
Collaborative Extremum Seeking for Welfare Optimization

Anup Menon and John S. Baras

Abstract— This paper addresses a distributed, model-free
optimization problem in the context of multi-agent systems.
The set-up comprises of a fixed number of agents, each of
which can pick an action and receive/measure a private utility
function that can depend on the collective actions taken by
all agents. The exact functional form (or model) of the agent
utility functions is unknown, and an agent can only measure
the numeric value of its utility. The objective of the multi-
agent system is to optimize the welfare function (i.e. sum of the
individual utility functions). A model-free, distributed, on-line
learning algorithm is developed that achieves this objective. The
proposed solution requires information exchange between the
agents over an undirected, connected communication graph,
and is based on ideas from extremum seeking control. A result
on local convergence of the proposed algorithm to an arbitrarily
small neighborhood of a local minimizer of the welfare function
is proved. Application of the solution to distributed control of
wind turbines for maximizing wind farm-level power capture
is explored via numerical simulations. Also included is a novel
analysis of a dynamic average consensus algorithm that may
be of independent interest.

I. INTRODUCTION

Engineered multi-agent systems (MAS) comprise of multi-

ple decision making entities (or agents) that have a collective

task to accomplish. Each agent makes its individual decisions

based on local information (such as its measurements and

communicated information from other agents), and the chal-

lenge is to devise distributed decision making rules (or al-

gorithms) that help realize the system-wide objective. While

there has been extensive research in several formulations of

these problems, emerging applications continue to provide

new challenges.

We consider one such problem formulation in this paper

with a salient feature of being model-free. In particular,

consider a MAS comprising of n agents indexed by i; agent

i takes action ui ∈ R, and receives/measures a private utility

function fi(u) that can depend on the actions taken by

all agents u = (u1, ..., un). The exact functional form of

the utility functions fi(·)s, however, is unknown. An agent

merely receives or measures the realized values of its respec-

tive utility function; for instance, if the collective action at

time t is u(t), agent i receives the corresponding realized

numerical value fi(u(t)). The MAS has the collaborative

objective to optimize (without loss of generality, we consider

Research partially supported by the US Air Force Office of Scientific Re-
search MURI grant FA9550-09-1-0538, by the National Science Foundation
(NSF) grant CNS-1035655, and by the National Institute of Standards and
Technology (NIST) grant 70NANB11H148.

The authors are with the Institute for Systems Research and the
Department of Electrical and Computer Engineering at the University
of Maryland, College Park, MD 20742, USA amenon@umd.edu,

baras@umd.edu

minimization) the welfare function W (u) =
∑n

i=1 fi(u):

min
u∈Rn

W (u). (P)

Inter-agent communications can be realized in the context

of engineered MAS, and are necessary to achieve such col-

laborative tasks. Hence, we shall allow for the possibility of

such communications. Thus, distributed learning algorithms

are sought that help each agent learn its (respective) action

that corresponds to the optimizer of the welfare function.

Example application scenarios that can be modeled in this

fashion include efficient coverage of source-fields by a group

of robots [1], collaborative surveillance by a group of robots

[2], etc. The specific application that has inspired our work

is the problem of maximizing the total power production

of wind farms. Due to aerodynamic interactions between

wind turbines, each turbine maximizing its power production

does not lead to farm-wide maximal power capture, and

hence coordinated control of turbines can help improve

power capture [3]–[7]. This problem is challenging because

there are no accurate models for the said aerodynamic

interactions, rendering model-based optimization inaccurate.

Hence, model-free learning schemes, where turbines adapt

their set-points on-line in response to measured value of their

power production are needed.

While it is clear that (P) is distinct from the vast literature

on model-based distributed optimization, the literature on

Learning in Repeated Games is relevant to it. This area

of research studies the emergent behavior resulting from

players playing a game repeatedly while following specific

(action-update) strategies, and has received a lot of interest

in the context of distributed control recently (see [8] and

references therein). While many of these algorithms have

the desired feature of being model-free and payoff-based,

being in the context of non-cooperative games, most focus

on equilibration to Nash (and other related) equilibiria under

appropriate assumptions on the payoff functions [9], [10].

However, such assumptions on payoff structure may be too

restrictive and the equilibria may be inefficient in the present

context. To the best of our knowledge, only [11] and the

authors’ earlier work [12], [13] address (P) using ideas from

learning in games. However, these earlier works [11]–[13]

assume the set of values an agent’s action can take to be dis-

crete; such discretization leads to loss of useful information

(such as gradients) available in the present setting that can

be exploited for improved performance (especially improved

speed of convergence).

The main contribution of this paper is a solution to (P)

using ideas from extremum seeking control, and a rigorous

justification that the proposed solution ensures local con-

vergence of the agent actions u(t) to an arbitrarily small

neighborhood of a minimizer of W (·) as t → ∞ (see

Theorem 2). Extremum seeking control is a model-free

adaptive control technique that performs a “simultaneous

gradient estimation-descent”. Loosely speaking, our solution

is based on the agents running a dynamic average consensus

algorithm with their payoffs as inputs so that the consensus

output “tracks” W (u). Next, this arrangement is interfaced

suitably with an extremum seeking loop (see Figure 1) that

leads agent i’s action to evolve according to

u̇i ≈ −
∂W (u)

∂ui

.

In this sense, this work can be considered as an application

of extremum seeking control and dynamic consensus for

solving (P). Noteworthy in this context are recent works [14],

[15] which apply extremum seeking control to learn Nash

equilibria in non-cooperative n−player games.

Another important contribution is the demonstration of

the proposed solution on the wind farm power maximization

problem via numerical simulations. While distributed data-

driven approaches have been suggested for this problem (see

[5], [7]), they either suffer from slow convergence or do not

provide formal guarantees of convergence. In contrast we

observe promising convergence speeds in our simulations.

Yet another contribution is a novel analysis of a dynamic

consensus algorithm which, while necessary for subsequent

discussions, we believe is an elegant treatment of the topic

and is of independent interest.

The remainder of the paper is organized as follows. Sec-

tion II discusses the dynamic average consensus algorithm.

The proposed solution to (P) and related results are discussed

in Section III. The numerical simulations on the wind farm

problem are presented in Section IV, followed by concluding

remarks in Section V.

NOTATION

Given a matrix A,

1) its ith row, jth column element is denoted by A[i, j].
2) the expression A > (<)0 denotes that it is a symmetric

positive(negative) definite matrix.

3) if it is symmetric, its largest and smallest eigenvalues

are denoted by λmax(A) and λmin(A), respectively.

4) its rank is denoted by rank(A).

The column vector [1, ..., 1]T is denoted by the bold-font 1.

The ith component of a vector v is denoted by vi.

II. DYNAMIC AVERAGE CONSENSUS REVISITED

Consider the MAS discussed in Section I. Agent i has

access to a reference signal ri, and in this section we devise a

dynamic average consensus algorithm that helps every agent

track the average of the references 1
n

∑n
i=1 ri. This algorithm

has appeared earlier in literature as ‘Proportional-Integral

Dynamic Consensus’ in [16]; however, our analysis is quite

different from this earlier work and is inspired by [17] where

distributed optimization is treated along similar lines.

We begin by stating the communication requirements

between the agents. It is assumed that the agents exchange

information over a connected, undirected communication

graph Gc = (V,E), where V = {1, ..., n}, and (i, j) ∈
E(⇔ (j, i) ∈ E) means that agents i and j can exchange

information. An adjacency matrix A of Gc satisfies (i, j) /∈
E ⇒ A[i, j] = 0; and the corresponding Laplacian matrix

L is given by L = diag(A1)− A1. It is clear that L1 = 0;

however, when rank(L) = (n−1), then Lx = 0 ⇔ x = α1
for some α ∈ R. A rank (n − 1) Laplacian can always be

constructed for a connected graph by picking elements of the

adjacency matrix such that (i, j) ∈ E ⇒ A[i, j] > 0 (this

follows from the Perron-Frobenious Theorem [18]).

Now, consider the following optimization problem for the

scalar variable x̂:

min
x̂

1

2

n
∑

i=1

(x̂− ri)
2. (P0)

Elementary calculations yield the optimizer to be 1
n

∑n
i=1 ri.

Next, consider the following equivalent restatements of (P0):

min
1

2

n
∑

i=1

(xi − ri)
2 subject to xi = xj , ∀ i, j;

min
1

2
xTx− rTx+

1

2
rT r subject to LIx = 0, (P1)

where LI is a Laplacian matrix of Gc with rank(LI) = (n−
1) (as noted above, this essentially enforces xi = xj , ∀ i, j).

Finally, consider the following equivalent restatement of

(P1):

min
1

2
xTx− rTx+

ρ

2
xTLPx subject to LIx = 0, (P2)

where LP is a Laplacian matrix of Gc. The last equivalence

follows by noting that the constraint LIx = 0 ⇒ x =
α1 ⇒ xTLPx = 0, so that (P2) is exactly the same

as (P1). Addition of xTLPx to the objective (with an

appropriate choice of LP) amounts to adding a penalty term

for constraint violation that can help improve the speed of

numerical algorithms for finding the solution.

Denote the Lagrangian corresponding to (P2) by

L(x, λ) = 1
2x

T (I + ρLP)x − rTx + λTLIx, where λ is

the dual variable. It is well known fact from optimization

theory that the solution x∗ to (P2) corresponds to a saddle

point (x∗, λ∗) of L(x, λ),

L(x∗, λ) ≤ L(x∗, λ∗) ≤ L(x, λ∗).

Thus, consider the saddle-seeking system
[

ẋ

λ̇

]

=

[

−∇xL(x, λ)
∇λL(x, λ)

]

=

[

−I − ρLP −LT
I

LI 0

] [

x
λ

]

+

[

I
0

]

r. (1)

While r is a fixed vector in the context of the optimization

problems (P0), (P1) and (P2), in what follows we will also

1For a vector v, diag(v) denotes the diagonal matrix with diag(v)[i, i] =
v(i).

treat the system in (1) as an LTI system driven by the input

r. Notice that the update rules for ẋi and λ̇i in (1), depend

only on the values of xj , λj and LI [j, i] such that (i, j) ∈
E (apart from the ith rows of LI and LP , and ri which

agent i already knows). Thus, (1) can be implemented in

a distributed manner by means of exchange of appropriate

variables and data over Gc. So far the introduction of LI and

LP only made sense due to their algebraic properties. The

reason for requiring them to be Laplacians of Gc is to obtain

such distributed implementation of (1).

By now the reader would have guessed that (1) is the

proposed dynamic consensus algorithm, with the individual

xis expected to converge to 1
n

∑n
i=1 ri (the solution of (P0)),

for fixed values of ris. The remainder of this section deals

with formalizing this statement. Let µ be such that µTLI =
0, and let U = [Ũ µ] be an orthonormal matrix. Replace λ

in (1) with λ = U

[

λ̃
λµ

]

, where λ̃ ∈ R
n−1 and λµ ∈ R,

to obtain

ẋ
˙̃λ

λ̇µ

=

−I − ρLP −LT
I Ũ 0

ŨTLI 0 0
0 0 0

x

λ̃
λµ

+

I
0
0

 r.

(2)

Since λµ does not interact with the rest of the state and

inputs (and vise versa) in (2), one can eliminate it to obtain

the reduced-order system
[

ẋ
˙̃
λ

]

=

[

−I − ρLP −LT
I Ũ

ŨTLI 0

] [

x

λ̃

]

+

[

I
0

]

r. (3)

The following lemma is easily verified.

Lemma 2.1: Let y = x be the output of (1), and yro = x
be that of (3). Let the same input r : [0, T] → R

n be applied

to both systems (1) and (3), with the same initial conditions

for the variable x, and

• for a specified initial condition λ(0) ∈ R
n, pick λ̃(0) =

ŨTλ(0), or

• for a specified initial condition λ̃(0) ∈ R
n−1, pick

λ(0) = Ũ λ̃(0).

Then

y(t) = yro(t), ∀ t ∈ [0, T].
The reason for introducing the reduced order system (3)

is twofold. First, the properties of the equilibrium point of

(3) are helpful in proving Theorem 1. Second, it turns out

that the global asymptotic stability of the LTI system (3) (as

opposed mere stability of (1)) will be helpful in the analysis

of the next section. We will now prove the main convergence

result for the dynamic average consensus algorithm (1). We

will need the following technical lemma.

Lemma 2.2: Let Q ∈ R
n×n be such that QT + Q > 0,

and R ∈ R
n×m (m < n) be full rank. Then the matrix

M =

[

−Q −R
RT 0

]

is Hurwitz.

(The proof is based on constructing an appropriate Lyapunov

function and is omitted due to space limitations.)

Theorem 1: Let Gc be a connected, undirected graph, LI

and LP be Laplacians of Gc such that rank(LI) = (n− 1),
and ρ be such that 1

2ρλmin(LP + LT
P) < 1. Then, for any

w ∈ R
n and r(t) = w ∀ t ≥ 0,

1) the LTI system (3) has a unique globally exponentially

stable equilibrium point (xeq(w), λ̃eq(w)), where xw =
1
n
(1Tw)1, and

2) the state of the LTI system (1), with arbitrary initial

conditions x(0), λ(0) ∈ R
n, remains bounded and x(t)

converges exponentially to 1
n
(1Tw)1 as t → ∞.

Proof: Notice that if 1
2ρλmin(LP + LT

P) < 1, then

2I + ρ(LP + LT
P) > 0. Since rank(LI) = (n − 1) and U

is orthonormal, UTLI =

[

ŨTLI

0

]

⇒ LT
I Ũ ∈ R

n×n−1 is

full rank. Thus, by Lemma 2.2, the matrix

Aro =

[

−I − ρLP −LT
I Ũ

ŨTLI 0

]

is Hurwitz.

Next, notice that (P2) is a convex optimization problem

(in particular, a quadratic program). Since LIx = 0 ⇔
ŨTLx = 0, the equality constraint in (P2) can be replaced

with ŨTLx = 0. The corresponding Lagrangian, with λ̃ as

the Lagrange multiplier, is given by L(x, λ̃) = 1
2x

T (I +

ρLP)x−rTx+ λ̃T ŨTLIx. With r = w, the KKT conditions

for this convex problem state that xeq(w) is optimal if and

only if ∃ λ̃eq(w) such that
[

−I − ρLP −LT
I Ũ

ŨTLI 0

] [

xeq(w)

λ̃eq(w)

]

+

[

w
0

]

= 0. (4)

Since Aro is Hurwitz, there exists a unique solution

(xeq(w), λ̃eq(w)) to (4). Further, subtracting (4) from

(3) (with r(t) set to w), we note the error variables
[

x− xeq(w)

λ̃− λeq(w)

]

converge to zero exponentially since Aro is

Hurwitz. Finally, since (P2) is a restatement of (P1), which in

turn is a restatement of (P0), we have xeq(w) = 1
n
(1Tw)1.

This concludes the proof for the first claim.

The second claim regarding boundedness of the state of (1)

follows by noting that by performing a similarity transforma-

tion of the state in (1), a mode with zero eigenvalue (λµ) has

been isolated in (2) and shown to be unaffected by the input,

while the rest of the state is Input-to-State-Stable as Aro is

Hurwitz. The exponential convergence x(t) → 1
n
(1Tw)1 is

due to Lemma 2.1 and the first claim of this theorem.

Hence, we have argued the correctness of the dynamic

consensus algorithm (1) by associating it to an optimization

problem and avoided the tedious calculations needed in the

proof of [16, Theorem 5].

III. COLLABORATIVE EXTREMUM SEEKING

In this section we discuss in detail the proposed extremum

seeking based solution to (P). We assume the agents can

exchange information over a communication graph Gc as de-

scribed in Section II. Consider the schematic representation

shown in Figure 1. Agent i applies its input ui and receives

the corresponding payoff or utility value fi(u). The agent

uses this observed/measured value as the reference command

ri in the dynamic consensus algorithm. Finally, the ‘con-

sensus output’ xi is used as the feedback to the extremum

seeking block which, in turn, generates ui, thus closing the

loop. Observe that variables in agent i’s ‘loop’ (highlighted

in Figure 1) comprise of only variables measured, controlled

or communicated to it over Gc, leading to the required

distributed implementation. Within the extremum seeking

blocks, agents use their respective sinusoidal ‘dither’ signal

νi(t) = sin(ωit+ φ) and certain parameters which satisfy

ωi = ωcωi,

ai = acai,
(5)

where, for all i, ωc, ac and ai ∈ R are positive, and ωi is a

positive rational number. The constant ki = ωcKi, for some

Ki > 0.

The system depicted in Figure (1) is given by2

[

ẋ

λ̇

]

=

[

−I − ρLP −LT
I

LI 0

] [

x
λ

]

+

[

f(u)
0

]

,

˙̂ui = −ǫkiνixi, ∀ i,

u = û+ aν(t);

(6)

where f(·) = [f1(·), ..., fn(·)]
T and, by slight abuse of

notation, aν(t) = [a1ν1(t), ..., anνn(t)].
Assumption 1: The function fi(·) is smooth for each i,

and there exists u∗ ∈ R
n such that

∂W (u∗)
∂u

= 0 and
∂2W (u∗)

∂u2 > 0.

This assumption ensures existence of a strict local minimizer

for W . We are now ready to state the main result of

this section which provides conditions that guarantee local

convergence of the variable u to a neighborhood of u∗.

Theorem 2: Let the hypothesis of Theorem 1 and As-

sumption 1 hold. Let ωi 6= ωj, 2ωi 6= ωj and ωi 6= ωj +ωk,
for all distinct i, j, k ∈ {1, ..., n}3. Then there exists ω∗

c > 0
such that for any ωc ∈ (0, ω∗

c), there exist ǫ∗ > 0 and

a∗c > 0, such that for the chosen ωc, and any ǫ ∈ (0, ǫ∗)
and ac ∈ (0, a∗c), the solution to (6) with initial conditions

û(0) sufficiently close to u∗ (and x(0), λ(0) arbitrary) is

such that u(t) converges exponentially to an O(ωc + ǫ+ ac)
neighborhood of u∗.

The proof uses averaging and singular perturbation ar-

guments that are standard in proving local convergence

of extremum seeking schemes [19], and is hence omitted

in view of space limitations. It is worth mentioning that

the ‘exponential stability’ of the reduced order system (3)

(proved in Section II) plays a key role in the analysis of (6)

by enabling the use of relevant singular perturbation results

(which require such exponential stability).

2We ignore the low-pass filters (LPF) and the high-pass filters (HPF)
shown in Figure 1 since these are not needed for the convergence result of
this section and including them makes the discussion cumbersome due to
additional states. We will use these in the simulations of Section IV.

3For n = 2, drop conditions that refer to ωk .

xi

xi

x1

x1

xn

xn

ui

ui

u1

u1

un

un

fi(u)

f1(u)

fn(u)

ri

r1

rn

u−i

u−1

u−n

ES1

ESn

ESi

DC1

DCn

ai

×

sin(ωit+ φi)

ûi 1
s

ǫki HPFLPF

DCi : ẋi, λ̇i =
R.H.S. of (1)

Dynamic Consensus

Fig. 1. A schematic representation of the proposed solution. DCi refers
to part of the dynamic consensus algorithm (1) implemented by agent i,
ESi refers to the extremum seeking law implemented by agent i, and u

−i

refers to the elements of the vector u other than ui.

IV. WIND FARM POWER MAXIMIZATION

In this section we explore the applicability of the proposed

solution in Section III to the problem of maximizing the total

power production of a wind farm via numerical simulations.

The approach is to build a simulation model of a wind

farm based on a model for computing wake affected wind

speeds and a model for power production of turbines. Next,

we run simulations of our model-free solution (6) on this

simulation model and evaluate its performance (as though the

model were the “ground truth”). Due to space limitations, we

will only briefly describe the models used and will provide

appropriate references for further details.

A. Wind Farm Model [7]

The action variable ui of a turbine is its axial induction

factor which takes values in [0, 1/2]. The power produced is

given by the model

fi(u) =
1

2
ρairAiCp(ui)Vi(u)

3,

where Cp(ui) is the power efficiency coefficient and is

modeled as Cp(ui) = ui(1−ui)
2, Vi(u) is the wind speed at

turbine i in m/s, ρair is the density of air and is fixed at the

constant value 1.225kg/m3, and Ai is the area swept by the

blades of turbine i in m2. We have assumed all turbines in

the farm to be identical with diameters equal to 77m. It can

be seen from the power capture expression that the influence

of other turbine’s actions on turbine i’s power production

(or utility) is due to the Vi(u) term. This term captures the

effect of aerodynamic interaction between turbines and we

will use analytical models to describe it.

Consider a wind farm with a given layout and a given wind

direction. Let us suitably enumerate the turbines so that the

coordinates of the turbines {(x1, y1), ..., (xn, yn)} are such

that xj < xi implies turbine i is downstream from turbine

j. Then the wind speed at turbine i is given by

Vi(u) = V∞

1−

√

∑

j∈{1,...,n}:xj<xi

(ujC[j, i])2

where V∞ is the free stream wind speed in m/s, and the

matrix C ∈ R
n×n depends on the farm layout. The model

used for computation of the C matrix is the popular low-

fidelity wake model called the Park Model that can be found

in references [3], [5]–[7]. In the simulation results reported in

this section, we set V∞ = 10m/s, n = 3, consider the three

turbines located at coordinates {(0, 0), (0, 5D), (0, 10D)}
(where D is the turbine diameter), and consider the wind

blowing along the positive horizontal axis. Specifically, with

regard to reference [7], the roughness coefficient ‘k’ used in

computation of the C matrix is set to 0.04.

B. Simulation Results

A Simulink model is developed for implementing the pro-

posed solution in Figure 1 with the functions fi(·) modeled

as described above. The parameters for the extremum seeking

loop are chosen as ω = [1, 1.33̄, 1.90476]T , ωc = 1, ac =
5 · 10−2, a = [1, 1, 1]T , ǫ = 5 · 10−1, and φ is chosen at

random. It is typical for each turbine to be set to maximize its

power production in present-day wind farm operations, and

this corresponds to ui =
1
3 . We shall think of this setting as

the ‘baseline’ and compare the performance of our solution

against it. Also, unless stated otherwise, reported simulations

are run with initial conditions û(0) = [13 ,
1
3 ,

1
3]

T , and with

x(0), λ(0) set to zero. The value of gains Ki are set to the

inverse of the baseline power of turbine i, (fi(
1
3))

−1. The

filters depicted in Figure 1 are implemented using simple

first order filters

LPF:
1

s+ ωl

, HPF:
s

s+ ωh

,

where ωl = min{ω} and ωh = 1.5 · max{ω}. Finally, we

choose Lp = 0 and

LI =

1 −1 0
−1 2 −1
0 −1 1

 .

Figure 2 shows time traces of relevant variables when

simulations are run with the aforementioned parameters. It

can be seen that the action variables u(t) and total farm

power W (u(t)) continue to oscillate around constant values.

Such oscillations are to be expected in any extremum seeking

scheme since the dither aiν(t) is injected additively in ui(t).

0 100 200 300 400 500 600
0

0.1

0.2

0.3

0.4

0.5

0 100 200 300 400 500 600
700

750

800

850

900

950

Time variable t

Time variable t

A
x

ia
l

In
d

u
ct

io
n

F
ac

to
r

P
o
w

er
(k

W
)

Time trace of variables u1(t) , u2(t) and u3(t)

Time trace of W (u(t))

u1(t)

u2(t)

u3(t)

W (u(t))

W (u(0))

W (u∗)

Fig. 2. A typical run of the proposed solution

The performance of the solution is better understood by

plotting the “learning variable” û. In Figure 3 we plot the

evolution of (û1, û2) starting with initial condition û(0) =
[0, 0, 0]T over contours of W (·) (the variable û3, excluded

from the plot, converges to 1
3 ; this is optimal (= u∗

3) for the

most downstream turbine which only has to maximize its

individual power regardless of what the other turbines do).

The proposed solution appears to perform very well, and

(û1, û2) converge to a small neighborhood of the optimal

values (u∗
1, u

∗
2) (computed by using standard optimization

software on the model).

0 0.1 0.2 0.3 0.4 0.5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5
Contours of Total Power
Maximizer of Total Power

5

5.5

6

6.5

7

7.5

8

8.5

9

x 10
5

Axial Induction Factor of Turbine 1

A
x

ia
l

In
d

u
ct

io
n

F
ac

to
r

o
f

T
u

rb
in

e
2

Trace of (û1, û2)

Fig. 3. Trace of (û1, û2) plotted over contours of total power W (·) (Watts)

C. Consensus Time Scale vs. Learning Time Scale

The choice of the parameters made so far are somewhat

arbitrary. Indeed, an accurate choice of the parameters in the

dynamic consensus stage require additional hardware specific

information. To put things in perspective, we repeat the

simulation in Section IV-B for different values of time-scale

separation between the learning dynamics and the consensus

dynamics. This is done by multiplying the R.H.S. of the

consensus part of dynamics in (6) by a positive constant

αTS. This effectively translates to the consensus dynamics

(1) running at a time scale αTS · t when compared to the

learning dynamics of û that run at time scale t. In Figure 4

we plot the performance of the algorithm with varying values

of αTS (all other parameters are kept fixed during these runs).

Results show that so long as the consensus algorithm runs at

least an order of magnitude faster than the learning dynamics,

learning is successful. The degraded performance observed

for small values of αTS is expected since in the absence

of information exchange, each turbine tries to maximize its

power production leading to convergence to a neighborhood

of the ‘Nash equilibrium’ [13 ,
1
3 ,

1
3]; reminiscent of the Nash-

seeking result in [14].

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

0.2

0.25

0.3

0.35

0.4

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

860

880

900

920

940

Parameter αTS in log-scale

Parameter αTS in log-scale

P
o
w

er
(k

W
)

A
x

ia
l

In
d

u
ct

io
n

F
ac

to
r

Variation of settled values of û(t) with variation in αTS

Variation of settled values of W (û(t)) with variation in αTS

û1(∞)

û2(∞)

û3(∞)

u∗
1

u∗
2

u∗
3

W (û(∞))

W (u(0))

W (u∗)

Fig. 4. Performance across varying learning and consensus time scales

V. CONCLUSION

An important data-driven distributed optimization problem

is formulated in this paper. Besides the several applications

that can be modeled in this framework, an underlying

motivation for this work is to show that in engineered

multi-agent systems (MAS), inter-agent communications and

collaboration can be leveraged to achieve behaviors beyond

Nash equilibria. The desired emergent property of the MAS

is indeed application specific, and the present work adds the

option of a welfare optimal outcome to the literature.

Extensions of the presented results to the case with non-

linear dynamical agent models, and on semi-global practical

stability of the proposed solution are forthcoming. An im-

portant next-step is to obtain a discrete-time counterpart to

the proposed solution. Also, the delay between a change in a

turbine’s action and the measurement of its consequences by

a downstream turbine are ignored in the reported simulation

study (see [5], [6]). The proposed algorithm will be tested

on higher fidelity wind farm models in future work.

REFERENCES

[1] N. Ghods, P. Frihauf, and M. Krstic, “Multi-agent deployment in
the plane using stochastic extremum seeking,” in Proc. of 49th IEEE

Conference on Decision and Control, pp. 5505–5510, 2010.
[2] M. Zhu and S. Martnez, “Distributed coverage games for energy-aware

mobile sensor networks,” SIAM Journal on Control and Optimization,
vol. 51, no. 1, pp. 1–27, 2013.

[3] K. E. Johnson and N. Thomas, “Wind farm control: addressing
the aerodynamic interaction among wind turbines,” in Proc. of the

American Control Conference, 2009, pp. 2104–2109, 2009.
[4] E. Bitar and P. Seiler, “Coordinated control of a wind turbine array for

power maximization,” in Proc. of the American Control Conference,

2013, pp. 2898–2904, 2013.
[5] P. M. Gebraad, F. C. van Dam, and J.-W. van Wingerden, “A model-

free distributed approach for wind plant control,” in Proc. of the

American Control Conference, 2013, pp. 628–633, 2013.
[6] K. E. Johnson and G. Fritsch, “Assessment of extremum seeking

control for wind farm energy production,” Wind Engineering, vol. 36,
no. 6, pp. 701–716, 2012.

[7] J. Marden, S. Ruben, and L. Pao, “A model-free approach to wind
farm control using game theoretic methods,” IEEE Transactions on

Control Systems Technology, vol. 21, no. 4, pp. 1207–1214, 2013.
[8] J. Marden and J. S. Shamma, “Game theory and distributed con-

trol,” in Handbook of Game Theory (H. P. Young and S. Za-
mir, eds.), vol. 4, Elsevier. To appear; preprint available at
http://www.prism.gatech.edu/ jshamma3/downloads/2099gta.pdf.

[9] H. P. Young, Strategic learning and its limits. Oxford University Press,
2004.

[10] D. Fudenberg, The theory of learning in games. MIT press, 1998.
[11] J. R. Marden, H. P. Young, and L. Y. Pao, “Achieving Pareto optimality

through distributed learning,” in Proc. of 51st Annual IEEE Conference

on Decision and Control, pp. 7419–7424, 2012.
[12] A. Menon and J. S. Baras, “Convergence guarantees for a decentralized

algorithm achieving Pareto optimality,” in Proc. of the 2013 American

Control Conference (ACC), pp. 1932–1937, 2013.
[13] A. Menon and J. S. Baras, “A distributed learning algorithm with

bit-valued communications for multi-agent welfare optimization,” in
Proc. of the 52nd Annual IEEE Conference on Decision and Control,
pp. 2406–2411, 2013.

[14] P. Frihauf, M. Krstic, and T. Basar, “Nash equilibrium seeking in
noncooperative games,” IEEE Transactions on Automatic Control,
vol. 57, no. 5, pp. 1192–1207, 2012.

[15] M. S. Stankovic, K. H. Johansson, and D. M. Stipanovic, “Distributed
seeking of Nash equilibria with applications to mobile sensor net-
works,” IEEE Transactions on Automatic Control, vol. 57, no. 4,
pp. 904–919, 2012.

[16] R. Freeman, P. Yang, and K. Lynch, “Stability and convergence
properties of dynamic average consensus estimators,” in 45th IEEE

Conference on Decision and Control, 2006, pp. 338–343, Dec 2006.
[17] I. Matei and J. Baras, “A non-heuristic distributed algorithm for non-

convex constrained optimization,” tech. rep., Institute for Systems
Research, 2013.

[18] R. A. Horn and C. R. Johnson, Matrix analysis. Cambridge university
press, 2012.

[19] M. Krstić and H.-H. Wang, “Stability of extremum seeking feedback
for general nonlinear dynamic systems,” Automatica, vol. 36, no. 4,
pp. 595–601, 2000.

