X = —2M'Nb

{ Py _ » (13.17)
or, in matrix form

2M'M P’ x —2M'Nb

IR I B

another system of linear equations, with a matrix that is not typically positive
definite and hence requires further specific analysis (this latter matrix is
sometimes called the "Hamiltonian’).

254 © Patrick Dewilde 2015



Chapter 14

Appendix II: Linear
time-invariant filters

Klaus Diepold

Menu

Hors d’oeuvre
Properties of linearity and time-invariance

First course
Linear convolution

Second course
Cyclic convolution and cyclic Toeplitz matrices

Third course
The shift operator and its z-transform

Dessert
Diagonal expansions and discussion topics

This chapter deals with the classical theory of linear filters and systems,
as it is being taught in signal processing courses. Its purpose is to provide,
besides a handy summary of important properties, a connection with system
theory as considered in other chapters and a motivation for the notation used
in the more general setting of time-variant environments.
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CHAPTER 14. APPENDIX II: LINEAR TIME-INVARIANT FILTERS

14.1 Properties of linearity and time-invariance

In digital signal processing and digital communications one is often interested
in devising an algorithm, to be executed on a computer or a computing
system, which receives as its input (scalar real or complex) sequences of the
type u = [ug]g=m... starting at some index point m < n (often chosen 0 or 1)
and produces output sequences y = [yg|g=n... such that the relation between
the input sequence and the output sequence is given by a function 7{-} (a
‘behavior’) with the additional properties of being time invariant and linear.
Figure represents such a computing system, in which the input sequence
u is fed, and mapped by T to the output. This is denoted mathematically
as

y = T{u}.
k=---,-1,0,1,2,--- represents the time index for elements of the discrete-
time sequence.

[t Loy . [Yelean
ke o, T{ . } S

Figure 14.1: Input Output description of a linear time-invariant computing
system or filter.

The system will be called linear (at least from an input-output perspec-
tive), when the superposition principle holds, that is, for two input sequences
u! and u? and scalars o and oy the corresponding output sequences add like

y' =T}, =T = aw'+ay? = T{au' + a?l.
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The property of time-invariance states that the function 7{-} in invariant
to shifts along the time axis, i.e. shifting the input sequence over 7 units
o,(u) = [Ug—r|g=n—r.. causes a corresponding shift in the output sequence
orY:

T{ou} = o, T{u},

without causing further changes.

In many applications, the first significant index n in the output sequence
will follow the first index m of the input sequence, but it may happen that
other conventions are used, e.g., when the system is computing symmetrical
running averages (often called ‘smoothing’). We shall say that a system is
causal when for each k the value of the output 3, only depends on values of
inputs u; for ¢ < k, i.e. input values preceding or equal to k.

14.2 Exploiting linearity and time-Invariance

We can exploit the features of linearity and time-invariance to compute the
output signal 3, of the system in a streamlined way, namely using only shifted
versions of a special output called the impulse response, which is defined as
the response of the system for a single input of magnitude 1 at index point 0.
We show an example in Figure [I4.2] We take an input sequence uy starting
at 0 and of length 4, and decompose it into the sum of individual impulses
ut, which are shifted in time. Each of these individual impulses generates
a shifted version of the impulse response t := [tx]x—0...3, here assumed to be
of length 4 also. Each of these shifted versions of the impulse response is
weighted with the value of the corresponding input impulse u} creating the
individual weighted and shifted responses y,7 = 0,1,2,3. Here we exploit
the time-invariance property of the LTI-system, which says that the shifted
versions of the impulse response are derived from the identical impulse re-
sponse t;. Finally, the output signal y; is generated as the sum of all the
individually weighted and shifted impulse responses. For this step we exploit
the linearity property of the LTI-system (superposition principle).

Putting all this together, and assuming values zero for inputs wu; and
impulse response values ¢, when k£ < 0 we can observe that the LTI-system
determines the output sequence y; as

Yk = Z tei-u;,y, k=0,1,..m+n—2,

1=—00
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0 1 2 3

U Uy, Uy, uy, uy,
3 = + + +
a m e 4 u
1 2 3 K 12 3 Kk 1 3 k 1 2 \3 Kk 12 3 K
71;,~:’IL2+11,1£+’1L%+11,2
0 1 2 3
L Yk Yk Yk Yk
XT ' I ’ '
,_TT IT? __TT [Tre [1ee
0 1 2 3 4 k 0 1 2 3 4 k 01 2 3 4 5 k 0 1 2 3 4 5 6k 0 1 2 3 4 5 6 7k
1 2 3
\ygzu()'tk Y = U1 k1 Yie = U2 - th—2 Y = u3 - tp—3 j

~

Yk

01 2 3 4 5 6 7k

Yk =Yn Yt YR T Y = otk us teo1 + U2 troo + Uz th_s

Yk = Z tr_1ui, k=0,1,2,...

i=—00

Figure 14.2: Computing the output signal of an LTI system with convo-
lutions. The first row denotes the decomposition of an input sequence wuy
into the sum of individual impulses u}, which are shifted in time. Each of
the individual impulses generates a shifted version of the impulse response,
which weighted with the value of the corresponding impulse u}. These im-
pulse responses are shown in the second row. Finally, the output signal yy
is generated as the sum of the individually weighted and shifted impulse
responses.
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which is called a linear convolution of the sequence ¢t with the sequence u,
often written as y = ¢  u.

14.3 Linear convolution

As the output sequence y; is determined by the convolution operation, we
now discuss how the computational task to compute the convolution of two
signals can be made efficient. To this end let’s consider a finite, discrete-time
sequence ug, k = 0,1,2,...m — 1. We can use the elements of the sequence
to form the vector (with [-]” the transposition of a vector)

u:[uo Uy ... Um—1}/, ue R™.

We then feed this sequence as the input to a (discrete-time) linear, time-
invariant system that is described by its associated impulse response t;, k =
1,2,...m — 1, the entries of this sequence will be cast into the vector

t=[t t ... t,.1], teR"

For now we restrict the discussion to finite time series to keep things simple.
Computing the convolution of the two time series amounts to evaluate the
convolution sum given as

ve= Y teiu, k=0,1,..m+n—2 (14.1)

1=—00

If the input sequence u; has the length m and the impulse response ¢ has the
length n, then the length of the output signal is N = m+n—1. The samples
of the output sequence y;, can also be summarized in a output sequence vector

vy=[% v - Ynino], y€R"

The output sequence vector y of the linear system is computed as the linear
convolution of the two sequences t and u, denoted by

y=txu, yeRY, N=m+n-1
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As an example, we manually convolve an input signal u;, of length m = 4
with an impulse response t; of length n = 4 to produce an output signal yy
of length N=m+n—-1=7,

L N 0[0[O] uwf w]| w| us[0]0]0]
ts|ta | 1 to
Yo uolo
I3 |ta]| U to
Y1 ugty | +uitoy
l3| 1o 31 to
Y2 Upts | +uily | +uogts
i3 lo 31 lo
Y3 ugts | tuils | +uoly | +usto
i3 1o 1 | to
Y4 Uity | +usts | +usty
I3 la | 11 ] o
Ys Utz | +ugls
I3 | ta | 11| to
Ys usls

Alternatively to this somewhat manual operation, we can re-express the con-
volution sum in terms of a matrix-vector multiplication y =t xu =T - u,
where the infinite matrix

Yo
n
Y2
Ys
Ya

Ys
Ye

t1 to 0 0
ty t; to O
ts ta t1 to
0 13 to &
0 0 t3 £
0 0 0 ts
To

Ug
Uy
Ug
Usg

(14.2)

appears. Note that shifted versions of the impulse-response t have been used
as columns to generate a matrix that has identical entries along diagonals.
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The matrix T with this specific structure is a finite dimensional representa-
tion of a more general convolution operator and is called a Toeplitz matrix
after the German mathematician Otto Toeplitz. The current Toeplitz matrix
is a rectangular matrix, which can not be inverted nor does it have eigenval-
ues and eigenvectors. Furthermore, in order to enable efficient algorithms for
computing convolutions we complete the matrix appropriately. We explain
the details in the next section.

14.4 Cyclic convolution and cyclic Toeplitz
matrices

One clever way to proceed is by considering a related but different type of
matrix first, namely the Cyclic Toeplitz matrix T, of size m x m given by

to t3 to
t1 to t3 to
ta t1 to t3
t3 ta 11 1o

T, =

With this cyclic Toeplitz matrix the cyclic convolution of the signals ¢ and
uy, is defined as
Y =t Qug, y=T.u.

Note that the application of the cyclic convolution produces a different result
than the linear convolution.

Using a cyclic Toeplitz matrix, we still would like to compute the linear
convolution of ¢, and u,. To this end, we can pad the vectors t and u
appropriately with additional zeros, such that the additional columns in T
do not modify the output vector y. We still denote the zero-padded input
vector as t and u. Building a cyclic Toeplitz matrix T, using the padded
vector t the linear convolution is computed correctly as

_yo_ _to 0 0 0 t3 t2 tl_ _Uo_
Y1 tl to 0 O 0 t3 t2 Uy
Y2 tQ tl to 0 0 O t3 (15
Y3 = tg tQ tl to 0 0 O : us 3 (143)
Ya 0 tg tg tl to 0 O 0
Ys 0 0 t3 tg tl t() 0 0
L Ye i L 0O 0 O t3 tg tl t(] ] | 0 i
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or in short hand
y="T,-u. (14.4)

The cyclic extension of the Toeplitz matrix is in close relation with the known
effects of periodic replication of the signal and its Fourier spectrum when
processing signals which have been sampled in the time domain and the
frequency domain.

14.5 Similarity transformation

It turns out that cyclic Toeplitz matrices have a special eigen-structure,
which can be exploited to efficiently compute convolutions, using Fast Fourier
Transforms. If we multiply both sides of Equation from the left with
a non-singular matrix Q, we arrive at

Qy=Q - T. u (14.5)

As a next step we insert the identity matrix I, = Q'Q between the factors
T. and u on the right hand side of Equation ([14.5)). This leads us to

Qy=Q-T.-Q'Q-u. (14.6)
Inserting a few brackets for improved readability we get
Qy»=(Q T.-Q7"-(Q-u), (14.7)
where we can read off the following abbreviated notation
y=A-u, (14.8)
where the quantities y, A and u are defined as
y=Q-y u=Q-wu A=QT- Q" (14.9)

The identity
T.=Q ' - A-Q (14.10)

can easily be identified as an similarity transformation of 7, by Q. The
similarity transformation implies that the matrices T, and A share the same
eigenvalues.
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MATRICES

14.6 Eigenvalue decomposition of cyclic Toeplitz
matrices

The specific structure of the cyclic Toeplitz matrix is also called a Circulant.
We want to determine a eigenvalue decomposition for a cyclic Toeplitz ma-
trix, i.e. we want to compute the eigenvectors and the eigenvalues (Az = Ax)
for a cyclic Toeplitz matrix given as

to Ino1 tns ... h
11 to tN—1 ... 19
T,=| t2 to to ... t3 ], (14.11)
| In-1 tn—2 In-3 ... To |

This is actually a pretty easy exercise once one has seen how to exploit
the circulant symmetry. Let

(14.12)

be a permutation matrix that puts the last element first when applied to a
column vector and shifts the others one notch down, then we see easily that

CT. =T.C (14.13)

i.e., C' and T, commute. This actually expresses the circulant symmetry.
Commutation relations have important effects on eigenspaces: a full eigenspace
of C' will be an eigenspace of T,.. Because of its simple form, eigenspaces of
C are easy to find and hence produce eigenspaces of T[] Suppose z :=
[ To cc ITN_1 }/ is an eigenvector of C' with eigenvalue A, then we have
Cz = x\, which means zx_1 = Azg, To = Ax1, -+, and hence 2y = AV,
and likewise for all the other entries. It follows that we have found a solution
if AN = 1, hence if X is an N root of unity. Since there are N such roots
and the dimension of C'is N x N we have found a complete set of eigenvalues

of C.

IFinding eigenspaces of symmetry operators is standard practice in Physics!
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For the complete set of eigenvectors of C' (which will at the same time
provide a complete set of eigenvectors of T, thanks to commutation), let ¢
denote a root of the scalar equation ¢ = 1, and set

c=[¢ ¢ & ... ¢

y="T.-z = [ Yo Y1 Y2 .. YN-1 }/
Looking at the first entry of the vector y

Yo=1to+tn_1q+tn_o¢> + -+ tig" !

we observe that yo satisfies the following system of equations
Yo = tot+in-1q+tnog®+ - +tig" !

yi=qyo = ti+teq+tnaq®+ - +tagV !

yvo1=q" My = ty1Fitnoqtin_sq® -+ tog T

which we can summarize compactly as
T.-x =1y x.

It follows that A = g, is a characteristic root (eigenvalue) of T, with the
associated characteristic vector (eigenvector)
r = [ 1 ¢ ¢ ... V! ],.

Since the equation ¢V = 1 has N distinct roots y, k = 0,2,... N — 1, we see
that we obtain V distinct characteristic vectors x.;, k = 0,1,2,... N —1. Let
now ¢ := e’V be the most primitive non trivial solution to the equation
¢ = 1, then other roots are given by ¢*. Consequently, we have the complete
set of characteristic roots and vectors in this way, i.e.,

k
Tc Lk =4q Tk

holds, with ., = [ ¢° ¢* - ¢W™~V* }I. The set of all eigenvectors .,
can be put together as the columns of a matrix

Q = [ .0 T.1 T2 ... X N-1 ]
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with general entry Q, ;. = ¢"*. With this special choice for the matrix Q the
Equation ((14.10)) represents the Eigenvalue Decomposition of T, with

Ao 0

A=Q . T.-Q= M ) . (14.14)

0 AN—1

That is, A contains the eigenvalues of T, as its diagonal entries and the
matrix Q contains the corresponding eigenvectors. That implies that for
computing the Eigenvalue decomposition of the cyclic Toeplitz matrix T, we
already have the corresponding eigenvectors given a priori as the columns
of the matrix Q. With those quantities given, computing the pertaining
eigenvalues is an easy task.

14.7 The discrete Fourier transform

Let us have a closer look at the matrix Q, which is composed of the charac-
teristic vectors z*,i = 1,2,... N — 1,

1 1 1 1]
. 1 q q2 qN—l
_ Lt 11 q2 q4 o q2(N—1)
RERvial .
1 qN—l ) q(N—1)2

which we conveniently normalize by a factor 1/v/ N to arrive at a matrix Q
having a number of special properties, such as (with "-*’ indicating Hermitian

transposition: [Q*];x := Q)
e Unitarity: Q*Q=1Iy = Q*'=Q!

e Q? is a permutation matrix (different from C before, actually [Q?]; ;. =
d(i+kymoan With 0 the Dirac impulse: 6; = 1 when ¢ = 0, otherwise 0.)

o Cyclic: Q* =Q*, Q*=1Iy.

This matrix Q is seen as defining the Discrete Fourier Transform (DFT) on
sequences of length N.
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In the final form, Equation reduces the matrix-vector multiplication
calculation to vector-vector multiplication. This approach has its well-known
parallel by the simplification of the convolution in Equation to multi-
plication of the Fourier spectrum of the impulse response T and the input
vector u. Actually, the diagonal eigenvalues of T, in A are the same as the
Fourier spectrum of the (zero-padded) T (Note that the zero-padding is not
an essential part of this process). We identify the matrix Q to represent
the Discrete Fourier Transform JF, such that the Fourier spectrum of the
sequences u and h are determined by

and the convolution theorem associated with the Fourier Transformation
given as

y=F YF{T.} - F{u}} = F A -u} (14.16)

then becomes y = A - u or more explicitly

Yo Ao 0 U
A u
A b S (14.17)
YN-1 0 AN—1 uy_g

The previously derived identities are the basis on which the technique of
Fast Convolution is based on. For real computations of the DFT we use
an efficient algorithm, called the Fast Fourier Transform or FFT. The FFT
computes the eigenvalues of the cyclic Toeplitz matrix T. using O(nlogn)
arithmetic operations, which is much more efficient than a straight matrix-
vector multiplication, which takes O(n?) operations, if n is the length of the
corresponding vectors.

14.8 Computing in the Fourier domain

The convolution operation costs O(n?) operations, if n is the length of the
signals we are working on. Alternatively, exploiting the convolution theorem
of the Discrete Fourier Transformation we can compute the output signal of
a linear time-invariant system in the frequency domain. The Discrete Fourier
Transformation of a given signal can be computed very efficient way by the
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Fast Fourier Transform (FFT). This leads to the so-called Fast Convolution
method, which requires O(nlogn) operations, hence a significant saving in
computations when comparing the Fast Convolution with the direct execu-
tion of the convolution sum. Figure[14.3|shows the detour through frequency
domain for computing the convolution.

Convolution
Eu txu > Y
O(nQ) A
R /g Fast Convolution §O :
1|z O(nlogn) |7 &
=2 Z [k
3 )
\ 4
O(n)
Flu}, F{t} >/
tuh, 74t} F{t} - Flu} )

Pointwise Multiplication

Figure 14.3: Schematic Procedure for Computing Fast Convolutions.

This frequency domain method using the FFT works very well, is well
established and its efficiency can be regarded as one of the major cornerstones
for the tremendous success of digital signal processing during the past 30
years. However, it is based on the assumption that the systems involved are
linear and time-invariant. If one of these two assumptions is violated, then
the use of frequency domain tools is no longer applicable. If the system is
time-varying, then the impulse response changes with time. That implies
that the columns in the convolution operator T, are not shifted versions
of a single impulse response ¢, and hence the operator looses its Toeplitz

property.
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14.9 Linear convolution using the z-transform

A popular tool for dealing with discrete time signals and systems is the z-
transformation, which is defined as

T(z) = Z iz, Ulz) = Z w2 (14.18)

Please note that we use a positive exponent in our definition for the z-
transform. This is a minor modification in comparison to most standard
engineering text books (it appears more logical to use z as a symbol for the
‘forward shift’ and z~! for the backward shift. This also often simplifies the
notation considerably, as can be seen in the chapters on LTV sytems, where
the forward shift will be written Z.). For the example this amounts to

T(z) =tg+tiz+t22” +132°, U(2) = up +urz +upz® +uzz®  (14.19)
The response Y'(z) is computed by multiplying the corresponding z-transforms
Y(2)=T(z)-U(2). (14.20)

For the current example this amounts to computing the coefficients of
Y(2) = yo + y1z + y22° + y32° + yaz" +ys2° + 62", (14.21)

The coefficients of the z-transform of Y'(z) appear to be identical to the
previously discussed convolution of the coefficient vectors for U(z) and T'(2).

Y(Z) = (toUo)+(t1U0+t0ul)Z+(th0+t1U1—|—t0u2)22—|—(tho—HfQul+t1U2+t0U3)23+. ..

w4 (hauy + houg + hyug)z* + (haug + hous)2® + (haus)2®

Note that the use of the z-transform is confined to linear time-invariant
systems. Once we deal with time-varying systems the Fourier transformation
or the z-transformation cannot be used anymore, as the convolution operator
will not have a Toeplitz structure anymore.
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14.10 Diagonal expansion of Toeplitz matri-
ces

For a system to be truly time-invariant, the impulse response is invariant
for all times, i.e. the corresponding Toeplitz operator describing the system
must be infinite dimensional, the convolution operation then looks like

ty to t3 t_y4 s
to t_q t_o t_3
y=T u= _| - h byt | (14.22)
Y2 . t2 tl tO t,1 . Uy
Ys . Uz
Ya tg t2 tl to .
ty T3 to U1

QQE‘
= | S
—

in which we have to indicate the location of the elements with index 0 in
the vectors or the element with indices (0,0) in the matrices, since it is not
clear anymore from the notation where these elements are located. We are
looking for a more compact notation to exploit the structure of the infinite
dimensional Toeplitz matrix. To this end we now introduce a more general
‘shift operator’.

14.10.1 The shift operator

The Toeplitz matrices in equation have a very particular structure,
that is, every column of the matrix is a down-shifted version of the previous
column. We intend to exploit this shift-structure to establish a notation and
a formalism, which can extend from linear time-invariant to time-variant
systems. To this end we introduce a general shift operator, which we denote
by the symbol Z. The shift operator has the function to shift all entries of a
column vector downward by one position. We can give this forward shift in
time or ‘causal’ shift the interpretation of a temporal delay, that is,

(Zu)p = ug—1, k= —00,...,00.
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For our matrix-oriented notation we will use a matrix representation for the
shift operator, which acts from the left on a given vector v and pushes all its
entries down by one notch

U_1 U_9 U—1 Ug
Ju— 7 . e .
Uy Ug Uy Uz
(%) (5] U9 Uus
) ] (14.23)

The rectangular box indicates the reference of time origin. Likewise, the
inverse also holds, that is, Z~! acting on the vector u pushes the entries of
the vector up by one notch. It is worth noting that at this point we assume
time series to run uniformly from index —oo to 400 (we shall soon modify this
convention) and that on such series the shift operator Z is in a generalized
sense orthogonal, i.e. Z'Z = ZZ' = I. Shifts on infinite dimensional vectors
do not truncate the vectors (as is often assumed with shifts on finite vectors).
The matrix Z itself can actually be represented by an infinite dimensional
lower (causal) matrix

0 0 :
1 0 —1 /
, gl — 7l —
1 [o] 0]
1

1
0 0

Similarly, the shift operator and its inverse can also be applied to a row
vector from the right u'Z

[ U_1 Uy Ug ]Z:[ U—_1 Up (%) }

Accordingly, a shift by one position to the right is achieved by post-multiplication
of the row vector u’ with the inverse shift operator, that is, we then have

[ us U U ...]-Z’:[... U_y Uy Uy }
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We can also apply the shift operator simultaneously from the left and from
the right to a matrix A such as ZAZ’, which has the effect to push the entries
of A down one slot along the diagonal, which looks like

We can push down the matrix along its diagonal by k slots if we apply the
shift operators from the left and from the right k times Z*A(Z')*.

These are first steps towards using infinite dimensional vectors and ma-
trices, but at this point a word of caution is necessary. The notion of ‘or-
thogonality’ is only properly definite on finite vector spaces, thanks to the
fact that a finite dimensional vector always has a finite quadratic norm. The
same is not true with infinitely indexed vectors. To properly define orthog-
onality (and inner products etc...) in such a context, one would have to
restrict the kind of vectors one may handle, so as to keep all vector-matrix
multiplications and inner products under consideration finite. This will be a
necessary central theme in our further developments, and we shall see that
we can handle this issue nicely in most cases, but that is a concern for later.

14.10.2 Superposition of diagonals

Using the shift operator introduced in the previous section we can represent
an infinite dimensional Toeplitz Operator ([14.22)) as the superposition of
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diagonals, such as

t_q to 0
T =...+ @ ta 0 0
0 t4 0 t, O
’ 0 o
t1 0
+ + ..
t, 0]
t1 0
This principle can be modified by denoting the values ¢;,7 = —o00, 00 along

the main diagonal and providing the additional information by how many
sub-diagonals this diagonal needs to be pushed down or pushed up. Pushing
down by k diagonals is represented by the k-th power of the shift operator Z,
pushing up diagonals is accomplished be negative powers of Z. This amounts
to writing the Toeplitz operator as

131
+Z-

ty

to

to

= .-+ Z Mdiag[t_,] + Z°diag[to] + Z'diag[t,] + Z*diag[ts] + Z3diagts] + . ..
=2t 4 - diaglti] = 227

diaglt;] - Z°.
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(the last equality because Toeplitz operators commute with the Z as defined
here). This notation reminds the reader of the z-transform of the time series

{t:}, —00 < i < o0,
[e.e]
T(z) = Z ti2,
i=—00

which can be thought of as an efficient manipulation tool when working with
diagonals of infinite dimensional Toeplitz-Operators. There exists an 1:1
relationship between the set of power series and the set of infinite dimen-
sional Toeplitz-Operators. The validity of this mechanism relies on the fact
that the values along a diagonal are all the same, which is a consequence of
dealing with time-invariant systems. Also note that in the context of the z-
transformation the variable z is considered to be a complex variable, whereas
the short operator is a real valued, infinite dimensional matrix.

14.11 Causality

We consider the linear, time-invariant system, which is given in terms of the
Toeplitz T matrix. We feed the system with the input signal u, which starts
with the value wuy.

tg tg t_3 t_4 -

Y1 .

o]ttt 0
y=T-u=| N | = oottty to e |

Y2 to t to t_i .. Uy

Ys U

3 ta t1 i
ty t3 i t1

Ya

We can see that the system produces a valid output signal
Y1 =t qug+t_ouy +1t 3us+...,

using values that occur in time even before the actual input signal: it behaves
in a non-causal way. For a linear system to behave (strictly) causally, the
corresponding Toeplitz operator has to be (strictly) lower triangular.
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The set of all causal systems corresponds with the set of all lower tri-
angular matrices and is denoted by the symbol £. The set of all upper
triangular matrices, which we denote by the symbol U, corresponds with the
set of anti-causal systems. We use the symbol D to denote the set of main

diagonal matrices, i.e.

D=UNL.

In Equation [14.24] we see a lower triangular Toeplitz matrix T, describing a

causal system

: 0 O
0
0
Yo ty  t
Ys
U |2

’§§SEO”'

. (14.24)

Using the shift operator and the diagonal expansion discussed in the
previous section let us have a look at the following example for a simple FIR

filter

—1

1/2

1/2

1/2

1/2
~1

~1/2

1/2
~1

This tridiagonal system is non-causal, as it is able to produce output signals
that lie temporally before the input signals. Take the causal part of this
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simple FIR filter, which is the lower triangular part of the tridiagonal matrix

—1

1 .
T =-Z—-1 & T,= 1/2
2 1/2

-1

1/2 -1

The strictly anti-causal part of the previously introduced FIR filter is de-
scribed in terms of the upper triangular part of the tridiagonal matrix T, i.e.

by

0 1/2
1
TZ_IZ/{ = 5271 = Tz—lu = @

1/2
0

1/2
0

where Z~'U denotes the strictly upper triangular part of a matrix and hence
the strictly anti-causal systems. We can identify the anti-causal parts of the
system to be associated with negative exponents of the shift operator. (One
does not write T" as a ‘function’ of Z anymore, as Z does not take numerical
values and properly represents a matrix in its own right.)

14.12 Discussion items

o Affine systems: strictly speaking, a system that contains a constant
offset is not a linear system. For example: the system defined by the
moving average equation y,, = agu, + aiu,_1 +dy is not a linear system
according to the usual (and our) definition. Linearity can be saved by
writing y, = apu,, + a1u,_1 + dov, and taking for v,, the constant value
1. The system now has two input variables, which have to be handled
separately, and the linear theory can be applied, but not without some
consequences requiring extra care! E.g., when would such a system be

‘stable’?
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e The discrete Fourier transformation matrix Q has an interesting struc-
ture, in particular when the ‘modulo’ relation ¢ = 1 is used. For
example, when N is the product of two prime numbers, N = pq with
p and ¢ prime, then the matrix decomposes in a kind of ‘tensor prod-
uct’, very much related to the FFT. Consider e.g., the cases N = 2,
N =4, N = 3%4. The decomposition strategy can be repeated for more
general products of primes. All this produces interesting examples of
orthogonal matrices!

e In the transfer function literature, one distinguishes special cases of
transfer functions: moving average and autoregressive. In the first case,
the output is an average of past input signals and the transfer function
becomes polynomial in the shift z. In the second, it becomes the inverse
of a polynomial in z. The more general scalar case is often called #ir for
infinite impulse response. It can of course be considered autoregressive
in the moving average given by the numerator coefficient!

e Much of the theory on transfer functions and convolution generalizes
to systems with multiple inputs/outputs. One then uses matrices in-
stead of scalars, but the basic definitions: linearity, shift invariance and
causality remain the same.

e A finite Toeplitz matrix does not simply commute with the normal shift.
One way out has been used in this chapter: make things cyclic; but
the price to be paid is hefty: one has to use circulant matrices, which
become unwieldy in the time-invariant case. The case of eigenspaces for
Toeplitz matrices is considerably more complicated [16] 37]. Results for
finite Toeplitz matrices cannot easily be extended to infinite matrices.

14.13 Notes

e The elementary theory presented in this chapter is of course hyper-
traditional for anyone who has studied electrical engineering. It is given
here because (1) it may not be familiar to students from other direc-
tions, in particular numerical mathematics, and (2) the presentation
is done in such a way that the non time-invariant definitions given in
the following chapters appear to be natural extensions. In particular,
the various operators acting on signals representing systems (the shift,
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the transfer function, convolution) have natural matrix interpretations,
which in the way the material is treated classically often disappears be-
hind a curtain of transforms. In the time-variant theory these will play
an essential role, so much that our ‘modern’ treatment makes the trans-
form calculus (almost) obsolete. Nonetheless, time-invariance remains
a very important special case, with its opportunities and difficulties.
To start with the latter: time-invariance often requires the solution of
a ‘fixed point problem’, to keep whatever solution found for a given
problem time-invariant. In particular, this is the case when one has
to solve Lyapunov-Stein or Riccati equations, e.g., in optimization or
control problems. The opportunities are mostly due to enhanced nu-
merical efficiency. The FFT plays a very big role in achieving this. In
the literature, compromises have developed, which we shall encounter
in various guises: semi-separability (equivalent to finite state time-
variant) or ‘close to time-invariance’ as developed by Kailath and his
group [14] 23], whereby other structural properties of transfer operators
are exploited beside pure time-invariance.

e Strictly speaking, only a doubly infinitely indexed Toeplitz matrix may
be called ‘time-invariant’. Although this becomes, by necessity, an op-
erator working on an infinite dimensional space (with all the problems
this brings), one may still observe that such an operator commutes with
the shift, and hence, it will share full eigenspaces with the shift. Such a
theory, generalization of the eigenspace theory we used in this chapter,
quickly runs into difficulties, because eigenfunctions of the shift may not
belong to the original space of definition. For example the discrete-time
function u defined by u;, = €** with a some complex number is techni-
cally an eigenfunction because zu = e~ %u and has eigenvalue e~ but
it is unbounded except when a is purely imaginary, and even in that
case it has infinite quadratic norm. Nonetheless, one can develop a
discrete-time Fourier theory for such systems and most of the property
will go through provided the functions are handled with some care.
In particular, Fourier transform commutes convolution into multiplica-
tion of the transforms, which is one of the main advantages, not only
mathematically but also physically. The same happens in the time-
continuous case and has lead to the extensive use of the spectrum as a
medium on which many ‘channels’ can be shared, each one restricted
to a specific frequency domain. Much of the needed mathematical de-
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velopment is called ’harmonic analysis’ and requires not-so-elementary
mathematics, for which there are excellent textbooks [31), 20]. We shall
see in the following chapters that most of the basic system theoretical
problems (for estimation, control or system inversion) can be treated
without recourse to transform theory. In most chapters we make efforts
to extent the discrete-time, time-variant results to the time-invariant
and/or continuous-time case.
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