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Abstract—Determining the pose of a moving camera is an
important task in computer vision. In this paper, we derive a
projective Newton algorithm on the manifold to refine the pose
estimate of a camera. The main idea is to benefit from the fact
that the 3D rigid motion is described by the Special Euclidean
group which is a Riemannian manifold. The latter is equipped
with a tangent space defined by the corresponding Lie algebra.
This enables us to compute the optimization direction, i.e.
gradient and Hessian, at each iteration of the projective
Newton scheme on the tangent space of the manifold. Then,
the motion is updated by projecting back the variables on
the manifold itself. We also derive another version of the
algorithm that employs a homeomorphic parameterization to
the Special Euclidean group. We test the algorithm on several
simulated and real image data sets. Compared to the standard
Newton minimization scheme, we are now able to obtain the
full numerical formula of the Hessian with 60% decrease
in the computational complexity. Compared to Levenberg-
Marquardt, the results obtained are more accurate while
having a rather similar complexity.

Index Terms—Newton method, Riemannian manifold, dif-
ferential geometry, pose estimation

I. INTRODUCTION

THE rigid motion or pose of a camera is composed of
two parts: a rotation matrix R ∈ R3×3 that describes

the orientation of the camera in the real world and a
translation vector t ∈ R3 which reflects the distance
between the origin of the camera coordinate system and
that of the world coordinate system. Using the camera pose,
it is possible to establish the relationship between a point
x ∈ R2 in an image and the corresponding point X ∈ R3

in the real world. This relationship is written in the form

p = K [I3 | 0] ·
[

R t
0T 1

]
·P = K [I3 | 0] ·M ·P, (1)
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where I3 ∈ R3×3 is the identity matrix, 0 ∈ R3 is the zero
vector K ∈ R3×3 is the matrix of intrinsic parameters and
M ∈ R4×4 represents the pose of the camera, p and P are
the points x and X respectively in homogeneous coordi-
nates. This relationship describes the rigid transformation
between the coordinate system of the world and that of
the camera. Determining the pose can be also stated as
estimating the rigid transformation M that maps the world
coordinate system to the coordinates of the camera.

In case of a calibrated single moving camera, pose
estimation can be performed using structure from motion
algorithms followed by bundle adjustment (BA) to refine
the results. In this direction, one can find several algorithms
that deal with this problem as in [1]–[5] for example. The
main idea of such schemes is to find some robust initial
estimates of the 3D structure and the motion to guarantee
the overall convergence of the problem.

When a stereo rig is used, a partial 3D model can be
constructed at each new pose using a stereo-based recon-
struction method. Assuming the rig to be fully calibrated
and the 3D object to be static, the Euclidean position
between the stereo camera and the corresponding partial
3D model will be known. To compute the relative motion
between the consecutive views, it is sufficient to estimate
the 3D rigid transformation between the matching points
of the partial 3D models. This problem is referred to in
photogrammetry as the absolute orientation and is better
understood by looking at the problem setup in Figure 1.
Let us denote by Q = {P1, · · · ,PN} the set of N 3D
points in space. Let Qi and Qi−1 be the homogeneous
coordinates of the points in Q with respect to the current
and previous positions of the stereo camera respectively.
The relative motion of the rig can be computed by solving
the following least-squares problem

Qi−1 = M ·Qi, (2)

which is nothing but determining the rigid transformation
between two sets of corresponding 3D points. Absolute
orientation is usually solved by using unit quaternions to
represent the rotation matrix or by applying the singular
value decomposition [6]–[9]. To determine the set of corre-
sponding points required for working out (2), it is necessary
to apply image feature detection and tracking techniques
like the KLT tracker which was developed by Tomasi and
Kanade in [10] and later enhanced by Bouguet in [11].
These features, however, are susceptible to errors that make
the linear computed solution erroneous.
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Fig. 1. Problem Setup: using a stereo technique, the 3D homo-
geneous coordinates of a static set of points Q are constructed
with respect to each position of the camera, i.e. Qi and Qi−1.
The rigid motion of the camera is the transformation between the
coordinates of the points Qi and Qi−1 in the two positions.

To rectify the result, the obtained values can be refined
with the Levenberg-Marquardt (LM) scheme by minimizing
the sum of reprojection errors as usually performed in BA.
Like any Newton iterative method, LM requires at each
iteration the computation of the gradient and the Hessian.
LM uses in the minimization an approximate form of the
Hessian to reduce the computational requirements [12],
[13]. On one hand, using an approximate form of the
Hessian increases the chances of divergence especially if
the initial estimate of the motion is not very close to global
optimum, see [14]. On the other hand, employing the full
numerical form of the Hessian increases the computational
complexity of a Newton scheme tremendously, see Table I,
which is why this is usually avoided in practice.

Motivated by this dilemma, we propose in this work a
projective Newton minimization scheme on the manifold
to refine the pose estimate of a moving camera. The key
issue is to benefit from the properties of the Riemannian
manifold. We derive two versions of the algorithm. The
first one operates on the special Euclidean group SE3

which describes the rigid motion in 3D space. The second
one works on R3 × SO3 due to its homeomorphism with
SE3 [15]. At each iteration, the gradient and the Hessian are
first computed on the tangent space of the manifold. Then,
the motion is updated by projecting back the variables
on the manifold itself. This leads to a compact numerical
forms of both of the gradient and the Hessian. Compared
to a standard Newton scheme, the proposed technique
requires 60% less computational complexity to evaluate
the full numerical form of the Hessian while preserving
the accuracy of the results. Compared to LM, the proposed
method leads to a noticeable increase in the accuracy while
having a slight increase in the complexity.

Deriving optimization algorithms on the Lie manifold has
been widely used in the literature of computer vision and
robotics. Example algorithms related to pose estimation can
be found in [16]–[18]. In this direction, the contribution
of this paper is four folds. Firstly, we derive a Newton
algorithm on the manifold to refine the motion estimate
on SE3 and R3 × SO3. The scheme can be applied to the
relative point pose problem as well as the perspective n-
point problem. Secondly, we provide detailed numerical
derivations of the proposed technique. Thirdly, we per-
form complexity analysis comparisons between the derived

scheme and the common algebraic ones used to solve this
problem. Fourthly, we show using experimentation that our
scheme is less likely to be stuck in local minima, less
affected by how far the initial estimate of the pose is from
the global optimum, and more robust against the noise.

The rest of this work is divided as follows. Section II
presents an overview of the problem setup along with
a recall on Newton minimization schemes. Section III
derives the proposed projective Newton algorithm in its
two versions. Section IV evaluates the performance of the
technique and compares it to other schemes. We finally
conclude this paper with some discussions in Section V.

II. RELATED WORK

Given are some N point correspondences which are
pre-computed using a feature detector and tracked over a
sequence, the estimate of the 3D structure computed from
a stereo reconstruction technique and the initial pose of the
camera obtained from an absolute orientation scheme. Us-
ing these values, a point from the 3D structure is projected
on the image of the camera at a different position from the
pre-computed feature point. The geometrical distance d (·)
between the two points is called the reprojection error. The
objective of the minimization is to correct the pose of the
camera so that the reprojection error is minimized over all
the points. The cost function f to be optimized is written as

f =

N∑
j=1

d (pj , p̂j)
2
, (3)

where pj are the homogeneous coordinates of the jth

measured point in the image (camera) and p̂j are the
homogeneous coordinates of the reprojection of the jth

point in the 3D structure Pj according to (1). The measure
d (·) can be any scale invariant distance as for example
the Mahalanobis, the L2 norm or the cosine distances. In
the rest of this paper, we will use the cosine distance to
measure the reprojection errors. It is given by

d (pj , p̂j) = 1−
pTj · p̂j
‖pj‖ · ‖p̂j‖

, (4)

where ‖ · ‖ denotes the L2 norm. It is also possible to
simply use the commonly applied L2 norm difference if
preferred. We apply the cosine distance instead since it
leads to a simpler computation of the Euclidean derivatives
and performs as well as the L2 norm, see [19].

Keeping these points in mind, the objective now is to
minimize the cost function f over R and t. This task is
equivalent to refining the relative pose of the camera or
the 2D-3D correspondences. In this direction of research,
it is possible to find several algorithms that fulfill this
task like the ones presented in [20]–[24] for example.
However, the goal of this paper is to enhance the accuracy
of a Newton minimization scheme without significantly
increasing the accompanying computational complexity.
As a consequence, we will state in the sequel a general
reminder on Newton minimization techniques and show
how the motion is usually parameterized in such scenarios.
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A. Motion Parameterization
To parameterize the translation vector of the camera,

it is sufficient to take its 3 entries as the variables. To
parameterize the rotation, it is necessary to find a minimal
parameterization which reflects its 3 DOF. A rotational
transformation in R3 is represented by the elements of the
special orthogonal group SO3. The associated Lie algebra
so3 to SO3 is the set of 3×3 skew-symmetric matrices. The
Lie algebra can be considered as the tangent space of SO3

at the identity. The isomorphism Ω that allows to identify
so3 with R3 is defined as

Ω (ω) : R3 −→ so3,

 ω1

ω2

ω3


×

=

 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

 .
(5)

To project the Lie algebra to the Lie group, one can use the
exponential mapping. Therefore, the rotation matrix R can
be expressed as R = expm (Ω (ω)). It can be also written
using the Rodrigues formula as

R = expm (Ω (ω)) (6)

= I3 + Ω (ω) · sin (‖ω‖)
‖ω‖

+ Ω2 (ω) · 1− cos (‖ω‖)
‖ω‖2

.

It is possible to approximate the rotation matrix with
I3 +Ω (ω) if the magnitude ω is small. This leads actually
to the local perturbation around R which is widely used in
BA [25]. Using the local perturbations around the rotation
is not always accurate especially if the initial estimate of
the motion is noisy. Therefore, we will be using in our
implementations of the LM algorithm and the vector space
Newton the whole term to have an accurate parameteriza-
tion of the 3D rotation. Note that throughout this paper,
we will denote by a = [ωT tT]

T ∈ R6 as the vector that
holds the motion parameters of the camera.

B. Newton Algorithm in the Vector Space
A Newton algorithm finds the minimum of a given cost

function iteratively. The update step used to minimize the
cost function f in (3) is given by

a(k+1) = a(k) −H−1
f · ∇f. (7)

The variable k is the iteration number, ∇f ∈ R6 is the
gradient of f and Hf ∈ R6×6 is the corresponding Hessian
matrix which is expressed by

Hf = 2JT

g · Jg + 2

N∑
j=1

(
gj ·Hgj

)
. (8)

The matrix Hgj = ∂
∂aT

∂gj
∂a ∈ R6×6 denotes the second

order derivatives of each term of g with respect to the
camera parameters where g is the reformulation of the cost
function f , i.e. f = gTg. The matrix Jg is the Jacobian
and is computed by taking the first order derivatives of the
cost function in the form

Jg =


∂g1
∂aT

...
∂gN
∂aT

 ∈ RN×6. (9)

By setting the second term of Equation (8) to zero, the
approximated Hessian obtained, i.e. Ĥf = 2JT

g ·Jg, is what
is used in a Gauss-Newton iterative technique. It is also
possible to add a damping factor µ to Hf to regularize the
Hessian if it is close to singularity and to vary the speed
of convergence of the algorithm. A good description on
how to perform such adjustments to the Hessian are found
in [26]. The resulting update step will look like

a(k+1) = a(k) − (µ · I6 + Hf )
−1 · ∇f, (10)

where I6 ∈ R6×6 is the identity matrix. Due to µ, the
Newton scheme will have the properties of both the steepest
descent and the Gauss-Newton techniques. Similarly to
steepest descent, the Newton algorithm converges slowly to
the solution if the initial estimate is far away from the global
solution while it converges fast like Gauss-Newton methods
when the initial estimate is close. When the approximate
Hessian Ĥf is employed in Equation (10) instead of Hf ,
the resulting update step is what is used in LM. LM ignores
the right addend in (8) since the complexity induced by the
computation of Hgj is very high. To get a feeling how
much the computational effort rises, the number of floating
point operations (flops) required per iteration are illustrated
in Table I. As can be noticed, the inclusion of these terms
makes the complexity required for the motion refinement
rise by a factor of 5 when compared to LM. This fact shows
the reason that makes LM more favorable in practice.

Failing to take the second order derivatives into account,
however, increases the risk of divergence especially if the
initial estimate of the motion is noisy or far from the global
solution [14]. This can be justified since the minimization
without these terms makes LM more susceptible to be stuck
in local minima which explains why structure from motion
algorithms try always to ensure robust initial estimates.
For a thorough analysis on Newton minimization schemes,
the interested reader may refer to the following excellent
references in [1], [12]–[14], [25], [26].

III. THE PROPOSED PROJECTIVE NEWTON-TYPE
APPROACH

Computation of the second order terms in a Newton
algorithm, i.e. right addend in Equation (8), is not favorable
due to the complexity arising from the computation of
the Hessian. The aim of this section is, therefore, to
propose a Newton-type optimization method that enhances
the accuracy of the motion estimate without a significant
increase in the computational requirement. To do that,
we will derive a projective Newton minimization scheme
on the manifold. A manifold is a topological space in
which each point has a neighborhood that looks like the
Euclidean space. Designing an optimization scheme on a
manifold can be visualized as making the minimization
iteratively walk on the surface of the curve described by
the variables until the minimum is achieved. In order to
perform such operations, it is necessary that the manifold
possesses a special structure. It has to be differentiable and
smooth so that notions like distances and angles, necessary
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to determine the direction of optimization in a Newton
scheme, can be defined. An instance of such manifolds are
the Riemannian manifolds. A Riemannian manifold has the
nice property of being equipped with a tangent space that
allows the transitions from a point to another one to be
smooth. An example Riemannian manifold is the special
orthogonal group SO3 that describes the 3×3 rotations
matrices, see Equation (5). The tangent space to this group
is its associated Lie algebra so3 which is related to the
latter via the exponential map.

To derive a Newton-type method, it is necessary to com-
pute first and second order derivatives. A Newton method
which is intrinsically defined on the Riemannian manifold
without referring to any embedding vector space, requires
the notion of a Riemannian gradient and a Riemannian
Hessian. This often requires an overhead of differential geo-
metric machinery. Instead, a projected Newton-type method
is formulated in this paper that exploits a local parame-
terization of the variables on the manifold. The direction
and step size of the optimization are computed using the
associated tangent space. The result is then projected back
on the manifold to update the variables. The mechanism
of such schemes is illustrated in Figure 2. To apply this
approach, however, a suitable local parameterization of the
rigid motion of the camera must be first determined. For
good references that provide detailed discussions about Lie
theory and differential geometry, see [15], [27]–[30].

A. Parameterization with SE3

The 3D rigid motion in is represented by the elements
of the special Euclidean group SE3. This group consists of
all the 4×4 matrices M ∈ SE3 of the form

M =

[
R t
0 1

]
, (11)

where R ∈ SO3 and t ∈ R3 are the rotation and the
translation of the camera, respectively. The Lie algebra se3
associated to SE3 is the set of 4×4 matrices m ∈ se3

m =

[
Ω (ω) v

0 0

]
, (12)

where Ω (ω) ∈ so3 is a skew symmetric-matrix as shown
in Equation (5) and v is a vector in R3. The matrix m is
related to M via the exponential map, i.e. M = expm (m).
To design a Newton-type optimization scheme on SE3, it
is necessary to employ ω and v to parameterize the rotation
and the translation, i.e. a = [ωT vT ]

T , respectively.
Definition 1: A smooth and local parameterization φ of

SE3 at the camera motion M can be defined using the
corresponding Lie algebra se3 to be:

φ(M) : R6 → SE3,

φ(M) (a) = expm

([
Ω (S1a) S2a

0 0

])
·M (13)

= Λφ ·M.

The matrices S1 = [I 0] ∈ R3×6 and S2 = [0 I] ∈ R3×6

select the appropriate variables. In other words, S1a = ω
whereas S2a = v.

Fig. 2. Projective Newton-type algorithm on the manifold. A local param-
eterization maps the variables from R6 to the manifold. The minimization
is then performed in two steps: The optimization direction and step size
are computed on the tangent space to the manifold. The calculated values
are then projected back on the manifold to update the motion.

B. Parameterization Using the Homeomorphism to SE3

It is possible to think of the rigid motion M as two
consecutive independent motions, i.e. a pure translation
t followed by a pure rotation R. This assumption is
performed a lot in the literature because the special Eu-
clidean group SE3 is a homeomorphic topological space to
R3×SO3 [15]. Therefore, we can use this homeomorphism
to derive another parameterization of the motion for our
algorithm. To do that, we have to recall that the relationship
between m and M is defined with the exponential map
since SE3 is a Riemannian manifold. Using the Taylor
series of the exponential, one can easily show that this
relation can be written as

R = expm (Ω (ω)) (14)
t = (I+ 1−cos(θ)

θ2
·Ω(ω)+

θ−sin(θ)

θ3
·Ω(ω)2)·v=Θ·v,

where θ =
√

1
2 trace (Ω

T (ω) ·Ω (ω)). By assuming the
two consecutive motions to be independent, the second part
of Equation (14) simply reduces to t ≈ v while the first one
remains the same. As a result, using the Homeomorphism to
SE3, the 3D rigid motion can be additionally parameterized
with a = [ωT tT ]

T ∈ R6.
Definition 2: This homeomorphism between SE3 and

R3 × SO3 leads to an alternative smooth and local param-
eterization φ for the rigid motion. It is defined as:

φ(M) : R6 → R3 × SO3,

φ(M) (a) =

[
expm (Ω (S1a)) S2a

0 1

]
·M (15)

= Λφ ·M.

C. The Cost Function on the Manifold
Having introduced the two possible parameterizations of

the rigid motion, we have to reformulate now the cost
function f so that it can accommodate anyone of them. The
proposed projective Newton method should compute the
update step of the minimization, i.e. gradient and Hessian,
at each iteration for the composition f ◦ φ(M) of the cost
function f with the local parameterization φ(M). Then, it
should map the update step back to the manifold using the
parameterization again, see Figure 2. We denote by f ◦φ(M)

as the mapping

f ◦ φ(M) : R6 → R, (16)
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which corresponds to the cost function to be minimized on
the manifold.

Definition 3: The cost function that evaluates the com-
position f ◦ φ(M) of the cost function f with the local
parameterization φ(M) on the manifold is defined by:

f ◦ φ(M)(a) :=

N∑
j=1

d (pj , p̂j)
2 (17)

=

N∑
j=1

d (pj , π ·Λφ ·M ·Pj)
2
.

The distance d (·) measures the reprojection error while
π ∈ R3×4 scales the multiplication of the right term
of the distance measure from R4 to R3 to preserve the
dimensions. The matrix Λφ can be any of the two local
parameterizations illustrated in Definitions 1 and 2.

D. Computing the Derivatives

As in any Newton-type minimization scheme, the first
and second order derivatives of the cost function need to
be computed to obtain the direction of the minimization.
The main reason behind formulating a projective Newton
scheme on the manifold is that the computation of the
derivatives is much simpler. To get a glimpse on how to
calculate such derivatives, let us compute the first order
derivative of the term (π ·Λφ ·M ·Pj) that represents
the coordinate of the reprojected point p̂j in the cost
function shown above. In a different way from a standard
Newton scheme, a projective Newton algorithm computes
the derivative with respect to the manifold step, which we
will denote here by ε, and not the motion parameters, see
Section II-B. Moreover, the derivative that we need should
be computed at zero or ε = 0 since it is necessary that
we find the direction of the minimization at the tangent
plane to the manifold [28]. By formulating these points
mathematically, the first order derivative is obtained as

d

dε
(p̂j)(εa)

∣∣∣∣
ε=0

= (18)

π·
[

Ω(S1a) S2a
0 0

]
·expm

([
Ω(S1εa) S2εa

0 0

])
·M·Pj

∣∣∣
ε=0

= π·
[

Ω(S1a) S2a
0 0

]
·M·Pj ,

using the parameterization φ(M) shown in Definition 1. The
corresponding second order derivative of the reprojected
point p̂j with respect to the manifold step ε is obtained
following the same principle. It is given by

d2

dε2
(p̂j)(εa)

∣∣∣∣
ε=0

= π ·
[

Ω(S1a) S2a
0 0

]2 ·M ·Pj (19)

Since the derivatives are computed with respect to ε
at zero and not the motion parameters themselves, the
obtained result is more compact as can be noticed from
the above equations. This will reduce the computational
complexity required to compute the Hessian which is the
main motivation behind this work. In addition, there is no
need anymore to approximate the parameterization with lo-
cal perturbations (first terms of the Taylor series expansion

of the exponential) as usually done in such algorithms,
see [1], [25]. Instead, we can use the full form of the
parameterization which will give more robustness against
the noise. These two advantages motivate the application
of a projective Newton scheme on the manifold for camera
pose refinement.

Following this concept, we have to compute the gradient
and Hessian of our cost function f ◦ φ(M) at zero. The
gradient ∇(f ◦ φ(M))(0) ∈ R6 can be calculated from

d

dε
(f ◦ φ(M))(εa)

∣∣∣∣
ε=0

= ∇(f ◦ φ(M))(0)
T · a. (20)

In other words, we have to compute the first order derivative
with respect to ε at zero and then rearrange the obtained
term into a product of two vectors. The gradient of the
cost function at zero is nothing but the transposed of the
multiplicand of a.

In a similar manner, the Hessian matrix Hf◦φ(M)
(0) ∈

R6×6 of f ◦ φ(M) evaluated at zero can be calculated from
the quadratic form

d2

dε2
(f ◦ φ(M))(εa)

∣∣∣∣
ε=0

= aT ·Hf◦φ(M)
(0) · a (21)

via polarization. The numerical forms of the gradient and
Hessian of the cost function are provided in Appendix A
for the two parameterizations in Definitions 1 and 2.

E. The Projective Newton Algorithm

Given some initial estimates of the motion M and the
3D structure, the proposed scheme refines the motion with
the following iterative update scheme:

Step 1 (Newton Direction): At each iteration k,
compute the vector a(k) by solving

−
(
µ · I6 + Hf◦φ(M)

(0)
)
·a(k) = ∇(f ◦φ(M))(0).

(22)
Step 2 (Back Projection on the Manifold):
Update the motion parameters

M(k) ← Λ
(k)
φ ·M

(k−1) (23)

Step 3: Update the reprojections p̂j and compute
the mean reprojection error.
Step 4: Repeat until convergence.

F. Analysis of the Derived Scheme

The projective Newton-based minimization algorithm is
initialized by some initial values of the motion. Then,
it proceeds with the iterative scheme illustrated in the
previous section. Each iteration, the algorithm performs
an optimization step in Equation (22) on the tangent
space of the manifold of the rigid motion followed by
a projection step which is an analytic geodesic search
described in Equation (23), see Figure 2. The proposed
technique implements the Riemannian Newton algorithm
on a small neighborhood of the set of local minima of
the cost function. Outside of this neighborhood where the
Hessian is close to singularity or indefinite, the algorithm



6

might fail. To overcome this problem, it is necessary to
determine the optimal µ. For that, there are many derived
schemes in the literature. We refer the reader to Chapter 3
in [26] for some examples. Our method can be integrated
with any of such schemes. To determine µ in this paper, we
first apply the Cholesky factorization with added multiple
of the identity to modify the Hessian since it is simple and
produces often good results [26]. This leads to the modified
Hessian Ĥf◦φ(M)

(0). Then, we solve for a(k) as follows

Ĥf◦φ(M)
(0) · a(k) = −∇(f ◦ φ(M))(0) (24)

After that, we compute a parameter γ to modify the
Hessian. The parameter γ is computed in such a way to
satisfy the Wolfe conditions. This is done in our work by
performing a backtracing line search using a(k), see [26].
Then, the value of a(k) is modified as such

a(k) ← γ · a(k). (25)

The latter is used in Equation (23) to update the motion
parameters. The step we just made is necessary to enlarge
the attraction domain of the local minima and to control
the speed of convergence of the algorithm. The direction
of the step is determined via the Newton direction and it
is zero only when the gradient is zero. Consequently, the
algorithm converges to a critical point of the cost function
when the gradient is zero.

What remains to be done is to prove that the proposed
algorithm will converge to a minimum for a set of observed
3D points and an initial estimate of the motion M. We
will demonstrate this point using the global convergence
theorem derived in Chapter 6 of [31].

Theorem 1: Let Υ denotes a mapping from SE3 → SE3

that calculates from the previous motion estimate M(k−1),
the new estimate M(k) at the kth iteration. The projective
Newton algorithm is said to be convergent according to
the global convergence theorem if it satisfies the following
three conditions:

1) The mapping Υ is closed.
2) All the computed M(k) by the mapping are contained

in a compact set.
3) The mapping Υ is a strictly decreasing function

except at the solution.
Proof:

1) To prove the first condition of the theorem, we need
to recall that each iteration of the proposed scheme
is composed as said before of two mappings. The
first one is from SE3 → se3 and which is given
by the solution of the Newton step in Equation (22).
The second is the mapping that projects back on the
manifold, i.e. se3 → SE3, and which is represented
by Equation (23). These two mappings are continuous
and smooth according to the properties of a Rieman-
nian manifold; therefore, both mappings are closed.
Since Υ is composed of two closed mappings then
Υ is also closed.

2) The mapping specified by Υ generates matrices of
rigid motion from the set SE3 which is a compact
set by the properties of a Riemannian manifold.

3) The regularization we performed on the Hessian
often ensures that it remains positive semi-definite. In
addition, the computation of µ in the way previously
defined often ensures that the direction of the min-
imization in this equation is negative or decreasing.
Consequently, the step is zero only when the gradient
is zero, the point at which the algorithm meets a fixed
point (converges). Hence, the third condition of the
theorem is also satisfied.

The proposed projective Newton scheme is globally con-
vergent since all the conditions of the global convergence
theorem are fulfilled.

Corollary 1: The algorithm was proven to be convergent
for the parameterization φ(M) in Definition 1. One can
infer from the proof that since R3×SO3 is homeomorphic
to SE3, the projective Newton scheme is also convergent
when the motion is parameterized according to Definition 2.

G. Complexity Analysis of the Algorithm

Now that the algorithm was proven to be globally conver-
gent, the next step is to evaluate its complexity and compare
it to the state of the art methods depicted in Section II.
The main difference in the proposed scheme is that the
optimization step, i.e. evaluation of gradient and Hessian,
is conducted on the tangent plane of the Riemannian mani-
fold. By looking at the concept with which these terms are
computed in Section III-D, we can anticipate that their form
will be compact. This is actually confirmed by depicting
their numerical format in Appendix A. There are no lengthy
computations in the evaluation of the derivatives of the cost
function as in Equations (9) and (8) in the vector space. The
only Euclidean derivatives that need to be evaluated are the
ones belonging to the distance function d (·) with respect to
p̂, i.e. ∂d (pj , p̂j) /∂p̂j and ∂2d (pj , p̂j) /∂p̂2

j . These are
also needed in a standard Newton minimization scheme and
do not present a bottleneck in the computations.

In order to emphasize on the computational complexity,
we present in Table I a comparison of the costs required
for the calculation of the gradient and the Hessian for
each of the minimization algorithms in a single iteration.
We denote in the presented results the standard Newton
algorithm described in Section II-B by Newton Vectorspace,
the proposed scheme with the parameterization in Defi-
nition 1 by Newton SE3 and the proposed scheme with
the parameterization in Definition 2 by Newton R3×SO3.
The factors multiplied by N are the operations that have
to be evaluated for each point in the camera while the
others are only required once, e.g. Rodrigues formula in
Equation (7) to compute the rotations. Each of the shown
numbers in the table designates the equivalent amount of
flops needed while the operations that require more than
one flop, e.g. cosine and sine, are mentioned by there names
since they depend on the machine used. LM requires the
least computational effort to compute these terms while the
Newton algorithm in the vector space requires the most,
i.e. 5 times the computational resources. This shows why
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the evaluation of the full Hessian shown in Equation (8) is
usually avoided in such problems. However, the amount of
computations required by the two versions of the projective
Newton algorithm on the manifold is 60% less on average
than the latter. Compared to LM, the complexity induced by
the proposed method is only twice higher. In addition, its
application will lead to an improvement in the accuracy of
the motion estimates and will make the result more robust
against the noise. This can be seen from the fact that taking
the full numerical form of the Hessian, i.e. the second order
derivatives in Equation (8), makes the optimization more
robust against being stuck in local minima [14]. This point
will be also visualized in our results in the next section.

IV. EXPERIMENTAL RESULTS

We will describe in this section a comparison regarding
the proposed projective Newton technique using both pa-
rameterizations, the standard Newton algorithm described
in Section II-B and LM. For LM, we use the Matlab imple-
mentation which can be called with the command lsqnonlin.
We will be testing the techniques using one simulated data
set and three real image sequences. The goal of our tests is
to demonstrate the performance of the algorithms in terms
of convergence and accuracy of the estimated motion. The
cameras are assumed to be intrinsically calibrated and the
3D structure is computed along with the corresponding
image projections. All the used methods are implemented
in Matlab. The only dissimilarity among them resides in the
way the gradients and the Hessians are evaluated which was
thoroughly discussed in the previous sections and illustrated
in Table I. Consequently, the variation of the outcome of
the algorithms depends only on this difference1.

Figure 3 shows the output of the algorithms when applied
to the simulated data set. We created 100 3D points lying
on geometrical shapes consisting of cubes, pyramids and
spheres. We also created four cameras at different positions.
We projected the 3D points on 256 × 256 images using
these cameras in the noise free case. We fed the coordinates
of the feature points and the ground truth 3D structure to
each of the Newton algorithms. As for the initial estimates,
we made two different experiments. In the first one, we
randomly chose the estimates. In the second one, we
distorted the ground truth motion values with noise. Doing
these two tests will let us know how far is each of the
algorithms affected by the value of the initial estimate. In
Figure 3a and 3b, we see the mean cosine distance versus
the number of iterations to converge. The result illustrated
in the plots show the average over 100 trials. One can see
that LM failed to properly converge in the first test while it
was able to converge like the others in the second one. In
Figures 3c and d, we measured the error in the rotation of
one camera position from the first test by transforming the
rotation matrix to the Euler angles and then calculating the
absolute difference between the estimated and the ground
truth values. For the translation in Figure 3e, the error is

1The proposed algorithms can be downloaded from http://wwwt3.ldv.
ei.tum.de/index.php?id=248

computed by evaluating the distance between the estimated
vectors and the corresponding true values. All of these
results demonstrate that taking the total Hessian and not
just the approximation make the algorithm less affected by
the value of the initial motion estimate. To stress on this
point, we show in Figure 3f the percentage error between
the approximate Hessian used by LM and the accurate one
of the test in Figure 3a in both linear and logarithmic
scales. One can notice that the difference between the two is
significant and this is most likely why there is a difference
between the obtained results.

The third test we will perform uses the Hall stereo
sequence which we acquired. Example images from the
sequence are illustrated in Figure 4. The sequence consists
of nine stereo images of size 640× 480. The intrinsic and
extrinsic parameters of the stereo rig were computed using
the camera calibration toolbox for Matlab [32]. The motion
of the rig consists of both rotational and translational move-
ments. The ground truth values of these movements are
known. Using some features tracked over all the sequence,
we computed nine partial 3D structures using each stereo
pair by triangulating the points with the computed camera
matrices of the stereo rig. In order to improve the accuracy
of the estimate of the scene, we determined the epipolar
geometry between each pair using the robust version of
the five-point algorithm of [33] which is proposed in [34].
We used the epipolar constraint after that to eliminate
the outliers and increase the number of feature points by
guiding the correspondences. We then applied the absolute
orientation technique of [6] to compute a linear estimate of
the motion by calculating a rigid transformation between
each sequential pair of the partial 3D structures. This results
in the eight initial estimates of the camera motion. The
structures were then inputted along with the initial estimates
of the motion to refine its alignment with the minimization
schemes. In these comparisons, we also use the imple-
mentation of the iterative closest point (ICP) algorithm
of [24] since the problem in hand now corresponds to
perspective n-point problem which was also dealt with
there. In Figure 5a, we show the average mean cosine
distance of the whole sequence plotted versus the number
of iterations required to converge. In Figure 5b, we show
the corresponding mean reprojection error in pixels. What
we can see is that LM is not able to refine the average
reprojection error obtained from the linear method while
the other Newton schemes and ICP are able to do so. This
is also confirmed by Figure 6 where we show the average
error in the estimated motion for each frame as was done in
the simulated data sets but using the ground truth values of
the motion. As a reference, we also provide in this image
the output of the linear algorithm of [6]. We can also realize
here that the average error in the motion variables is much
lower than the output of LM and is better than that of ICP.
This result motivates the application of the manifold based
Newton algorithm for motion refinement since it is more
robust against the noise. To see why LM was not able to
provide a significant enhancement, we show in Figure 7 the
norm of the gradient and the damping factor of LM versus

http://wwwt3.ldv.ei.tum.de/index.php?id=248
http://wwwt3.ldv.ei.tum.de/index.php?id=248
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TABLE I
THE TOTAL NUMBER OF FLOPS NEEDED FOR THE COMPUTATION OF THE GRADIENT AND THE HESSIAN PER ITERATION. N IS THE NUMBER OF

POINTS, sqrt IS THE SCALAR SQUARE ROOT, cos IS THE SCALAR COSINE AND sin IS THE SCALAR SINE. THE TERMS expm AND expm4 ARE THE
3×3 AND 4×4 MATRIX EXPONENTIAL RESPECTIVELY.

Algorithm Number of flops
LM N(114 + 2 · sqrt) + (227 + expm + sqrt + cos+ sin)

Newton Vectorspace N(564 + 2 · sqrt) + (1024 + expm + sqrt + cos+ sin)
Newton SE3 N(241 + 2 · sqrt) + (15 + expm4)

Newton R3 × SO3 N(235 + 2 · sqrt) + (6 + expm)

(a) (b)

(c) (d)

(e) (f)
Fig. 3. Result using the simulated data sets. From (a) to (e) in the respective order: Mean cosine distance for the random pose initialization, mean
cosine distance for the close pose initialization, error in roll for the random initialization, error in pitch for the random initialization and error in
translation for the random initialization versus the number of iterations to converge in the noise free set. In (f), we show the percentage error between
the accurate and approximate Hessian (used by LM). We use a linear scale in the outer image and a logarithmic scale in the inner one.

the number of iterations. These show that LM was indeed
trapped at a local minimum.

Since the problem in hand is the camera pose estimation,
it is also possible to test the algorithms on video sequences
originating from a single moving camera. Therefore, the
last two data sets we will use are the Corridor and the
Dinosaur sequences where each one consists of 11 and
36 frames, respectively. To obtain initial estimate of the
motion, we first matched and tracked some feature points

over each image sequence. We then estimated the intrinsic
parameters of the images by applying the technique of [35].
Using the algorithm of [34], we computed the essential
matrices between the sequential images, rejected the feature
matches that do not satisfy the epipolar constraint and then
computed more correspondences by guiding the matches.
We perform two tests with these data sets. In one setup
of this test we set a lower threshold to reject the matches
and in the second one a higher threshold. Therefore, in the
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(a) (b) (c)

Fig. 4. Example images from the Hall stereo sequence.

(a) (b)

Fig. 5. (a) The average mean cosine distance versus the number of iterations using the Hall stereo sequence. (b) The average mean reprojection error
in pixels versus the number of iterations using the Hall stereo sequence.

(a) (b)

(c) (d)

Fig. 6. Result of the algorithms on the Hall stereo sequence using as initial estimates of the motion the outcome of [6]. From (a) to (d): Error in the
estimates of the roll, pitch, yaw and translation respectively.

first case we will have a lower number of false matches
and hence lower noise than in the second one. The initial
estimates of the motion for each setup are finally computed
by factorizing the essential matrices, triangulating some of
the match points and checking which of the possible camera
matrices satisfy the chieralities [1]. The 3D structure was
then obtained by triangulating the points with the initial
camera matrices of each of the two setups. We then refined
the motion estimates using each of the Newton schemes.

Note that in the first setup, the initialization of the setup
can be considered well conditioned in the sense the data is
less noisy and the initial estimates of the motion are more
close to the global optimum. In other words, the system is
good initialized as usually done in practice. In the second
setup, the initialization is noisier and it will be therefore
challenging for the Newton algorithms to converge.

The average value of the mean cosine distance and the
corresponding mean reprojection error in pixels versus the
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(a) (b)

Fig. 7. (a) The damping factor of the LM algorithm versus the number of iterations using the Hall stereo sequence. (b) The corresponding norm of
the gradient versus the number of iterations.

iteration number is shown in Figure 8 for the Corridor
sequence and in Figure 9 for the Dinosaur sequence. What
can we see in both cases is that the LM is pretty sensitive to
the initialization of the system. It was not able to converge
in the two setups where there was a higher number of
mismatches and higher error in the initial value of the
motion estimate. Consequently, what we can conclude again
is that using the full numerical form of the Hessian makes
it more probable for the optimization algorithm to converge
to the global optimum.

The refined motion trajectory of the cameras for the two
setups with higher noise are shown in Figure 10. In both
cases, LM failed in recovering many poses of the camera
trajectory while the others have lead to a good output.
The correctness of the motion estimates of the Corridor
sequence cannot be numerically calculated because this set
does not possess a ground truth value of the motion. To
the exception of LM, however, the obtained trajectories of
the motion look pretty much the same as the ones obtained
in [36]. With the Dinosaur sequence, the Newton method
with the SE3 parameterization was able to capture the
whole circular motion of the camera. This is also the case
with the Newton algorithm in the vector space. The Newton
technique with the R3×SO3 parameterization was able to
capture most of the camera poses to the exception of two.
The ground truth set of this camera was taken in steps of
10◦ rotation with a standard deviation of 0.05 [37]. The
values obtained with each algorithm are shown in Table II
along with the number of outliers, i.e. positions not lying
on the circle.

By comparing the two parameterization schemes of the
projective Newton algorithm, we notice that their perfor-
mance was almost the same except with the Dinosaur
sequence. There, the technique with the parameterization
on R3 × SO3 diverged twice. The reason for that might
be because the parameterization φ(M) in Definition 2 treats
each entity, i.e. rotation matrix and translation vector,
independently which can also be seen in the form of the
obtained gradient and Hessian in Appendix A. In contrast,
the parameterization φ(M) on SE3 treats all the variables
jointly which might has lead to this improvement..

V. CONCLUSION

We presented in this paper a projective Newton mini-
mization scheme that refines the motion of the camera by

optimizing on the Riemannian manifold of the rigid motion.
A Riemannian manifold is equipped with a tangent plane
that makes the transition between the points smooth. This
allows us at each iteration to compute the Newton opti-
mization step on the plane and project back the parameters
on the manifold via the exponential map to update the
motion. We modified the cost function to accommodate
for two parameterization schemes on the manifold. The
advantage of the proposed method is that it allows an easier
computation of the derivatives which enables us to use the
full numerical form of the Hessian in the optimization.
Compared to a similar Newton-based technique in the
vector space, the proposed algorithm requires 60% less
effort to evaluate the Hessian. Compared to LM, the method
has a comparable complexity in terms of the Hessian
computation although the latter uses an approximate form.
Therefore, the application of our scheme leads to more
accurate results than LM and is more robust against the
noise since the usage of the full numerical form of the
Hessian makes it less probable to be stuck in local minima.
In addition, it is not required anymore to approximate the
motion parameterization with local perturbations as usually
done in such schemes. This happens because the derivatives
are not computed anymore with respect to the motion
variables but to the manifold step, i.e. ε. For these reasons,
the proposed projective Newton algorithm on the manifold
seems to be a more promising implementation for the non-
linear minimization problems.

APPENDIX

In this section, the term d (pj , p̂j) will be replaced by
d for simplicity. In Definitions 1 and 2, we presented two
parameterizations of the 3D rigid motion for the proposed
projective Newton algorithm. Using the parameterization
φ(M) in Definition 1 along with the concept shown in
Equation (20), the explicit formula for the gradient of the
local cost function f ◦ φ(M) at zero is given by

∇(f ◦ φ(M))(0) = 2JT · g (26)

= 2
∑N
j=1

[−Ω (πMPj) I3]
T · ∂d

∂p̂j︸ ︷︷ ︸
→J

· d︸︷︷︸
→g

,

where ∂d
∂p̂j
∈ R3 is the standard Euclidean derivative of

the distance function with respect to p̂. The corresponding
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TABLE II
THE RESULTS OF THE MINIMIZATION ALGORITHMS ON THE DINOSAUR SEQUENCE ALONG WITH THE GROUND TRUTH VALUES OF THE MOTION.

THESE CORRESPOND TO THE SETTING CORRESPONDING TO FIGURE. 9A. THE MEAN AND STANDARD DEVIATION OF THE OVERALL CAMERA
POSES ARE IN DEGREES. THE OUTLIERS ARE THE CAMERA POSITIONS THAT ARE NOT LYING ON THE CIRCLE.

Algorithm Mean Std Number of Outliers
Ground Truth 10 0.05 0

LM 0.82 76.74 25
Newton Vectorspace 10 0.360 0

Newton SE3 10 0.378 0
Newton R3 × SO3 9.89 8.64 2

(a) (b)

(c) (d)
Fig. 8. In the left column, we have the mean cosine distance versus the number of iterations averaged over all the frames of the Corridor sequence
while in the right column we have the corresponding mean reprojection error in pixels versus the number of iterations. In (a) & (b), the initialization
of the motion is not well conditioned, i.e. the initial estimates are far from the global optimum. In (c) & (d), the initial estimates are well conditioned.

numerical form of the Hessian according to (21) is given by

Hf◦φ(M)
(0) = 2JT · J (27)

+ 2
∑N
j=1

(
ST

1 ·Ω
(
∂d
∂p̂j

)
·[Ω(πMPj) I3]·d)

)
+ 2

∑N
j=1

(
[−Ω(πMPj) I3]

T · ∂2d

∂p̂2
j

·[−Ω(πMPj) I3]·d
)
,

where ∂d2

∂p̂2
j
∈ R3×3 is the second order derivative of the

distance function with respect to p̂.
In a similar fashion, the numerical form of the gradient at

zero of the cost function f ◦φ(M) using the parameterization
φ(M) in Definition 2 is

∇(f ◦ φ(M))(0) = (28)

2
∑N
j=1

(S
T

2 + ST

1 ΩT (RPj)) ·
∂d

∂p̂j︸ ︷︷ ︸
→J

· d︸︷︷︸
→g

,

while the corresponding Hessian at zero is given by

Hf◦φ(M)
(0) = 2JT · J (29)

+ 2
∑N
j=1

(
ST

1 Ω
(
∂d
∂p̂j

)
·Ω(RPj)S1·d

)
+ 2

∑N
j=1

(
(ST

2 −ST
1 ΩT(RPj))· ∂

2d

∂p̂2
j

·(S2−Ω(RPj)S1)·d
)
.

As one can notice, the motion matrix M is split in this case
between the rotation matrix R and the translation vector
t when calculating the derivatives. This is because the
parameterization φ(M) given in Definition 2 assumes that
the motion is the composition of two consecutive motions,
i.e. a pure translation and a pure rotation, while the other
one in Definition 1 treats the parameters jointly.
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[34] M. Sarkis, K. Diepold, and K. Hüper, “A fast and robust solution to
the five-point relative pose problem using gauss-newton optimization
on a manifold,” in IEEE Int. Conf. Acoustics, Speech and Signal
Processing, Apr. 2007, pp. I–681–I–684. 7, 8

[35] M. Pollefeys, R. Koch, and L. V. Gool, “Self-calibration and metric
reconstruction in spite of varying and unknown internal camera
parameters,” in Int. Conf. Computer Vision, Jan. 1998, pp. 90–95. 8

[36] A. W. Fitzgibbon, G. Cross, and A. Zisserman, “Automatic 3D model
construction for turn-table sequences,” in Proc. SMILE Workshop on
Structure from Multiple Images in Large Scale Environments, Jun.
1998, pp. 154–170. 10

[37] W. Niem, “Robust and fast modelling of 3D natural objects from
multiple views,” in SPIE Electronic Imaging: Image and Video
Processing II, Feb. 1994, pp. 338–397. 10



13

(a) Corridor with LM (b) Dinosaur with LM

(c) Corridor with Newton Vectorspace (d) Dinsosaur with Newton Vectorspace

(e) Corridor with Newton SE3 (f) Dinosaur with Newton SE3

(g) Corridor with Newton R3 × SO3 (h) Dinosaur with Newton R3 × SO3

Fig. 10. The recovered motion trajectories of the cameras using the different minimization algorithms. These correspond to the settings corresponding
to Figures 8a and 9a. The Corridor sequence is in the left column while the Dinosaur sequence is in the right column.
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