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Autonomous Decision Making

When making a decision, an agent is influenced
by its knowledge about the other agents’ behavior

Problem: Modeling decision making on whether to
cooperate in a group effort as a result of two person
games on a network

Adaptation to neighbors’ strategies as a coordination
mechanism

The system is analyzed under classes of linear and
bounded linear behavior functions; A generalized
consensus problem determines strategy coordination

The emerging collaboration graph is a function of
agents’ behavioral tendencies as well as the connectivity
graph



Motivation: Learning in Games

« To explain why equilibrium arises as the long run
outcome with non-fully-rational players

1 !
[ Playing Game J >L0bserving Results

Y
4[ Improving Policy }F

* Acceptable results in long run repetitive situations

« What about one shot and short term games that rely
heavily on players prior beliefs about each other?

We address the problem of learning to coordinate for a
one-time situation




_earning to Coordinate

« Agents to decide on whether to participate in a
collaborative effort based on their understanding of others’

tendencies and what they believe that others’ understand
about their neighbors tendencies and ...

Behavior learning

| N

i : Playing Game
[ Actions HObserving Results —>{ ying }
: )I

{Changing Behavior }e

____________________________________________________________

« Example: whether or not to take part in a riot
« Emergence of a collaboration graph from communication



System Model

\ G=(,EF)
* ~{1.2,....n}
“>/ EclVxV

Each agent has to make a decision on whether to
cooperate (C) or not (NC) in a group effort

Based on its decision it will incur a payoff which is
the sum of payoffs resulting from playing 2-
person coordination games with all neighbors

Agents strategy based on their type

Agents learn and adapt to neighbors’ strategies
modeled in Cucker-Smale framework




System Model Overview

Behaviors: Functions of unknown hidden variables:

Behavior learning

I
|
I
I :
I
|

I

Behaviors: result Receive info. from Coordination
[ of hidden types ‘ neighbors }:>[ Game }

- ~ i
Learning algorithm |

Cucker-Smale model for “language acquisition”

a>b>c>0,



The Coordination Game

a>b>c>0

« Cooperation is the Pareto-optimal equilibrium
strategy, whereas Not Cooperation is the risk

sensitive one
o Agent payoff iIs sum of its 2-person games payoffs

with its neighbors
a) Ll o ifs =C
JEN; J

u(s;,s ;) =" _
(5520 b A oy +¢ 2wy ifs,=NC




Types and Behaviors

e Each agent has a behavior system that
decides on its level of optimism (playing C)

e This system evolves in time: Cucker-Smale
framework for language evolution

« Behavior (or type): A function

f:X=[0,1]—-7Y =]0,]1]

e Given a uniformly distributed RV, X,
f. determines whether agent 1 expects an
event that Is supposed to occur with
probabillity x, to actually happen

10



Types and Behaviors

Optimist Pessimist
45 45
Ambivalent 1 Regular
el g
Types are modeled by a set of functions, e.qg. 1 ‘ , ——
F . The set of sigmoids with following property: | //
f(x:;6,6,) = % [1+ tanh(4,(x - 6?2)], /

o,

Imi

<0,<6,

0, . <0,<6,

2min —
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_earning Infrastructure

 Agents learn and adapt to neighbors’ types

e Given a communication infrastructure, the
neighbors’ influence and interaction is modeled
using a stochastic matrix

W =[w,],
Zwij :L\

(,j)e E=>w,=0.

Relative Influence of node j on node |.

e W is a measure of influence and trust

12



_earning Algorithm

* A version of Cucker-Smale algorithm for
“language acquisition”
— At each time each agent i receive neighbors data
{xj (t)’yj (¢) = f(xj(t)’gl’fZ)}jeN(i)
l Set of parametrized functions F
Distributed uniformly on X =[0,1]

— Agents update their type function as:
fx+D) =argmin, o 2w, (f(x,(0) = »,(1)’,

jeN(i)

i=12,...n

13



Analysis for Linear Behavior Functions

e Class of bounded linear functions
F ={f1f(x)=6c+ 2 0€[0,,,00]; A €[ Anins Anaxl }
e Class of linear functions
F={f|f(x)=6+ 4 6,1eR}

 Theorem: If all agents use bounded linear
behavior functions, the learning algorithm
converges with probability 1 to a consensus
on behavior functions, provided that the
matrix W is irreducible.

14



Relaxing Boundedness Assumption

e Using linear assumption system evolves as

o st <] BO MO

M,(1) P(1)
Pl =1, M1 =0,
M,1 =0, P1 =1,

=6 6, .. 6, 4 4,

()
In which

-]

 Reaching consensus in this setting requires
consensus on both variables

15



Convergence Theorems

* For the one time learning case, the agents
will reach a consensus on @and y with
probability 1, I.e. they will coordlnate on the
same behawor function f(x)=6x+y |
¢ and y* are the fixed points of
F@) M, ()

= e [V

* In the general case, the agents will reach a
consensus on the behavior function with
probabillity 1

16



 Game model with a=5, b=4, c=2
Runs for 3 agent complete networks
—ast convergence of 8 and ~, the strategy
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Further Observations

e In cases with majority of agents
optimistic, optimist behavior emerges

* |In cases with minority of agents optimistic,
optimist behavior can also emerge

18



Example — Windfarmsla ]

Horns Rev 1 wake effects. Courtesy Christian Steiness

* No good models for aerodynamic interactions between turbines.
» Objective — maximize total power production.

Assign individual utility
u; (t) = power produced by turbine i at time ¢
such that maximizing };; u;(t) leads to desirable behavior.

[a]. Gebraad, van Dam, and van Wingerden, “A model-free distributed approach for wind plant control,” ACC, 2013.
[b]. Marden, Ruben, and Pao, “A model-free approach to wind farm control using game theoretic methods,” IEEE Trans. Control Systems Tech, 2013. 19



10 !

Example — Source Seeking, Coveragell

o i i i i i E L
0 1 2 3 4 5 6 7 8 9 10

Darker the shade of blue, more the interest in the site. Sectors represent sensor position.[c]
Design individual utility

ui(s,¢) = Dorens (S,c)% — fi(c),
such that maximizing };; u;(t) leads to desirable behavior.

(here q(s)= interest in observing s, n(s) = number of agents observing s, NB(s,c) = subset of S observable from s when camera viewing angle= c, and f;(c)
= processing cost when the camera viewing angle is c.)

[c]. Zhu and Martinez, “Distributed coverage games for energy-aware mobile sensor networks," SIAM J. on Control and Optimization, 2013. 20



Example — Formation Controlld. el

50

50 50— 50 s 50—
aof, 40 . 40 40f &
30 30 gg, 30 30 )
20 ° 20 20 % " 20 o
10 10 10/’ 10
% () % b) 50 % (@) 50 0 (b)
50 50 50 50
40 40 40 40
30 30 30 L 30f p o
20 20 20 ﬁae’g 20f
10} ** 10 10 10f ¢
% 50 0 50 % 0 %

() (d) (c) (d)

Simulation results demonstrating rendezvous and gathering along a linel?

For rendezvous, design individual utility

u;(s;) = :
LAl |{SjES:||Si—Sj||<T'}|

such that minimizing ».; u;(t) leads to desirable behavior.

[d] Xi, Tan and Baras, “Decentralized coordination of autonomous swarms using parallel Gibbs sampling,” Automatica, 2010.
[e]. Baras et al., “Decentralized Control of Autonomous Vehicles," Proc. of IEEE CDC, 2003.

— a dist.,-(s;, obstacle),

21



Problem Formulation

Engineered Multi-agent System Model Free Set-up

¢ nagents
Utility fn. (£, (), ., £ (1)) wi(t) _’m_’ fi®)

Welfare fn. W (u) = Y; f;(w) |

u_;(t)
Collaborative Objective
ul(t) fn(t)
- - BN
i A"
Agent 1’s Multi-agent Agent n’s
law system Ia’w

N - min W (u)

f1 (t) ~. un(t) u

> ]
fi(t)> Agg\‘,t's]’ui(t)

22



Formulation (discrete action space)

N agents, agent i picks actions from a finite set A;.

Agent i receives/measures private utility
Uj: A - R+
where A = [, 4; .

Minimize W(a) = i, u; (a) over A = seek the efficient
actions
A* = {argmin W (a)}.

a€ceA

Agent knows past actions and payoffs —
{(az—1) i (WZT)is ey (@g)is (ug )i}

23



Approach using Learning in Games

1. Utility assignment
such that solution concepts like Nash Eq. (NE)
In resulting ‘game’ correspond to
desirable system-wide outcomes.

: / Most learning rules
In potential games, : converge to NE for
efficient outcomes Potential game games with special
correspond to NE.
structure.

2. Prescribe Learning Rule
for agents to learn equilibria.
EXx. log-linear learning, fictitious play, adaptive
play, regret-matching etc.

24



Example Application — Consensus
Problemst]

A potential game is one where there exists a function ¢ such that
ui(ag,a_;) —wi(a'y,a ) = plagay) —ela’, a )V i

In a potential game, maximizer of ¢ correspond to NE .

Consider N (non-strategic) agents each with a discretized set of actions; A; for i.

Assign utility u;(a) = =X en, lla; — a;|| 2 computable from local measurements.

The resulting ‘game’ is a potential game with potential function

@(a) =—z Z %”ai — ajl].

[ JEN;

Program agents to follow a "learning rule’ - consensus.

[f]. Marden, Arslan and Shamma, “Cooperative Control and Potential Games,” IEEE Tran. on System, Man and Cybernetics, 2009. 25



Shortcomings

Utility Assignment
Prescribe Learning Rule

Not always possible to assign utilities with special
structure!

NE may be — Known learning rules

Inefficient. needn’t converge.

26



Desired Features

» Payoff-based implementation.
 Solution concept — welfare optimality.
» Converges regardless of utility structure.

Learning Rule Utility Assumption Implementation
Fictitious Play Potential Games Excessive
Reinforcement L. Common Interest Payoff based
Adaptive play Weakly Acyclic Excessive
Log-linear L. Potential Games Excessive

Trial and Error L. NE Payoff based
Pradelski, Young Eff. NE, ‘interdependence’ Payoff based
Marden, Young, Pao Welfare max., ‘interdependence’ Payoff based




Learning in Games

- Uy (t) -7 7~ fulu®)
/ \ 1 S n Learning Rule Utility Implementation
l v Assumption
Fictitious Play Potential Games Excessive
Plaver 1 Game Player n
’ Reinforcement L. Common Interest Payoff based
un (t) / Adaptive play Weakly Acyclic Excessive
f 1 (U(t\)\ — u (t) ~ Log-linear L. Potential Games Excessive
P - Trial and Error L. NE Payoff based
\ Pradelski, Young Eff. NE, Payoff based
’ ‘interdependence’
3 . Marden, Young, Welfare max., Payoff based
ﬁ, (u (t) P | a.ver I Pao ‘interdependence’

Simple “payoff-based” adaptation rules lead to interesting emergent behavior.

The Meta Theorem: When players adopt [learning rule] and if the game
satisfies [property], then player actions converge to [equilibrium].

Beyond Nash equilibration = Converge to \Veliare optimal actions
without any assumptions on utilities (or “game”).

28




Our Contribution

ShortcoTings[gl
{ \

Requires some By appropriate use of inter-

assumptions on utilities. agent communication.

Notion of convergence Conditions for convergence in

Inadequate. probability.
“Greater the accuracy,
slower the algorithm’.

[g]. Marden, Young and Pao. "Achieving Pareto optimality through distributed learning,"” Proc. of IEEE CDC, 2012.

29



Proposed Algorithm

State x; = (u;,;m;);m; =1

S
&

S
S
S
S

Receive
m(t —1)

and m; = 0 & discontent.

m;(t)

Broadcast

&

Vv

Action update
exploits
Discontent explores

(at);

Mood update

Discontent become

W.p. e[i(t)

[g]. Marden, Young, Pao, “Achieving Pareto optimality through distributed learning," IEEE CDC, 2012.
[h]. Menon, Baras, “A distributed learning algorithm with bit-valued communications for multi-agent welfare optimization”, IEEE CDC, 2013.

N

(a;)

-

30



Proposed Algorithm (detail)

State x; = (a;, m;); m; = 1 < content and m; = 0 < discontent.
: : — | If 1 > pick (a;);= =
& |;iicréer:?ef;]liogt;f m; - (me—q); (a-1)iw.p.-1 —€°.

> : _(at) .
®/ fffl =0 w. p. 1 — EtBC If0 > ple (at)i at l
__| random. ]
: (ac)-i

Recelve (mt—l)Neigh Action update l
v
If content and action and payoff _

remain unchanged =2 (m;);=1

If content, picked same action but (umeS)_
observe different payoff 2> t [

— <
(my);=0w.p.1— etﬂl

’ (m¢);

SEE®
T
\

Ow.p.1 — e Mt i
Else (mt)l: { ‘ (urmesy;
— 1 w.p. €00t | =

Broadcast Mood update 31




A Coarse Modeling Framework

Like agents, system designer doesn’t know functional form of payoffs.

Interaction graph G; models implicit communications:
Link (i,j) implies i’s actions affect j’s payoff.

Communication graph G, models explicit communications:
Link (i,j) implies msg. sent by i is received by j.

\\\\\\ T4 \

T3 \\‘*\\\ \_/
Wind direction ™.

é N‘\\~~



Convergence Guarantee

Theorem. Assumec > W™, 3, > 0,8, > 0,

1. foreach a € A,G.(a) U G,(a) is strongly connected and
2. Ntz1 & = O
Then,

1{2110 P(a; € A*) = 1.

I
The algorithm is model free — if T ﬁ
nothing is known about G, 1 /g UG
design G strongly connected. stlronglcy
K’ connected.
Communication is only bit-
valued: simple implementation. T, \/T3

33



Proof Overview

/Fix & =¢e>0.
Algorithm is an
Irreducible, aperiodic
Markov chain P(¢);

Lu(e) = u(©P(e).

~

J

/Rate condition

w1(0) as limiting
\ distribution.

Yii=1 & = 00 ensures
ergodicity of P(t) with

~

J

lim u(e) = u(0) s.t.
€e—0

u(0) = u(0)P(0).
R

Ensuring
ergodicity.

.

/If, G. U G; Is strongly )
connected, 1 (0) has
support over states
with

QEA*,mi=1Vi. /

let € vary
as &;.

~

€; > 0ast — oo,
Nonhomogeneous
Markov chain

G(t) = P(e). D

34




Proof Overview

Step 1: Freeze ¢, =€ 2
Irreducible, aperiodic
Markov chain P(€)

\ 4

Step 2: Stationary
distribution of P(¢) for
small e > 07

Step 3: “Annealing” ¢; to 0
preserving ergodicity.

— > -Recurrence classes (RC) of P(0)

All

-
_ All content,
\ - u=1u; _ /7

‘_——

> C

 RC with least resistive trees rooted at them
are stochastically stablel?l,

 Recall c > W* - for the algorithm, the
stochastically stable RC is where all agents

are contentand u € A*.
N —

[i]. Young, “Evolution of Conventions", Econometrica, 1993.
[il- Menon, Baras, “Convergence Guarantees for an Algorithm Achieving Pareto optimality”, Proc. of ACC 2013.
[h]. Menon, Baras, “A distributed learning algorithm with bit-valued communications for multi-agent welfare optimization”, CDC, 2013.

35



Ergodicity for time-varying
Perturbed Markov Chains

Main Result: Ergodicity of nonhomogeneous Perturbed Chains [

Let the recurrence classes of the unperturbed chain P(0) be aperiodic and the
parameter € be scheduled according to the monotone decreasing sequence {&(t)},
with e(t) = o as t — . Then, a sufficient condition for weak ergodicity of the

resulting chain is
z e(t)Y = .,

t
Furthermore, under mild assumptions on the structure of the transition

probabilities, if the chain is weakly ergodic then it is strongly ergodic with the same
limiting distribution u(0) as described earlier.

[i]. Menon and Baras, “Convergence Guarantees for an algorithm achieving Pareto optimality,” Proc. of ACC 2013. 36



Simulations — Verifying Results

Agent3 — i i 7 "
Agent2 — ! n 7 T
Agent |
T Gwd Ghy Giw Ghn)
h (1’%’%) (}%a%s%) (%‘1,%) |+ ‘_ﬁ)

Payoff structure of a three-agent system

Welfare and product of moods
o o =4 o el b e ol

Welfare and product of moods
o © o o = = = =

Rc?sults with G.. = 0

-]
‘i
—

|

-

100 150
Number of Iterations

———
=
e ———— |
[

T T T I I T T
_——

5

Results with G. = (1, 3)

- N S o =
T T T T

100 150
Number of Iterations

37



Simulations — Dependence on G,

 Nagents, A; ={0.1,1} V i.
* uy(a) =a;_q,
e G!hasedges (i,i — q).

100% [ . Performance . .
80% . _
1 60% ~ |
40% o |
20 |
1 2 3 Difféli'eut value?of q 6 4 8 Y
16 f Length of longest shortest-path '
G ]
9 g ]
T ' i
F o o I
’-ijﬁ | ‘|.7 - T | J | ﬂl 1 ]
I 2 3 Diffgi'em value';s)of q 6 7 8 9
8 1 [ . . Length ofa gvcle . . .
] i
G i
4 — i
2— 1 1 i ], s 1 - 1 1 j
U 1 2 o Diﬁ%‘eur va]ue?of q b l S E

Simulation results for N = 10.

38



Simulations — Dependence on G;

. Nagents, 4; = {0.1’1} Vi q Pert‘onllé_nce Std. Devfation
L witq 1 93.78% 2.92%
* w(a) = e disioq % 2 62.21% 7.84%

. AR 107 0

(index ops. mod N) 3 48.15% 0.117%
B 4 45.35% 11.11%
* G =0. 5 44.31% 11.79%
: q
Effects of varying G,




Formulation (continuous action space)

Multi-agent system with n agents; agent i picks actions
Uj € R.

Agent i receives/measures private utility f;(u), where
u={uq, .., Uy}

No models for the f;(-).

If collective action at time ¢ Is u(t), agent i can only measure
the numerical value f; (u(t)).

Collaborative objective — Welfare Optimization:
min W (u),

UERM

where W(u) = X/, f; (w).

40



Literature Review

> Model-based distributed optimization techniques not applicable
- Literature on Learning in Games is relevant.

;7 T s -~ = f,(u®) « Recent works [2bIsolve the

[ A" problem using such ideas. But
P'aver 1 <Game§ P'a\;er n with discrete action sets —

) un(t) , does not use gradient information

flu®)~ - ul(t) == - slow convergence.
/ IR
_ ! e Recent works [¢d] use ideas from
fi(u(t)) Player i :
extremum seeking control for

Adaptation Loops of Players Playing a Repeated Game Nash seeking.

- We go beyond Nash equilibration and use based ideas to

achieve in this model-free setting.

[a]. Marden, Young, Pao, “Achieving Pareto optimality through distributed learning,” IEEE CDC, 2012.

[b]. Menon, Baras, “A distributed learning algorithm with bit-valued communications for multi-agent welfare optimization”, IEEE CDC, 2013.

[c]. Frihauf, Krstic, Basar, “Nash equilibrium seeking in noncooperative games,” IEEE Transactions on Automatic Control, 2012. 41
[d]. Stankovic, Johansson, Stipanovic, “Distributed seeking of Nash equilibria with applications to mobile sensor networks,” IEEE TAC, 2012.



Extremum Seeking Control: Heuristics

>

Q (1l + a sin wt)

1 Q() >
Unknown nonlinear map
HPF
00
U 1 E (U) 7
<
S LPF —< ; >_0Q X |
— (@1)a sin wt
ou
+higher order
Sin wt
“dither” signal
. 90
i~ ——@

Ju

42



Extremum Seeking Control

S x=flu)
y = h(x)

Unknown nonlinear dynamics

/_I_\ i | —ewK }
S

®

sin wt

“dither” signal

e Assuming there is an
exponentially stable
equilibrium x¢? = [(u), for
each u, the minimum of
h°l(+) can be sought.

e Formal analysis uses singular

perturbation and averaging
arguments to prove local
convergence of #i to an

O(a + w + €) neighborhood
of u*.la

43

[a]. Krsti'c and Wang, “Stability of extremum seeking feedback for general nonlinear dynamic systems,” Automatica, 2000.



Seeking the Welfare Optimal

Find a dynamical system that performs distributed averaging of
reference signals of each agent.

a; Sin w;t Sin w;t
oW (u)

aui 44

Then, U; =



Revisiting Dynamic Consensus

(PO) Consider min Y& -1r)

Taking derivative and setting it to zero - xX* = %Z}Ll 7;.

Now, consider the following reformulation of (P0):

n
(P1) min z(xi -1 s.tx;=x;, Vi
i=1
And finally, the following reformulation of (P1):
1 1 1
(P2)  min =xTx —rTx + > rTr + prTpr, s.t. Lix =0,

where L;, Lp are graph Laplacians such that
Lx =0 x = al.

—> The optimizer doesn’t change: x* = % PR R B .



Revisiting Dynamic Consensus

1 1 1
(P2) min ExTx —rlx + > rTr + prTpr, s.t. Lix =0.

Lagrangian for (P2): L(x, 1) = %xTx —rlx + %prpr + AL x

Optimal to (P2) corresponds to a saddle point (x*, A*):
max L(x*A) < L(x*, 1) < min L(x, 1").
X

So, consider the saddle-seeking system:
x1 [ L(x, )] _ [~ —pLp —LI7rx I
[/i] B [ 7 L(x, 1) ] B [ L, 0 “A]Jr [0] r. (1)

It can be proved this LTI system is stable, and its equilibrium verifies
KKT conditions for (P2). So

x(t) = x* =% P I B

46
While this algorithm has appeared in the literature earlier, our analysis is novel and essential for the formal proofs.



Proposed Solution

fiCu(®))

Agent i’s update law

-

sin w;t

Inter-agent

Xi

~

__________________________
1

-

uy (t)

Dynamic consensus
(%i, Ay)

—_—————

update law

[ Agent 1’s

f1(u(t))

~—_—— -

___________________________

System

Multi- ageD

- -

~

o fau(e)

Agent n’s
update law

S~ ——-"

,/" Up (1)

47



Dynamic Consensus

Proposed

|
|
‘ . | I
) ——— Aiw) (s DO i
Solution : | : |
‘Hr—lT : . |
DEtaiIS - fi(u) T DC; : &3, M\ = T
_ | R.H.S. of (1)
u_; | » | ; :
| ‘ rn | T
Un | fo(u) ——» DC, —"
I—- ———————— —_
u_nT
Un ES, | Tn
Si Uy 1 " —
|- LPF | — |a— €ki a—(X) HPF
U - s . N~ ,
T—'ﬁ-§; sin(wit + @i) J
i I
! FS, |= !

Fig. 1. A schematc representation of the proposed solution. DC; refers
to part of the dynamic consensus algorithm (1) implemented by agent 4,
E'S; refers to the extremum secking law implemented by agent 4, and u_;
refers to the elements of the vector u other than w;.



Main Resultslal

Theorem [Dynamic Average Consensus (DAC)]: Let the undirected
communication graph be connected, rank(L;) = (n — 1), and

lp/Lml-n(LT + Lp) < 1. For a fixed r(t) = r, the state of the DAC

algorithm remains bounded and x(t) — — Zl . 1; -1 exponentially.

Theorem [Collaborative Welfare Seeking]: Let hypothesis of above

2
Theorem hold, f; be smooth, 3 u* s. . a”ggf )~ 0,2 W(u ) > 0, and

w; # wj, 2w; # wy, and w; # w; + wy for distinct l,],k. Then there

exists (w, a, €) small enough so that u(t) converges to an O(||w|| +
€ + a) neighborhood of u*, provided i (0) Is sufficiently close to u*.

The proof to the latter is based on averaging and singular perturbation arguments
that are standard techniques in extremum seeking control theory.

[a]. Menon, Baras, “Collaborative Extremum Seeking for Welfare Optimization”, Submitted to /EEE CDC, 2014.



Wind Farm Power Maximization

Test model-free solution by simulating it on a wind farm model.

Wind Farm Model - v,
o Three turbinesn = 3

o Turbine action u; is its Axial Inductlon Factor, u; € [0 1/2]

* Turbine power f;(u) = %pAiCp(ui)Vi(uf;

* Where C, (u;) = u; (1 —uy)?

e V:(u) is the wind speed at turbine i, and is the coupling term
e \Wake model

Vitu) = <1 — \/ZJEupstream(L)(C[] u]) )

where the matrix C i1s computed based on the layout of the
turbines (using the Park Model).

50



Axial Induction Factor

Power (kW)

o~
2
£
e
0 100 200 300 400 500 600 ; 0.3
Time variable ¢ 32
Fooast
Time trace of W (u(t)) E
950 £ 02|
______ it _HT\__M_r__F_TI __I___l__ Z o045t
900 J‘-J J{' '| wallhimw “ |“' ‘”v ", fm{lﬂl‘ﬂr 30-15
Il h\ Z 01
850
Bﬂoﬁln W(u(t)] |
e o B )
750 — — W) T
700 . . . . .
0 100 200 300 400 500 600

Wind Farm Simulation Results

Time trace of variables wuy(t) ,ua(t) and us(t)

04t

0351

L 175
\ E 165
/ 8

Time variable ¢
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Axial Inducton Factor
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Conclusions and Future Work

Agents are influenced by their knowledge about the other
agents’ behavior in taking coordination decisions

We modeled decision making on cooperation in a group effort
as a result of two-person games on a network

We studied adaptation to neighbors’ strategies as a
coordination mechanism using a learning algorithm

The system is analyzed under classes of linear and bounded
linear behavior functions. A generalized consensus problem
determines strategy coordination

The emerging collaboration graph is a function of agents’
behavioral tendencies as well as the connectivity graph

Exact results for complete graph developed. Future work will
include extensions to other topologies.
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Conclusions and Future Work

We demonstrated a distributed algorithm for
multi-agent systems that

— exploits implicit and explicit communications
— to converge to welfare optimal actions
— without any model information.

Next steps
— speed of convergence?
— Its dependence on G, G;?

— continuous space analogs — general nonlinear
systems — using gradient-type information for faster
convergence?
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Future Work

Agents with general nonlinear dynamics
Discrete time analog

Effects of time-varying communication graph and structure of
communication graph on the performance

Application to collaborative robotics

Detailed simulations on higher-fidelity wind farm models
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