Lecture Series, TU Munich October 22, 29 & November 5, 2013

Glocal Control for Hierarchical Dynamical Systems Theoretical Foundations with Applications in Energy Networks

Shinji HARA The University of Tokyo, Japan

OUTLINE

- 1. Glocal Control & Energy Networks
- 2. A Unified Framework for Networked Dynamical Systems with Stability Analysis
- 3. From Homogeneous to Heterogeneous
- 4. From Frat to Hierarchical
- 5. Decentralized Hierarchical Control Synthesis
- 6. Applications in Energy Networks

OUTLINE : Part 1

1. Glocal Control & Energy Networks

- Glocal Control (background, idea, goal)
- Urban Heat Island Problem
- Integrated Energy Networks

Why "Glocal Control" ?

Recently, systems to be treated in various fields of engineering including control have became large and complex, and more high level control such as adaptation against changes of environments for open systems is required. Typical examples include meteorological phenomena and bio systems, where our available actions of measurement and control are restricted locally although our main purpose is to achieve the desired global behaviors.

This motivates us to develop a new research area so called "Glocal Control," which means that the desired global behavior is achieved by only local actions.

Future Direction in Control Realization of High Quality Products \rightarrow Solving Social Problems such as **Energy, Environments, and Medicine Meteorological** Phenomena Hybrid **Multiple Functions** Control Bio-systems 🔮 **High Performance** Linear Robust motor car Control **Energy NWs Engine** control

Robotics

Aerospace

Steel process

Chemical process

Mechatronics

Glocal

Control

Automation

Classical

Watt

Control

Stabilization

Modern

Control

Transportation

Urban Heat Island Problem

Local Actions of Measurement & Control

Scale of buildings and roads

Glocal Control

Scale of residential and business areas

Scale of districts/towns

Realization of Global

Desired Environment

Hierarchical Bio-Network Systems

Integrated Energy Networks

Integrated Energy Network

Multi-resolved Hierarchical

Regional Energy Network System

Image of Glocal Control System

Global measurement (LR)

OUTLINE Part 1

1. Glocal Control & Energy Networks

- Glocal Control (background, idea, goal)
- Urban Heat Island Problem
- Integrated Energy Networks

Urban Heat Island Problem

Glocal

Control

Local Actions of Measurement & Control

Scale of buildings and roads

Realization of Global Desired Environment of a Whole City

Scale of residential and business areas

13

Scale of districts/towns

Possibility by Glocal Control

Hierarchical Air Conditioning (1/3)

Hierarchical Air Conditioning System Area: Group of buildings Building: Set of floors Floor: Set of rooms

Scalability

Energy saving (40%) Heat island problem

(with Azbil)

Hierarchical Air Conditioning (2/3)

(with Azbil)

<u>Upper Layer</u> : Energy Saving <u>Lower Layer</u> : Comfortableness

Hierarchical Air Conditioning (3/3)

Towards Regional Integrated EMS

OUTLINE : Part 1

1. Glocal Control & Energy Networks

- Glocal Control (background, idea, goal)
- Urban Heat Island Problem
- Integrated Energy Networks

Features of Energy & Water NWs

★ Energy & Water

- not uniformly distributed in time/space
- unbalance between demand & supply
 - → Control = balancing energy/water in time/space
- but, transfer is very costly
 - only local actions with exchanges
 in neighbors are available
 - → shifting elements in time/space are important
- \star To reduce total energy
 - → Utilizing Nature & Control Strategy

★ Key Points

- Hierarchical with Multi-resolution
- Aggregation & Distribution
- Passivity

OUTLINE

Laptop PC Battery System

Hierarchical Model Predictive Control for Laptop PC Battery Systems

25

Two Types of Aggregation

Two Types of Aggregation

Decentralized

Control

Towards Regional Integrated EMS

Integrated BEMS by Heat Transfer

(with Azbil)

Purpose Energy Management Control by Heat Transfer with Thermal Energy Storages

<u>On Going Work</u> 1) Hierarchical Modeling & Decentralized Control 2) Design Guideline for NWs (TESs, GEs)

Features of Decentralized Control

Advantages

- *Reduction of computation load* in each control device
- Localization of confidential information(e.g. facility information, energy consumption)
- Adaptation capability for facility replacement and performance degradation with updating of subsystems

(with Azbil)

Decentralized Control for Int. BEMS

Modeling of Elements and Setting of Objective Functions

Decentralized Control: Optimization

An Example : two buildings

(with Azbil)

Cost Cold energy Cold energy Amenity $E_1(u_1[h];h)$ $u_1[h]$ $A_1(b_1[h]; h)$ $v_{11}[h]$ $d_{11}[h]$ $x_1 [h]$ T_i^C, λ_i^C T_{ij}^I, λ_{ij}^I $v_{12}[h]$ d_{21} **Better** Efficiency $\max \sum \sum (A_i(b_i[h];h) - E_i(u_i[h];h))$ H = 24 $\Delta t = 1.0$ $\begin{bmatrix} 1.0\\ 1.0 \end{bmatrix} \le Q[h] \le \begin{bmatrix} 15.0\\ 15.0 \end{bmatrix}$ $\begin{bmatrix} 0.13\\ 0.30 \end{bmatrix} \le u[h] \le \begin{bmatrix} 1.30\\ 3.00 \end{bmatrix}$ $Q[0] = \begin{bmatrix} 1.0\\ 1.0 \end{bmatrix}$ $\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \le v[h]$ $A(b[h];h) = -100(b - demand)^{2}$ 35

 $1 \leq Q_2 \leq 5$

Enough Capacity

36

 $1 \leq Q_2 \leq 2$

Limited Capacity

37

OUTLINE

Hierarchical Control with Multiple Gas Turbines

Hierarchical Control with Multiple Gas Turbines

Experimental System for Smart Energy NW

42

Tokyo

Gas

@Senjyu