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Abstract— We consider N agents, each picking actions from
a finite set and receiving a payoff according to its individual
utility function that may depend on the actions picked by
others. An agent has no knowledge about the functional form
of its utility and can only measure its instantaneous value.
It is assumed that all agents pick actions and receive payoffs
synchronously. For this setting, a fully decentralized iterative
algorithm for achieving Pareto optimality i.e. picking actions
that maximize the sum of all utilities was proposed by Marden
et. al. in [1] that lacks convergence guarantees. By scheduling
a certain noise parameter to go to zero along iterations of this
algorithm, conditions that guarantee convergence in probability
are derived in this paper.

I. INTRODUCTION
The paradigm of Game Theoretic Control is a promising

direction of research in control and optimization in the
context of muti-agent systems. It comprises of: i) designing
individual utility or payoff functions with special structure
such that solution concepts like Nash equilibira (NE) etc.
of the resulting game correspond to desired system-wide
outcome (for instance, NE in potential games correspond to
extrema of the potential function); and ii) devising learning
rules for the agents to discover such equilibria [2]. Both
the utilities and the learning rule must conform with the
informational constraints of the problem at hand. Examples
of such utility design for specific applications range from
distributed optimization [3] to coverage problems in sensor
networks [4] and power control in wireless networks [5].

Several learning rules (or, interchangeably, algorithms)
have been proposed in the evolutionary games literature that
help agents learn NE in games with special structure like
potential, weakly-acyclic, congestion games, etc. [6], [7].
Thus, designing utilities with such special structure facilitates
direct use of these algorithms. Another desirable feature of
some of these learning rules is payoff-based implementation
i.e. no knowledge of the payoff structure is needed and an
agent adjusts its play based on observed payoffs alone.

However, there are situations where this paradigm of
designing utilities with special structure is too restrictive.
To illustrate this point, consider the problem of maximizing
the total power production of a wind farm [8]. Aerodynamic
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interactions between different wind turbines are not well
understood and there are no good models to predict the
effects of one turbine’s actions on the power production
of other turbines downstream. The information available to
each turbine is its own power output and a decentralized
algorithm that maximizes the total power production of
the farm is sought. Since there are no good models for
the interactions, there is little hope to design utilities with
special structure that are functions of such individual power
measurements. This points towards the need for algorithms
that are applicable when there is little structural information
about the utilities (for instance, a turbine can be assigned its
individual power as its utility which, in turn, can depend on
the actions taken by others in complex ways).

To summarize, we require a decentralized, payoff-based
algorithm that
• requires little assumptions on the structure of the utili-

ties; and
• helps agents learn a solution concept that corresponds

to desirable system-wide behavior.
A fully decentralized learning rule which addresses exactly

these concerns has been recently proposed in [1] with the
objective of making the agents learn to play efficient actions
that maximize the sum of the individual utilities i.e. the wel-
fare function. Roughly speaking, this algorithm prescribes
certain probability distributions for the agents to pick actions
from; the distributions depend on the measured payoffs and
a certain noise parameter ε . It is proved in [1] that for a
sufficiently small ε , the realized actions of the agents in the
limit are drawn from a distribution close to one with support
over efficient actions. These results are based on the theory
of perturbed Markov chains that was developed by Young [9]
to explain equilibrium section in evolutionary games. While
this learning rule and related results in [1] are encouraging,
they have the following shortcomings:

1) Viewed as an algorithm, an adequate notion in which
the individual actions converge to the efficient ones is
absent.

2) There are results regarding perturbed Markov chains
(see, for instance, [10]) that suggest that the expected
waiting time before efficient actions are picked asso-
ciated with a small ε can be too long.

The contribution of this paper is analogous to that of
[11] for proving convergence of Simulated Annealing. We
modify the learning rule of [1] by allowing the parameter
ε to decrease to zero along the iterations of the algorithm
(“annealing”) and derive conditions on the rate of decrease
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of ε that guarantee convergence of the resulting algorithm
w.p. 1. A sufficient condition for ergodicity of perturbed
Markov chains with certain time decreasing perturbations is
also derived in the process. While this directly addresses the
first of the two concerns raised above, in view of recent
results [12], it is also a step towards the second.

The remainder of the paper is organized as follows. We
state the problem and introduce the learning rule of [1] in
section II. In section III we introduce perturbed Markov
chains and derive conditions for their ergodicity with certain
time-varying perturbations. Section IV applies results of
section III to derive the convergence guarantees in Theorem
5. Some illustrative numerical simulations are presented and
directions for future work are discussed in the last section.

NOTATION

The paper deals exclusively with discrete-time, finite state
space Markov chains. A Markov chain with Q as its 1-
step transition probability matrix means that the ith row
and jth column entry Qi, j = P(Xt+1 = j|Xt = i), where Xt
denotes the state of the chain at time t. More generally, if
Q(t) denotes the 1-step transition probability matrix of a
nonhomogeneous Markov chain at time t, then for all m > n,
P(Xm = j|Xn = i) = Q(n,m)

i, j , where the matrix Q(n,m) = Q(n) ·
Q(n+1) · · ·Q(m−1). The time indices of all Markov chains
take consecutive values from the set of natural numbers N.
A Markov chain should be understood to be homogeneous
unless stated otherwise. Given a vector x, its ith component
is denoted by xi; and that of xt by (xt)i.

II. PROBLEM FORMULATION AND ALGORITHM

To motivate the formulation, recall the wind farm ex-
ample introduced earlier. The amount of energy a turbine
extracts from the wind can be controlled by adjusting its
axial induction factor and we shall call this the action
variable of the turbine [8]. Thus, a change in the action of
a turbine clearly affects the power production of turbines
downstream from it. However, the relationship between the
power produced by a turbine as a function of the actions
picked by neighboring turbines is not accurately modeled.
Also, a turbine’s controller does not know what actions other
turbines have picked. A turbine controller can only measure
the instantaneous power produced by the turbine (the payoff)
which is the consequence of such interaction. Thus, we seek
an on-line, decentralized algorithm for individual turbine
controllers to implement on the basis of their own past
actions and measured payoffs to maximize the total power
produced by the wind farm.

A. Problem Statement

Consider N agents indexed by i. Each agent can pick
actions from the set Ai, 2 ≤ |Ai| < ∞, and the collective

action set
N
∏
i=1

Ai is denoted by A . There is a payoff function

ui : A → [0,1) corresponding to each agent i and the sum

of the payoffs is denoted by W (a) =
N
∑

i=1
ui(a). Let Ui denote

the range of ui(a) for a ∈ A . At every time step t, agent
i measures or receives the payoff (umes

t )i = ui(at), where
at ∈ A is the joint action picked by the agents at time t
and is not known to agent i. The objective is to design a
mechanism for choosing the action of agent i at time t, (at)i,
on the basis of {(at−1)i,(umes

t−1)i, ...,(a0)i,(umes
0 )i} such that

the joint action at is eventually picked from

A ∗ = {argmax
a∈A

W (a)}.

B. The Learning Rule of [1]

Endow agent i with a state xi = [ai,ui,mi]. The attribute
ai ∈ Ai corresponds to the action picked, ui to the payoff
received and mi is the {C,D}-valued ‘mood’ of agent i. When
the mood variable equals C we call the agent “content” else
“discontent”. The collective state of all agents is denoted by

x = (a,u,m) where a ∈A , u ∈
N
∏
i=1

Ui and m ∈ {C,D}N .

At t = 0, agent i picks an arbitrary (a0)i ∈ Ai, records
(u0)i = (umes

0 )i and initializes (m0)i = D. For a fixed ε > 0
and c > N, agent i performs the following sequentially at
every ensuing time instant t ∈ N.
Start
Step 1: Pick (at)i as follows.

1) If (mt−1)i = C, pick (at)i from Ai according to the
p.m.f.

p(b) =

{
1− εc if b = (at−1)i

εc

|Ai|−1 otherwise. (1)

2) Else, if (mt−1)i = D, pick (at)i according to the uni-
form distribution on Ai:

p(b) =
1
|Ai|

for all b ∈ Ai. (2)

Step 2: Receive payoff (umes
t )i (= ui(at)).

Step 3: Update (ut)i and (mt)i as follows.
1) If ((at)i,(umes

t )i) = ((at−1)i,(ut−1)i) and (mt−1)i = C,
then do nothing i.e. set (xt)i = (xt−1)i.

2) Else, update (ut)i← (umes
t )i. Set

(mt)i =
{

D w.p. 1− ε1−(umes
t )i

C w.p. ε1−(umes
t )i .

(3)

Stop
Heuristically, the learning rule says that a discontent agent
experiments far more often than a content one and prescribes
certain transition rules from one to the other.

Since (ut)i is set equal to (umes
t )i in both steps 3.1 and

3.2, the following holds.
Lemma 2.1: The set of states realized by the algorithm

S ⊂
N
∏
i=1

(Ai×Ui×{C,D}), satisfy x ∈ S, x = [a,u,m]⇒ ui =

ui(a) for all i.
Next, we will make an assumption on the structure of the

payoffs.
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Assumption 1: For every a ∈A and every proper subset
of agents J ⊂ {1, ...,N}, there exists an agent i /∈ J and a
choice of actions a′J ∈ ∏

j∈J
A j such that ui(a′J ,a−J) 6= ui(a).1

It is easy to see that the transitions described by the
algorithm define a Markov chain on S. Let us denote the
corresponding 1-step transition matrix by P(ε). Further, it
can be verified that, under Assumption 1, P(ε) is irreducible
and aperiodic and thus has a unique stationary distribution
µ(ε) (see [1]). It turns out that, as ε → 0, µ(ε)→ µ(0),
for a certain density µ(0) over S. The following result
characterizes the support of µ(0).

Theorem 1 ([1],Theorem 1): Let P(ε) denote the 1-step
transition probability matrix of the Markov chain defined
by the algorithm and let µ(ε) denote its unique stationary
distribution. Then µ(ε)→ µ(0) as ε→ 0 and if Assumption
1 holds, for a state x ∈ S, x = [a,u,m], µx(0) > 0 if and only
if a ∈A ∗ and mi = C for all i ∈ {1, ...,N}.

The support of µ(0) is also called the stochastically stable
set. One can now make the argument that by picking a
sufficiently small ε , the realized states of the algorithm in
the limit are drawn from a distribution close to one which
has support over states where the joint action is from the
set A ∗. This is a somewhat unsatisfactory argument from
the point of view of convergence to A ∗ since there are no
quantitative relations to guide the choice of such an ε . It is
in this sense that convergence guarantees are lacking for this
algorithm.

We will modify the algorithm by picking successively
smaller values of ε along the iterates and derive conditions
that guarantee convergence of the resulting algorithm w.p. 1
(see Theorem 5). The analysis of the algorithm is based on
the theory of perturbed Markov chains that will be introduced
in the next section. Detailed explanation about the specific
structure of the algorithm is beyond the scope of this paper
and we refer the interested reader to [1] or [13].

III. THEORY OF PERTURBED MARKOV CHAINS

The theory of perturbed Markov chains was developed
by Young [9] to explain selection of some equilibria over
others in finite player evolutionary games. Its mathematical
description involves a Markov chain P(0) with possibly
several stationary distributions and one wishes to “choose
one” among these. In order to do so, individual elements of
P(0) are perturbed by functions of a ‘noise parameter’ ε to
obtain a perturbed chain P(ε) ( ε→ 0⇒P(ε)→P(0)) with a
unique stationary distribution µ(ε). As ε→ 0, µ(ε)→ µ(0),
where µ(0) is a stationary distribution of P(0) and the
support of µ(0) can be characterized in terms of the rate
at which components of P(ε) converge. In this sense one
can choose amongst the stationary distributions of P(0).

1We borrow notation from the game theory literature: aJ denotes the
actions taken by the agents in subset J from the collective action a and the
actions of the rest is denoted by a−J .

We will not discuss these results here and refer the
interested reader to Theorem 4 in [9]. We consider reducing
ε to zero along the evolution of P(ε) (rendering it nonhomo-
geneous) and derive conditions that ensure ergodicity of the
resulting chain with µ(0) as its limiting distribution. This
is the content of the main result of this section, Theorem
4, and we begin by building the background and notation to
state and prove this result. Results similar to Theorem 4 have
been derived in the economics and game theory literature
(see [14],[15]) but are inadequate for our purposes. Also,
we deliberately use the same notation (like P(ε), S etc.) for
both, the Markov chain induced by the algorithm of section
II and the general perturbed Markov chains as we wish to
view the former as a special case of the latter and use the
results of this section to analyze the algorithm.

A. Perturbed Markov Chains [9]

Let P(0) be the transition probability matrix of a Markov
chain on a finite state space S. We refer to this chain as the
unperturbed chain. A regular perturbation of P(0) consists
of a stochastic matrix valued function P(ε) on some interval
(0,a] that satisfies, for all x,y ∈ S,

1) P(ε) is irreducible and aperiodic for each ε ∈ (0,a]
(⇒ ∃ unique µ(ε) s.t. µ(ε) = µ(ε)P(ε)),

2) lim
ε→0

Px,y(ε) = Px,y(0) and

3) if Px,y(ε) > 0 for some ε , then ∃ r(x,y) ≥ 0 such that
0 < lim

ε→0
ε−r(x,y)Px,y(ε) < ∞.

It follows that for a sufficiently small ε∗, ∃ 0 < α(x,y) <
α(x,y) < ∞, such that

α(x,y) < ε
−r(x,y)Px,y(ε) < α(x,y), ∀ ε < ε

∗.

By denoting min
x,y∈S

α(x,y) = α and max
x,y∈S

α(x,y) = α , we have

α ε
r(x,y) < Px,y(ε) < α ε

r(x,y), ∀ ε < ε
∗. (4)

Let L = { f ∈ C∞| f (ε) =
L
∑

i=1
aiε

bi for some ai ∈ R,bi ≥ 0}
for some large enough but fixed L ∈ N. The following
assumption will be invoked later.

Assumption 2: For all x,y ∈ S, Px,y(ε) ∈ L.
The following is an immediate consequence of the second
requirement in the definition of a regular perturbation.

Lemma 3.1 (see [9], Lemma 1): The stationary distribu-
tion µ(ε) of P(ε) satisfies lim

ε→0
µ(ε) = µ(0), where µ(0) is

a stationary distribution of the unperturbed chain P(0).
We now develop some notation2:
1) A path from a ∈ S to b ∈ S, h(a→ b), is an ordered

set {a = x1,x2, . . . ,xn = b}⊆ S such that each transition
xk→ xk+1 has positive 1-step probability in P(ε); the

resistance of a path is r(h) =
n−1
∑

k=1
r(xk,xk+1) (where

r(·, ·) is as in (4)).

2These definitions are adopted from relevant literature [1], [14], [15].
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2) The resistance from x to y is given by ρ(x,y) =
min{r(h)| h(x→ y) is a path}.

3) Given a subset A⊂ S, its co-radius is given by CR(A) =
max
x∈S\A

min
y∈A

ρ(x,y).

4) A recurrence class of a Markov chain is a non-empty
subset of S s.t. once the state of the chain enters the
set it remains in the set for all future times and there is
a positive probability of transitioning from any point
in the set to any other.

Thus, ρ(x,y) is the resistance of the path with least resistance
among all possible paths starting at state x and ending at state
y and the co-radius of a set specifies the maximum resistance
that must be overcome to enter it from outside. Since P(ε) is
irreducible for ε > 0, ρ(x,y) is well defined for all x,y ∈ S.
Also, notice that r(x,y) = 0 only for the one step transitions
x→ y allowed under P(0).

With reference to the algorithm of section II-B, we would
like to point out that the specific structure of the p.m.f. in
(1), (2) and (3) are precisely designed to obtain appropriate
values of r(·, ·). For instance, a content agent can only change
its action by a transition with r = c according to (1) while a
discontent one can do so with r = 0 according to (2).

B. Ergodicity of nonhomogeneous Markov chains

We briefly recall results on ergodicity of a nonhomoge-
neous Markov chain on a finite state space S, with Q(t) being
the 1-step transition probability matrix at time t.

Definition 3.1 (Ergodicity): The chain is

• weakly ergodic (WE) if for all t ′ ∈ N and all x,y,z ∈ S,

lim
t→∞
|Q(t ′,t)

x,z −Q(t ′,t)
y,z |= 0.

• strongly ergodic (SE) if there exists a probability distri-
bution π on S such that for any initial distribution η0

on S and any t ′ ∈ N,

lim
t→∞

η0Q(t ′,t) = π.

We call π the limiting distribution of the chain.
Definition 3.2 (Ergodic Coefficient): Given a row

stochastic matrix Q∈R|S|×|S|, its ergodic coefficient is given
by

δ (Q) = 1−min
x,y∈S

∑
z∈S

min{Qx,z,Qy,z}.

The following result due to Doeblin provides a characteriza-
tion for WE based on the ergodic coefficient.

Theorem 2 (see [16], Theorem 8.2): The chain is weakly
ergodic if and only if there exists a strictly increasing
sequence of positive integers {tn}n∈N such that

∑
n∈N

(1−δ (Q(tn,tn+1))) = ∞. (5)

The next Theorem provides a sufficiency condition for SE.

Theorem 3 (see [16], Theorem 8.3): Suppose the chain is
weakly ergodic and at all t, there exists πt such that πtQ(t) =
πt and

∑
t∈N
‖πt+1−πt‖1 < ∞, (6)

then the chain is strongly ergodic. Furthermore, the limiting
distribution π is the same as the limit of the sequence
{πt}t∈N.

C. Time-decreasing Noise and Ergodicity

Consider the nonhomogeneous Markov chain resulting
from picking ε along the evolution of the perturbed chain
P(ε) as the sequence {ε̂t}t∈N; i.e. at each t, ε = ε̂t . When
ε̂t→ 0 as t→∞, we refer to such a sequence as an annealing
schedule. Denote the resulting nonhomogeneous chain by the
bold-font P, i.e. P(t) = P(ε̂t). The following technical lemma
is easily proved.

Lemma 3.2 (see [13], Lemma 3.1): Let ∑
n∈N

a(n) = ∞ and

a(n)≥ a(n+1) ∀ n. Then for any n′, l ∈N, ∑
n∈N

a(n′+ l +n) =
∞.

Let us denote the recurrence classes of the unperturbed
chain P(0) as E1, ...,EM . Define

κ = min
E∈{Ei}

CR(E). (7)

Theorem 4: Let the recurrence classes of an unperturbed
chain P(0) be aperiodic and the parameter ε in its regular
perturbation P(ε) be scheduled according to the monotone
decreasing sequence {ε̂t}t∈N, with ε̂t → 0 as t → ∞, as
described above. Then, a sufficient condition for weak er-
godicity of the resulting nonhomogeneous Markov chain is

∑
t∈N

ε̂
κ
t = ∞.

Furthermore, if the chain is weakly ergodic and Assumption
2 holds, then it is strongly ergodic with the limiting distri-
bution being µ(0) as described in Lemma 3.1.

Proof: (Weak Ergodicity) Let E∗ be a recurrent class of
P(0) such that CR(E∗) = κ . Since E∗ is aperiodic according
to P(0), there exists an l1 ∈ N such that for all m ≥ l1 and
x,y ∈ E∗, Pm

x,y(0) > 0 (see [16], Theorem 4.3, pp. 75). Since
any path under P(0) has zero resistance, once the chain enters
a state in E∗, it can remain there with zero resistance via a
path of any length greater than l1.

Let e∗ ∈ E∗ be such that ∃ x′ ∈ S\E∗ such that ρ(x′,e∗) =
κ i.e. the transition x′→ e∗ has the most resistance among
all x→ e∗, x ∈ S. For all x ∈ S, consider the shortest paths
h(x→ e∗) such that r(h(x→ e∗)) = ρ(x,e∗) and denote the
length of such paths by l(x,e∗). Let l2 = max

x∈S
l(x,e∗). So, by

waiting for l2 transitions, there is a path to e∗ from all states
x ∈ S with resistance ρ(x,e∗). Thus, by allowing more than
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l = l1 + l2 transitions, we have for any x∈ S and a sufficiently
small ε∗,

Pm
x,e∗(ε) > α

m
ε

κ , ∀ ε < ε
∗, m≥ l.

From (4), since ε̂t → 0, for sufficiently large t,

α ε̂
r(x,y)
t < Px,y(t) < α ε̂

r(x,y)
t .

Consequently, by choosing a subsequence such that tn+1−
tn = l, for sufficiently large n,

P(tn,tn+1)
x,e∗ > α

l
ε̂

κ
tn+1

, ∀x ∈ S.

Then, for sufficiently large n, we can bound

∑
z∈S

min{P(tn,tn+1)
x,z ,P(tn,tn+1)

y,z }> α
l
ε̂

κ
tn+1

, ∀x,y ∈ S.

Taking minimum over x,y, for sufficiently large n,

min
x,y∈S

∑
z∈S

min{P(tn,tn+1)
x,z ,P(tn,tn+1)

y,z }> α
l
ε̂

κ
tn+1

. (8)

Since {tn}n∈N is an equally spaced subsequence, from
Lemma 3.2 and the hypothesis of this Theorem, ∑

n∈N
ε̂κ

tn+1
=

∞. In view of this and (8), WE follows by noting that (5)
is verified with Q = P. The proof for SE involves invoking
some known facts about the structure of µ(ε) and is omitted
due to space constraints. It can be found in [13], Theorem
5.

IV. THE MODIFIED ALGORITHM

It is clear that the Markov chain P(ε) defined by the
algorithm of section II-B is a regular perturbation of the chain
defined by the algorithm with ε = 0. Now, at time t, let each
agent pick ε as ε̂t for a given annealing schedule {ε̂t}t∈N. We
refer to this new algorithm as the Modified Algorithm and
denote the nonhomogeneous Markov chain defined by it by
P(t). In the main result of this section, Theorem 5, we use
Theorem 4 to obtain conditions for P(t) to retain µ(0) (as in
Theorem 1) as its limiting distribution. We begin with some
lemmas but exclude their proofs due to space limitations.

Define

C0 = {x ∈ S|x = [a,u,m],mi = C, ∀ i = 1, ...,N} and

D0 = {x ∈ S|x = [a,u,m],mi = D, ∀ i = 1, ...,N}.

Lemma 4.1 ([1], Theorem 1): The recurrence classes of
the unperturbed chain P(0) are D0 and the singletons z∈C0.

Lemma 4.2 ([13], Lemma 4.5 ): For the Markov chain
defined on S by the Modified Algorithm, κ as defined in
(7) equals c.

Theorem 5 (Convergence Guarantee): Under
Assumption 1, the nonhomogeneous Markov chain P(t)
defined by the Modified Algorithm is strongly ergodic if

∞

∑
t=1

ε̂
c
t = ∞. (9)

Furthermore, if (9) holds and Xt = [at ,ut ,mt ] denotes the
state of the chain at time t, then

lim
t→∞

P[at ∈ A∗] = 1.

Proof: All transition probabilities in the algorithm of
section II-B belong to L; thus Assumption 2 holds. For any
y ∈ D0 and z ∈ C0, Py,y(0) > 0 and Pz,z(0) > 0. Hence the
recurrence classes of P(0) are aperiodic and the first part of
the theorem follows from Theorem 4 and Lemma 4.2.

Next, for any initial distribution η0 on S and any subset
S̃⊂ S, P(Xt ∈ S̃) = ∑

j∈S̃
(η0P(1,t)) j. Since (9) implies SE with

limiting distribution µ(0) as in Theorem 1 and from the
definition of SE, lim

t→∞
P(Xt ∈ S̃) = ∑

j∈S̃
µ j(0). Let S̃ = {x ∈

C0|x = [a,u,m],W (a) = W ∗, mi = C ∀ i}, then

lim
t→∞

P[at ∈A ∗] = 1.

V. CONCLUSIONS

By restricting the rate of decrease in the annealing sched-
ule, we derive the convergence guarantee we set out for in
Theorem 5. From a practical viewpoint, while an anneal-
ing scheme seems natural given Theorem 1, the value of
Theorem 5 lies in giving the system designer the freedom to
choose amongst annealing schedules without worrying about
adverse effects on convergence of the algorithm. Along the
way, we also derive conditions for ergodicity of perturbed
Markov chains with time-decreasing noise, which can be
used to derive similar conditions for other algorithms based
on the theory of perturbed Markov chains.

To illustrate the use of the proposed annealing scheme,
consider a system with two agents A and B, and the payoff
structure given by [

( 1
2 , 1

2 ) (0, 2
3 )

( 2
3 ,0) ( 1

3 , 1
3 )

]
,

where the first (second) number in the parenthesis of the
(i, j) entry refers to the payoff received by agent A (B) when
agents A and B play i and j respectively. This payoff structure
corresponds to the classical game Prisoner’s dilemma. The
welfare maximizing joint action is (1,1) with a welfare of
1. Let the agents implement the algorithm of section II-
B with ε held constant and that of section IV with an
annealing schedule ε̂t = 1√

t . In Figure 1 we plot the resulting
welfare profile and an indicator function which is non-zero
whenever one of the agents is discontent against iterates.
The first three plots correspond to the fixed ε runs with
successively lower values of ε while the last one corresponds
to the annealing schedule. In the first plot with ε = 10−2,
the welfare profile does not seem to converge to the optimal
value 1 suggesting that ||µ(ε)−µ(0)|| is relatively large. It
is observed that as ε is reduced to 10−3 and 10−4 (second
and third plots resp.), the welfare profiles do converges to 1.
However, learning seems to take longer with smaller values
of ε as suggested by the increasing duration for which
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Fig. 1. Plots of welfare and discontent-indicator (horizontal ‘×’s) against
iterates. Different colors represent different runs. Cases 1, 2 and 3 corre-
spond to runs with ε fixed at 10−2, 10−3 and 10−4 resp. while case 4
corresponds to ε̂t = 1√

t .

the agents remain discontent. In the fourth plot where the
agents implement the modified algorithm, we observe that
by sweeping across a larger range of ε over time, the agents
initially spend time exploring with relatively large ε̂t and
subsequently, with lower values of ε̂t , move to an exploitation
phase after learning the welfare maximizing actions.

A concern that limits applicability of the algorithm re-
mains: Assumption 1 must be satisfied by the utilities in the
application. One way to mitigate this concern is to design
proxy utilities as suggested in [8]: consider a undirected
connected graph on the set of agents and assign proxy
utility ũi = ui + ∑

j∈N (i)
u j, where N (i) is the adjacency list

of i. Assumption 1 is satisfied by the proxies and, under
appropriate conditions, the extrema of the welfare are the
same for the utilities and the proxies. Intuitively, a condition

like Assumption 1 ensures that each agent can be influenced
to change its action; without such a condition one can always
construct a payoff-structure where an agent which cannot
be influenced picks actions that maximize its payoff but
result in suboptimal joint action w.r.t. welfare. A conceivable
approach then is to affect such influence by means of explicit
inter-agent communication and will be pursued in future
work [13].

An important question is determining the rate of conver-
gence of the algorithm. One way to answer this question
is to calculate the rate of convergence of ||ηt − µ(0)|| as
t → ∞, where ηt is the density of the state Xt of the
modified algorithm. Such a calculation will also help design
appropriate annealing schedules. We will address these issues
in future work.
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