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OUTLINE

1. Glocal Control & Energy Networks
2. A Unified Framework for Networked 

Dynamical Systems with Stability Analysis
3. From Homogeneous to Heterogeneous
4. From Frat to Hierarchical 
5. Decentralized Hierarchical Control 

Synthesis 
6. Applications in Energy Networks  
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① LTI system with generalized freq. variable
a proper class of homogeneous multi-agent 
dynamical systems  

② Three types of stability tests, namely 
graphical, algebraic, and numeric (LMI) 

Messages : A New Framework

powerful tools for analysis

Q3: from Homogeneous 
to Heterogeneous ?

Q4: from Flat Structure 
to Hierarchical Structure ?



5

From Frat to Hierarchical Structures 
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OUTLINE : Part 4

4. From Frat to Hierarchical
・ Low-rank Interlayer Connections 
・ Hierarchical Consensus for 

Heterogeneous Networks
・ Hierarchical Adaptive Consensus
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OUTLINE : Part 4

4. From Frat to Hierarchical
・ Low-rank Interlayer Connections 
・ Hierarchical Consensus for 

Heterogeneous Networks
・ Hierarchical Adaptive Consensus

(Shimizu, Hara: SICE2008)

Q9: What are Key Properties in 
Hierarchical Systems ?
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# total agents : n1×n2×n3
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Homogeneous
structure

Upper-layer
structure

Property on 
Interactions

weak interaction:
Sparse

Small gain

Share an aggregated information
Control uniformly

Low Rank 
Interaction:

Hierarchical Structure
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Eigenvalue Distributions
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⊿: Rank 1 n1 > n2Rapid 
Consensus

Time Responses (n1=25, n2=4)

Aggregation Distribution

Low-rank Interlayer
Interactions

 Multiple resolution
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OUTLINE : Part 4

4. From Frat to Hierarchical
・ Low-rank Interlayer Connections 
・ Hierarchical Consensus for 

Heterogeneous Networks
・ Hierarchical Adaptive Consensus

(Fujimori et. al., CDC2011)   

Q10: What is a General Framework for 
Heterogeneous Network Synthesis ?
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Aggregation of 
informationDistribution of informationLocal connection

Design     ,       and

Hierarchical Structure
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Hierarchical structure is 
compressed into matrix 

Design     ,       and

Hierarchical Structure
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can be written using Kronecker 
product      .

We need Khatori-Rao product      .

Heterogeneous

Homogeneous

Homogeneous vs Heterogeneous
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is right eigen-connection matrix of
associated with eigenvalue

(      is the right eigenvector associated with       )

Def

Analogously, left eigen-connection matrix can 
also be defined by using left eigenvector. 

Eigen-connection Matrix
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Assumption

Theorem: Rank 1 

• has at least one simple eigenvalue
• is a right  eigen-connection matrix of

associated with eigenvalue

For any     , the set of all the eigenvalues of       is given by  

The eigenvalues of
local interconnection

The eigenvalues determined 
by hierarchical structure

An analogous result is obtained for left eigen-connection matrices.

Theorem : Rank 1 Case
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Numerical Examples (1/2)
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Numerical Examples (2/2)

Without
Control
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Theorem: Rank 2

• has at least two simple eigenvalues
• is a right eigen-connection matrix of

associated with eigenvalue

For any     , the set of all the eigenvalues of       is given by  

An analogous result is obtained for left eigen-connection matrices.

Theorem : Rank 2 Case

Assumption
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OUTLINE : Part 4

4. From Frat to Hierarchical
・ Low-rank Interlayer Connections 
・ Hierarchical Consensus for 

Heterogeneous Networks
・ Hierarchical Adaptive Consensus

(Fujimori et.al., SICE2011)
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Theorem (LMI)

Stability for Dissipative Agents 

Agent Dynamics

(Hirsch, Hara: IFAC2008)
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Assumption

• Passivity
• Graph -L is Strongly
Connected with  
positive edges

Theorem

All agents achieve 
consensus robustly for 

unknown positive weights.

Passive Systems : Non-hierarchical Case

Nonlinear Dynamics Goal of Consensus
Conformation of Outputs
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Assumption

• Passivity
• Graph -L is Strongly
Connected with  
positive edges

Theorem

All agents achieve 
consensus robustly for 

unknown positive weights.

Passive Systems : Non-hierarchical Case

Nonlinear Dynamics Goal of Consensus
Conformation of Outputs
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• Regard S. C. multiple
pendulums as a
subsystem

：input weight
：output weight

Subsystems exchange the 
weighted sum of information

Passive Systems : Hierarchical Case
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Whole Graph Laplacian

We need another criterion

There are Negative Edge!

aggregation

An Example of Hierarchical Structure

Q: How can we decide the weights
so that the subsystem is passive ?
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• Outputs of subsystems achieve consensus
• Agents in each subsystem achieve consensus 

When sums of output weights are coincident, 
all the agents achieve consensus.

Consensus of Hierarchical Structure

Assumption
• Passivity
• subsystem: S. C.
• satisfy 

•

All the subsystems are Passive

Proposition

The positive left eigenvector of  the 
graph Laplacian         representing 
the connection inside the subsystem 
associated with the eigenvalue 0.
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Sum of output weight is equivalent

The Assumption 
is satisfied

aggregation

Case1)

Numerical Simulation (1/2)
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aggregation

Numerical Simulation (2/2)

The Assumption
is not satisfiedCase2)
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① Low rank interlayer connections are quite
helpful for rapid consensus. aggregation

③ Nonlinear agents:   left eigenvector
strongly connected graph in the upper layer 

+ subsystems which can be passive

② Heterogeneous agents:   Khatri-Rao Product
hierarchical network synthesis based on 
left eigenvectors

Three Messages
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① LTI system with generalized freq. variable
a proper class of homogeneous multi-agent systems  

② Three types of stability tests, namely 
graphical, algebraic, and numeric (LMI) 

Messages : A New Framework

powerful tools for analysis

③ From Homogeneous to Heterogeneous 

④ From Flat to Hierarchical Structure 
robust stability analysis (Hinf norm condition)

low-rank interlayer connection (aggregation & distribution)

How to Design  Decentralized
Control Systems Systematically ?


