
Technische Universität München
Institute for Cognitive Systems (ICS)

Prof. Gordon Cheng

Master Thesis

Learning to recognize new objects using deep learning

and contextual information

Master Student: Niklas Barkmeyer
Matrikelnummer: 03617655
Anschrift: Klugstr. 91

80637 München
E-Mail: niklas.barkmeyer@tum.de
Betreuer: Karinne Ramirez
Beginn: 30.03.16
Abgabe: 05.09.16

Abstract

Enabling robots to recognize objects in the real world is a very important and challenging
problem, due to variability in lighting conditions, visibility constraints, and the availability
of large amounts of labeled data. This problem has currently been addressed using hierar-
chical representations such as convolutional neural networks (CNN), which are multi-stage
architectures inspired by how the human brain processes visual information. A subgroup of
deep learning, these algorithms can be trained end-to-end and outperform other methods
on many benchmarks. However, CNNs are not widely deployed in robotics yet. Addi-
tionally, existing robotic systems do not leverage contextual information to enhance their
machine learning algorithms with knowledge and reasoning systems to understand and
interact with known and unknown objects in their environment.
In this thesis, we present and analyze a method that combines deep learning algorithms
with semantic reasoning techniques. This system enriches the visual recognition capabil-
ities of a robot by including contextual information of an object such as material, shape,
color, and affordance during a human-supervised learning process. We use deep convolu-
tional networks and classifiers trained on extracted high-dimensional features to predict
these attributes. Our experiments are evaluated on the iCub humanoid robot and tested
on two datasets, namely the iCubWorld28 and the new TUM-ICS dataset.
The results show that our proposed system improves the overall recognition accuracy and
learning capabilities of our iCub robot, both for known and unknown objects. Compared
to a stand-alone deep learning network, the recognition performance increases from 85%
to 98% for known objects and from 0% to 65% for unknown objects.

2

Contents

Contents 3

1 Introduction 5

2 Background and Related Work 8
2.1 Convolutional Neural Networks . 9

2.1.1 Major Concepts . 11
2.1.2 Architecture . 15
2.1.3 New applications for deep learning 17

2.2 Regularized Least-Squares Classification 23
2.3 Dimensionality Reduction Techniques . 23

2.3.1 Principal Componant Analysis (PCA) 24
2.3.2 t-Distributed Stochastic Neighbor Embedding (t-SNE) 26

2.4 Attributes and Affordances . 28
2.4.1 Attributes . 29
2.4.2 Affordance . 29

2.5 Semantic Reasoning . 30
2.6 Related Experiments . 31

2.6.1 iCubWorld . 31
2.6.2 Visual one-shot learning . 32
2.6.3 RoboSherlock . 33

3 System Design 35
3.1 Experimental Setup . 36
3.2 Software frameworks used for the development 37

3.2.1 Caffe . 37
3.2.2 GURLS . 38
3.2.3 KnowRob . 39

3.3 Datasets . 41
3.3.1 ImageNet dataset . 42
3.3.2 iCubWorld28 dataset . 43
3.3.3 TUM-ICS dataset . 44

3

4 CONTENTS

3.4 OWL Ontology . 46
3.5 Enhanced deep network . 52

4 Experiments and Results 56
4.1 Object Recognition Performance . 56

4.1.1 Results on the iCubWorld28 dataset 57
4.1.2 Results on the TUM-ICS dataset 63

4.2 Enhanced deep network results . 79
4.2.1 ICS-CaffeNet and Semantic Reasoning 79
4.2.2 GURLS and Semantic Reasoning 81

5 Discussion 84
5.1 Interpretation of results . 84
5.2 Limitations of the proposed method . 86
5.3 Outlook . 87

6 Summary and Conclusion 89

List of Figures 90

List of Tables 95

Bibliography 98

Chapter 1

Introduction

Artificial intelligence (AI) is the general science and engineering principle which deals with
how to create intelligent machines. AI recently gained a lot of public attention, especially
after Google DeepMind’s AlphaGo defeated the South Korean master in the board game
Go in early 2016. Research in AI started in the 1950’s, where one of the biggest milestones
was IBM’s supercomputer Deep Blue, which beat Garry Kasparov in chess in 1997. A
subgroup within AI, machine learning algorithms learn from large quantities of statistical
data and make predictions on unknown data. Since the 1980s, algorithmic approaches in
decision tree learning, inductive logic programming, clustering, reinforcement learning, and
Bayesian networks resulted in many new technical advances and solutions for real-world
problems, such as spam filtering, optimal control, image and speech processing, and many
others. Within machine learning, deep learning is a new branch of algorithm which consists
of multiple non-linear layers.
In recent years, especially deep learning algorithms have contributed to recent break-
throughs which have caused a hype within the AI and machine learning community [1].
However, the principles of deep learning, especially convolutional neural networks (CNNs),
is not a new concept. The general ideas have existed since the 1990s [2, 3, 4, 5]. Since then,
CNNs were very popular, but their importance decreased with the introduction of support
vector machines (SVMs). Due to more powerful graphical processing units (GPUs), larger
quantities of data, and better algorithms, Krizhevsky [6] achieved by far the best results
reported in the image classification challenge ILSVRC in 2012. Since then, deep learning
has become very popular again and the successes of deep learning have accelerated since
then.
Convolutional neural networks are multistage architectures of non-linear layers that can be
trained on large datasets. They can be used for many object recognition [6, 7] and computer
vision tasks [8, 9]. Initially, a lot of research work focused on creating new architectures
to beat other state-of-the-art networks in highly-competitive benchmarks evaluated on the
ImageNet dataset [6, 7]. Other research studies concentrated on analyzing the underlying
architectures of convolutional networks in general and evaluated why the networks work so

5

6 CHAPTER 1. INTRODUCTION

well [10, 11, 12, 13]. In current research, deep learning models are often linked and applied
with other methods, such as natural language processing (NLP) [14, 15] or reinforcement
learning (RL) [16, 17, 18, 19] algorithms, to provide solutions for new problem domains.
The ability to comprehend visual context is a critical and arguably the most complicated
cognitive capability for understanding the real world. According to Li Fei Fei [20], com-
puter vision is the key enabling technology to build future intelligent machines that can
see and think like humans. When humans solve a given task, they often rely on their in-
tuition and exploit available contextual information about the problem [21]. Humans use
their knowledge to simplify the problem and solve the task by leveraging their experience
about related concepts. In contrast, technical systems lack this ability to infer knowledge
in multiple representations by nature. Concerning visual processing systems, the capabili-
ties of classical object recognition methods are mostly limited to categorize known objects.
In recent research, new ideas have emerged how additional information can be extracted
from images to improve the visual recognition performance [22, 23, 24, 25]. Computer vi-
sion algorithms that describe objects with attributes and infer object properties based on
contextual information provide new possibilities to learn and recognize new objects [26].
This attribute-centric approach has the advantage that new objects can be detected by
high-level descriptions of the objects instead of training models on these images [24].
Our motivation in this thesis is to combine the superior performance of deep convolutional
neural networks with logical reasoning components into one system. This system is used to
teach our humanoid robot iCub new objects based on contextual information. According
to the literature [23, 26, 27], attributes such as material, shape, color, and affordance are
examined as the relevant context of a detected object. These attributes are predicted for
each object by our deep networks or machine learning classifiers.
In summary, the main goals of this thesis are to:

• Compare and analyze the performance of deep learning algorithms and linear classi-
fiers on objects, attributes and affordance.

• Improve the visual recognition capabilities of the humanoid robot iCub on known
objects with knowledge and reasoning methods.

• Enable iCub to learn new or unknown objects based on deep learning algorithms and
contextual information.

The stated goals were addressed and reached in several steps: first, the relationship between
the analyzed deep learning algorithms and linear classifiers are evaluated in consideration of
the chosen attributes and affordances. In this step, the performances are benchmarked on
two datasets. Second, an enhanced deep network is proposed which combines the outputs
of the machine learning algorithms with contextual information. The third point is the
main research goal of this thesis: the created enhanced deep network enables the robot
to learn new objects. This system is designed in consideration of both evaluated machine
learning algorithms and all attributes.
The four main contributions in this work are the following:

7

• The TUM-ICS dataset, which contains 16,500 images that are divided into 11 object
categories and 23 object classes. The dataset has been acquired in three different
settings on multiple acquisition days and times in changing lighting conditions. The
dataset is fully labeled for object categories, the attributes material, shape, and color,
and affordance.

• The definition and implementation of classes, object properties, and Prolog predi-
cates, based on the hierarchical ontology representation of the TUM-ICS dataset.

• A detailed analysis about the benchmarked deep learning algorithms and linear clas-
sifiers trained on objects and contextual information is provided on two datasets.
Further experiments describe why a new dataset was needed, and underlying con-
cepts of these algorithms are explained.

• An enhanced deep network is proposed which combines the benefits of deep learning
algorithms with semantic reasoning techniques. This system equips the robot with
on-line object recognition and learning capabilities based on semantic understanding
of the objects’ contextual information.

The structure of this work is described in the following. Chapter 2 describes the back-
ground of this thesis with a focus on convolutional neural networks, dimensionality reduc-
tion techniques, attributes and affordances, and semantic reasoning. In the last section
of this chapter, we describe a similar experiment which was performed on the iCub robot
by researchers from IIT. In chapter 3, we explain the major technical components that
are needed to conduct our experiments. These are the iCub robot, machine learning tool-
boxes and other software frameworks, datasets used for training and evaluating our system
performance, and our OWL ontology. The ontology contains the a-priori knowledge and
contextual information our robot has about the known objects. In chapter 4, we analyze
and evaluate our experiments. At first, we compare the object and context-recognition per-
formance of our deep neural networks with other classifiers trained on extracted features
on two datasets. While analyzing the performance on the collected TUM-ICS dataset, we
take a deep dive to investigate why the methods performed so well or missed our expecta-
tions. Second, we present the results of our on-line object learning experiment, in which
we used the predicted labels from our deep learning algorithms as input to our knowledge
reasoning system to learn new objects. After evaluating the results, we discuss our findings
in chapter 5, where some limitiations of the proposed system are also addressed. Finally,
chapter 6 summarizes and concludes this thesis.

Chapter 2

Background and Related Work

In the first section, we describe convolutional neural networks. Based on [28, 29], we
provide an in-depth analysis of the underlying concepts and the architecture that we use
in this work. Furthermore, we give an outlook on current research and new application
areas for state-of-the-art deep learning techniques. In the second part, we briefly explain
the motivation and algorithms of dimensionality reduction techniques. The third section
introduces the concepts of attributes and affordances. Background on semantic reasoning
is described in the fourth section. The last section is the most important for our research
goal: we describe related work that focuses on teaching new objects to robots, and show
how their work differs to our main contribution in this thesis.

Figure 2.1: Yann LeCun is considered as the ’father’ of convolutional neural networks.
The image shows the famous LeNet-5 [30], which is applied to document recognition. A
typical convolutional neural network consists of several non-linear layers. The input is an
image and the output is a vector. The output vector contains the probability of the image
belonging to each class. This network has four different types of layers which are named
as: ’convolution’, ’subsampling’, ’full connection’, and ’gaussian connection’. This network
was introduced in 1998. Since the introduction of AlexNet [6] in 2012, networks are deeper
and use dropout to reduce overfitting.

8

2.1. CONVOLUTIONAL NEURAL NETWORKS 9

2.1 Convolutional Neural Networks

Convolutional neural networks (CNNs) are a subgroup of deep learning algorithms, which
focus on computer vision and image processing tasks. CNNs are loosely inspired by how
the brain processes visual information. Hubel and Wiesel were the first who proposed
deep models which are similar to a cat’s visual system’s structure [31]. These models
identified simple cells with local receptive fields, similar to filters or kernels, and complex
cells, which are similar to pooling layers. The first CNN was introduced in Fukushima’s
Neocognitron [32]. CNNs were later improved by Yann LeCun’s LeNet-5 [30] (see Figure 2.1
for details) which applied gradient-based stochastic gradients to document recognition and
was very successful for handwriting recognition tasks. A major drawback in the research
and development of CNNs in the 1990s and 2000s has been the required computational
power to apply them in large scale to high-resolution images. However, this has changed
since the 2010s.

Three reasons exist why deep networks have become successful: 1) more computation power
due to Moore’s Law, especially found in today’s GPUs, 2) more training data, and 3) novel
and better algorithms. With the increase of computational power, researchers described
new ways to train convolutional neural networks more efficiently that allowed deeper net-
works to be trained. Recently, the performance increased significantly for multiple image
databases, approaching or even beating human performance, e.g. on digit-recognition
(<0.25 percent) [33] and many other pattern-recognition tasks, most notably visual classi-
fication problems. In general, CNNs are very good at classifying objects such as particular
dog or cat breeds based on fine-grained details, whereas humans have problems with this
[6]. A drawback for deep learning is that recognizing objects in realistic settings requires
very large datasets for training. Currently, the best CNNs struggle with objects that are
small or thin or that have been distorted with digital filters. A recent study revealed the
differences how deep neural networks and humans recognize objects. In this study, the im-
ages are encoded in a way which humans cannot recognize, but the deep neural networks
detected the correct class of the object with almost 100% accuracy [11].

For training very complex convolutional neural networks on large datasets, the recent trend
has been to increase the number of layers and layer size while using dropout [34] to address
the problem of overfitting. Krizhevsky et. al and Szegedy et. al, the creators of the two
most well known networks used in research, namely AlexNet [6] and GoogLeNet [7], stress
how important it is to use a high dropout ratio during training. Another trend is to make
the networks very deep, i.e. the networks have many layers. Zeiler et. al experimented
in [10] with the depth of CNNs and concluded that the network’s performance highly
depends on the number of layers. The measured performance significantly decreases even
if a single convolutional layer is removed. He states that the network’s depth is more
important than any other architectural component of the network. Consequently, the
choice of the underlying architecture is the key to the network’s performance. This can
also be seen at GoogLeNet which was published in 2014 and has a depth of 22 layers,

10 CHAPTER 2. BACKGROUND AND RELATED WORK

not counting the pooling layers. In 2012, AlexNet has started the hype around progress
in deep learning in particular with a network consisting of 8 layers. Although it achieved
state-of-the-art results when it was published, many other networks have surpassed the
performance since then. The limiting factor of a CNN’s size is the amount of memory
available on current Graphics Processing Units (GPUs) and the tolerated training time.
Before GPUs were widely used for training deep networks, the total training time on
CPUs was larger by a factor of 9. Nvidia’s cuDNN library, which is optimized for fast
image processing and efficient convolution operations in GPUs, further accelerates the
training time by a factor of 1.9. Thus, state-of-the-art GPUs with the latest CUDA and
cuDNN libraries installed increase the computation time by a factor of 17 compared to
today’s CPUs. Depending on the number of parameters of the network and the size of
the dataset, training a convolutional neural network on a GPU with randomly initiated
weights can take several days until a week. One of the fundamental differences between

Figure 2.2: End-to-end learning with deep convolutional neural networks. Top: Traditional
approach. Interest points are detected with e.g. SIFT and described in 128 dimensional
descriptors. Classifiers such as SVM can be used to learn and predict from these features.
Bottom: State-of-the-art approach since 2012. The object recognition pipeline is learned
end-to-end with deep convolutional neural networks, which eliminates hand-engineering of
features. The nets are trained with backpropagation. The figure is inspired by: [35]

how deep learning and traditional methods in image processing work is illustrated in the
Figure 2.2. Until 2012, the state-of-the-art approach in computer vision was to use SIFT
to extract hand-engineered features from images, which are encoded in 128 dimensional
descriptors [36]. A classifier such as the popular support vector machines (SVM) [37] is
trained on these descriptors for image classification. Deep convolutional neural networks
combine both steps as the networks can be trained end-to-end from the images to the
corresponding labels, as illustrated in Figure 2.3. The networks are trained via forward
passes and backward-propagation, i.e. the computed gradients are added to the weighted
neurons in the previous layer, which is further considered during training. The network is
trained after the cost-function is minimized. The concept of end-to-end learning provides

2.1. CONVOLUTIONAL NEURAL NETWORKS 11

the basis for many researchers in the artificial intelligence community who seek to apply this
concept on new problem domains. Among them, Abbeel et. al apply end-to-end training
to robotics to teach them how to learn and execute new tasks automatically with deep
reinforcement learning [19]. Although end-to-end trained models have achieved impressive
results, an alternative approach is to use pre-trained convolutional neural networks (which
were trained on large datasets such as ImageNet) as feature extractors. In this case, the
computed features are extracted from the second last layer before the softmax classifier
computes the final probabilities. This highly-dimensional feature representation can be
used for training machine learning algorithms from other toolboxes or libraries.
In this thesis, we compare both approaches: the end-to-end trained models and the

Figure 2.3: The principle of end-to-end learning, which is achieved by forward passes and
backpropogation. Source: [38]

models from which we extracted high-dimensional feature vectors and used them to train
classifiers.

2.1.1 Major Concepts

Based on [28, 29], this section gives an overview about the major concepts that are applied
in convolutional neural networks. These models typically consist of several layers, and
each layer is separated into multiple stages: convolutional layer, applying a rectified linear
function, and max or average pooling. Figure 2.4 shows a convolutional layer with three
stages. Each operation is explained in one of the following subsections.

2.1.1.1 Convolution

The name “convolutional neural network” indicates that the network employs convolution
operations. Convolution is a linear operation that makes it possible to handle inputs of

12 CHAPTER 2. BACKGROUND AND RELATED WORK

Figure 2.4: This visualization shows that a neural network layer consists of several stages:
1) Convolution, 2) ReLU, 3) Max Pooling. Normalization is not applied in this layer. This
Figure is similarly shown in [29].

variable size. The input is usually a two-dimensional array of data and the kernel is usually
a two-dimensional array of learnable parameters [29, p.199]. In CNNs, the two-dimensional
inputs and kernels are images. The convolution operation is mathematically defined as

s[i, j] = (I ×K)[i, j] =
∑

m

∑

n

I[m,n]K[i−m, j − n] (2.1)

where I is the input image with dimensions m and n, K is the kernel, and s is the resulting
output at location i and j.

Applying the convolution operation provides several benefits that are based on three im-
portant ideas: sparse interactions (or sparse weights), parameter sharing, and equivalent
representations.

The term sparse interactions means that fewer connections between input and output
values exist. Therefore, less parameters are needed which reduces the memory requirements
and improves the statistical efficiency. This is achieved by applying smaller kernel sizes
than the input image because fewer operations are required to produce the output. In
contrast, traditional neural network layers, which do not employ convolutions, use a matrix
multiplication to describe the relationships between each input value and each output value.
This means that all outputs are connected to all inputs. Convolutions are very efficient
operations to describe transformations of small receptive fields across input images.

Parameter sharing refers to using the same values for more than one function in a network.
In traditional neural networks, each element of the weight matrix is used exactly once for
computing the layer output. Each value of the kernel is used at every position of the input.
The parameter sharing used by the convolution operation means that rather than learning
a separate set of parameters for every location, only one set is learned. This does not affect
the runtime but further reduces the storage requirements of the model to k parameters [29,
p.202].

When convolution is applied on images, convolutions create 2-D feature maps that show
where certain features appear in the input. Parameter sharing causes the layer to be
equivariant to translation, i.e. if the input changes, the output changes in the same way.
If the object in the input is moved, its representation will move the same amount in the

2.1. CONVOLUTIONAL NEURAL NETWORKS 13

output.

2.1.1.2 Pooling

Figure 2.5: Max pooling. Pooling reduces the number of parameters by applying pooling
units over 4 non-overlapping regions of the image, as the authors of [39] describe.

Pooling layers summarize the neighborhoods of output units and replace them with one
value in the kernel map. Traditionally, these neighborhoods do not overlap. However,
research shows that overlapping regions reduce overfitting [6]. A pooling layer is a grid
that consists of pooling units spaced s pixels apart. Each grid summarizes a neighborhood
of size z×z centered at the location of the pooling unit. Traditional non-overlapping pooling
is obtained if s and z are set as s = z. If s is smaller than z, i.e. the center of a neighboring
pooling region lies within this pooling grid, this method is called overlapping pooling.

Several statistical approaches are possible to describe features with pooling layers in large
images. One could either compute the mean or the maximum value over an image region.
As seen in Figure 2.5, pooled features have lower dimensionality and can also improve
results due to less overfitting. The most widely-used pooling operations are ’max pooling’
and ’average pooling’.

2.1.1.3 Learning

The typical way a cost function is minimized in convolutional networks is using a stochastic
gradient descent (SGD) function. The standard form of a SGD is

θk+1 = θk − ǫk
∂L(θk, z)

∂θk
(2.2)

where θ are the learning parameters and ǫ is the learning rate, [40]. A similar concept is
the momentum: instead of the current gradient, a moving average of the past-gradients

14 CHAPTER 2. BACKGROUND AND RELATED WORK

is used in the updated equation. The amount of weight given to the momentum can be
controlled by an additional parameter. AlexNet [6] is trained using a stochastic gradient
descent function with momentum. The update rule for weight w is

vi+1 := 0.9vi − 0.0005ǫwi − ǫ

〈

∂L

∂w
|wi

〉

Di

(2.3)

wi+1 := wi + vi+1 (2.4)

where i is the iteration index, v is the momentum variable, ǫ is the learning rate, and
〈

∂L

∂w
|wi

〉

Di

is the average over the i-th batch Di of the derivative of the objective with

respect to w, evaluated at wi. Krizhevksy [6] found that the small weight decay of 0.0005
is important for learning. The momentum parameter for the gradient descent function is
set to 0.9.

2.1.1.4 ReLU

The standard way to model a neuron’s output f as a function of its input x is f(x) = tanh(x)
or f(x) = (1+ex)−1. However, both nonlinearities are saturating and are much slower than
the non-saturating nonlinearity Rectified Linear Unit (ReLU) f(x) = max(0, x), as defined
in [41]. ReLUs are non-saturating, which means the neuron learns if there is at least one
positive input to a ReLU. Networks with ReLUs train several times faster than those using
tanh functions. The desired training error rates of CNNs with ReLUs are achieved several
times faster than with saturating neurons [6]. ReLUs are important because the learning
speed has a large influence on the model’s performance, especially if the dataset is very
large.

2.1.1.5 Dropout

’Dropout’ is a technique which helps to avoid overfitting by setting the outputs of hidden
neurons to zero with a pre-set probability. In AlexNet, the standard value for dropout is
0.5, and for GoogLeNet it is 0.7. The neurons which are set to zero do not contribute to the
forward pass or back-propagation, i.e. they are ’dropped out’. Due to these ’dropped-out’
neurons, the network samples a different architecture every time. This forces neurons to
learn more robust features as they cannot rely on the presence of other neurons. A dropout
ratio of 0.5 doubles the number of iterations required to converge, but reduces overfitting.

2.1. CONVOLUTIONAL NEURAL NETWORKS 15

2.1.1.6 Softmax

In image classification tasks, the last layer in a convolutional network is typically a softmax
layer. It is used to normalize a K-dimensional vector z of real values to a K-dimensional
vector σ(z) of real values between 0 and 1. The function’s output represents the probabil-
ities of the image belonging to class j

σ(z)j =
ezj

∑K

k=1 e
z
k

(2.5)

for j = 1, ..., K. Due to the exponential component in the equation, the probability of the
most probable label tends to be very large (ranging between 0.9 and 1.0 in many cases).

2.1.2 Architecture

Figure 2.6: An illustration of the architecture of Krizhevsky’s network, showing the sepa-
ration in blocks for two GPUs running in parallel. One GPU runs the blocks at the top
of the figure while the other runs the blocks at the bottom. The convolution, max-pooling
and normalization operations take place between the blocks. The used filtering kernels
of each layer are illustrated as cuboids in the previous layer. In this figure, the block’s
notations are three-dimensional: a block of size 13×13×192 is equivalent to 192 feature
maps of size 13×13. Source: [6, 28]

Figure 2.6 presents Krizhevsky’s AlexNet which contains five convolutional (Conv layer)
and three fully-connected layers (FC layer). Before we analyze the overall eight layers of
this network, we describe the major differences and important features that Krizhevsky
considered very important in the network’s architecture. Among them is the use of the
ReLU Nonlinearity, Local Response Normalization, and overlapping pooling.

The concepts of ReLU Nonlinearity and overlapping pooling are already described in the
previous sections 2.1.1.4 and 2.1.1.2, respectively. The kernels of the third convolutional

16 CHAPTER 2. BACKGROUND AND RELATED WORK

layer are connected to all kernel maps in the second layer. The units in the fully-connected
layers are connected to all units in the previous layer. The Local Response Normalization
normalizes the activity of a neuron by the total number of kernels in the layer. This
normalization is applied in the first two convolutional layers and reduces the error rates
by approx. 1 percent. Overlapping max-pooling with a stride of 4 pixels is applied after
response-normalization layers as well as after the fifth convolutional layer. ReLU non-
linearity follows every convolutional and fully-connected layer.

The overall architecture of AlexNet is described in three-dimensional kernels, where the
third dimension is the number of feature maps. For example, a kernel of size 32×32×10 is
equivalent to 10 feature maps of size 32×32. Because the description about the architecture
is based on [6, 28], we use Krizhevsky’s notations in the following.

The network requires input images of size 224×224×3 (RGB image). The first convolu-
tional layer C1 filters the image with kernels of size 11×11×3. Because of the stride of 4,
these kernels overlap and 96 kernels are needed to filter the image. Because the network
is illustrated as a two-GPU net, it divides the kernels into two parts. Instead of one block
(or kernel map) with size 55×55×96, the resulting kernel is ”split” into two blocks of size
55×55×48. The output is response-normalized and max-pooled, and passed to the second
convolutional layer C2. Layer C2 uses 256 kernels of size 5×5×48, and normalization and
max-pooling is applied again. This operation leads to two blocks of size 27×27×128. The
following convolutional layers do neither apply max-pooling nor normalization. Layer C3,
which is connected to both kernel blocks of Layer C2, filters the output with 384 kernels
of size 3×3×256. The resulting two blocks are of size 13×13×192. Layer C4, where each
kernel map is only connected to one of C3, uses 384 kernels of size 3×3×192 to filter the
output. The fifth convolutional layer C5 has 256 kernels of size 3×3×192, the resulting ker-
nel maps are of size 13×13×128. The next three layers are fully-connected layers. Layers
FC6, FC7 and the last fully-connected layer FC8 have 4096 units each. Layer F8 produces
an output that is passed to a 1000-way softmax that computes a probability distribution
over 1000 class labels. 1000 classes are used because AlexNet competed in the ImageNet
classification challenge, where 1000 classes exist.

The number of units in each layer can be computed as a multiplication of each layer’s
dimensions. The network’s input is 224 × 224 × 3 = 150, 528 dimensional. The number
of units in layers C1 and C2 are 55 × 55 × 96 = 290, 400 and 27 × 27 × 256 = 186, 624,
respectively. The number of units in the remaining layers are 64,896 (both C3 and C4),
43,264 (C5), 4096 (both FC6 and FC7), and 1000 (FC8).

In the ImageNet LSVRC-2010 contest, the convolutional network achieved top-1 and top-5
error rates of 37.5 percent (62.5% accuracy) and 17.0 percent (83% accuracy), respectively.
Most labels in Figure 2.7 are reasonable alternatives for each predicted label. For example,
only other types of cat (jaguar, cheetah, snow leopard, and Egyptian cat) are considered
in the top-5 for the correct label leopard. However, the cases ’grille’ and ’cherry’ show that
some images could have multiple labels as ambiguities exist.

2.1. CONVOLUTIONAL NEURAL NETWORKS 17

Figure 2.7: ImageNet test images with the five most probable labels. The correct label is
shown with a red bar (if it is in the top 5). Source: [6]

2.1.3 New applications for deep learning

Due to the large success of deep learning in computer vision and natural language process-
ing, deep learning algorithms have started to be commercialized [42] in many applications
ranging from bank check reading systems, pedestrian and traffic sign detection [43], video
surveillance, face detection, to off-road mobile robots for vision-based obstacle avoidance
[44]. Motivated by many breakthroughs in recent years in this field, researchers are explor-
ing new ways to leverage the benefits of deep learning and apply them on new problem
domains. In this section, we will go into further detail about recent research trends in deep
learning. We showcase a few examples where convolutional neural networks have recently
been applied. These may very likely enable new application areas for artificial intelligence
algorithms in the next years and decades to come.

18 CHAPTER 2. BACKGROUND AND RELATED WORK

Figure 2.8: The relocalization results for Alex Kendall’s deep convolutional neural network
camera pose regressor [45]. Top: input images. Middle: predicted camera poses of the
corresponding visual reconstructions. Bottom: input images are shown again with middle
images overlaid in red.

2.1.3.1 SLAM

One of the classic problems in mobile robotics is the Simultaneous Localization and Map-
ping (SLAM) problem. SLAM [46] allows robots to localize and navigate in unknown
environments autonomously. SLAM is hard because it estimates both the pose of a robot
and map the environment at the same time. Therefore, it is often referred as a ’chicken-
or-egg’ problem. Kendall et. al show in [45] that point-based SIFT registration fails when
difficult lighting, motion blur, and different camera intrinsics occur. Their proposed sys-
tem is a 23 layer deep network that is able to be used for out of image plane regression
problems. The system regresses the 6-DoF camera pose from a RGB image and obtains
2m and 3 degrees accuracy outdoors and 0.5m and 5 degrees accuracy indoors. The sys-
tem is trained end-to-end from RGB images to the 6-DOF camera pose without additional
techniques such as hand-engineering features or graph optimisation. Four examples of
predicted camera poses are shown in Figure 2.8.

2.1.3.2 Semantic Segmentation

Recent research has shown that convolutional networks, which are trained end-to-end and
pixels-to-pixels, exceed the state-of-the-art in semantic segmentation [9, 47]. Figure 2.9
shows the SegNet encoder-decoder architecture which is used for pixel-based prediction
in [47]. The encoder network is topologically identical to the VGG network [48]. The
decoder network maps the feature maps from low resolution to full input resolution feature
maps for pixel-wise prediction. SegNet is developed for autonomous driving applications
to enable vehicles understand road scenes. Example images in Figure 2.10 demonstrate

2.1. CONVOLUTIONAL NEURAL NETWORKS 19

Figure 2.9: SegNet Architecture. The network is trained pixel-wise and segments the road
scene in 11 different class color codes. Source: [47]

how SegNet can segment the input images into different class color codes. Compared to
other methods, SegNet and its variations outperform the other benchmarked algorithms
in 10 of 11 classes, with an average accuracy of 88.5% over all classes.

Figure 2.10: Example images for SegNet. The road scene images are segmented in 11
different class color codes. Source: [47]

2.1.3.3 Natural Language Processing and Sequences

Another application area for deep learning is natural language processing. In 2014,
Vinyals et. al introduced the Neural Image Caption Generator (NIC) [15], which
automatically describes the content of an image in one or two sentences. NIC consists of
a deep convolutional neural network (CNN) and a recurrent neural network (RNN). This

20 CHAPTER 2. BACKGROUND AND RELATED WORK

Figure 2.11: Google’s Neural Image Caption Generator [15], which consists of GoogLeNet
[7] (top) and a language generating RNN (middle), is used to describe the content within
images in sentences. Examples are shown in the bottom.

2.1. CONVOLUTIONAL NEURAL NETWORKS 21

structure is mainly motivated by the recent advances of RNNs in machine translation
tasks. One RNN can be used to translate a source sentence from one language into
a vector representation, from which a second RNN can produce the target sentence.
Instead of the first RNN, NIC uses a convolutional neural network to encode the input
image into a rich feature representation. Their CNN is GoogLeNet, a network which
finished 1st place in the ILSVRC 2014 classification challenge with a top-5 error rate
of 6.67 percent. For comparison, Krizhevsky’s network [6] achieved 16.4 % in the
same competition in 2012. The name GoogLeNet is an homage to LeCun’s LeNet-5
[30]. It consists of 22 layers and is created by stacking several, so-called Inception
modules on top of each other. The author Szegedy argues that a high dropout rate
of 0.7 is essential for a good performance of GoogLeNet. The NIC model is trained
to maximize the likelihood p(S—I) of the target sentence given the training image.
Figure 2.11 shows the architecture of GoogLeNet (rotated by 90 degrees), NIC, and
good and bad examples of NIC. In the image notation examples, the sentences and im-
ages above the green box perform well. Others above the red box show classification errors.

Another example in recent research where CNNs have been applied with RNNs is [49]. As
shown in 2.12, the proposed system is able to give correct answers based on an input image
and a question.

Figure 2.12: Four images are shown with associated questions and answers from the Vi-
sual7W dataset. The system provides correct answers to the questions given the input
images. Source: Facebook AI Research [49]

2.1.3.4 Deep Reinforcement Learning

Deep Reinforcement learning, which is the combination of deep convolutional networks
with reinforcement learning algorithms, has drawn a lot of attention in the media recently,
especially for AlphaGo [18] and playing Atari games [17]. Levine et. al show in [19] that
it is possible to apply deep reinforcement learning in robotics. Figure 2.13 shows the

22 CHAPTER 2. BACKGROUND AND RELATED WORK

architecture, which maps the input image to the robot actuators, and an overview of the
four trained tasks.

Figure 2.13: Visuomotor policy architecture. Source: [19].

The network consists of three convolutional layers, one spatial softmax and an expected
position layer which transforms features from the pixel space to feature points, which are
more beneficial to compute spatially. The computed points are passed through three fully
connected layers with the robot configuration to control the robot’s motor torques. The
four basic tasks which are successfully learned end-to-end are placing the objects hanger,
cube, hammer, and bottle into predefined positions and performing object manipulations.

Another research project which addresses end-to-end learning of raw image data to the
action output is [50]. The used system learns to become a self-driving car, where the CNN
directly produces the steering command. The system was never trained with lane markings,
but is able to learn internal representations from the training data, such as detecting useful
road features with only the human steering angle. Results show that the system has an
autonomy value of 98%, meaning that the driver needs to intervene for 12 seconds total in
a driving time of 600 seconds.
The previous examples show that neural networks are applied and tested in novel areas,
where they can be trained end-to-end and outperform previous methods or provide a new
way to quickly deploy a system which automatically learns the required features. As of

2.2. REGULARIZED LEAST-SQUARES CLASSIFICATION 23

today, a lot of research and commercial interest focuses on this approach, which enables
new applications that were not possible before.

2.2 Regularized Least-Squares Classification

In this section, we describe the Regularized Least-Squares Classification [51], which is
the underlying machine learning algorithm in the GURLS library which we used in our
experiments.
The Regularized Least-Squares Classification (RLSC) algorithm is based on the solution
of binary classification problems via Tikhonov regularization using the square loss in a
Reproducing Kernel Hilbert Space. The authors demonstrate that its performance matches
the accuracy of Support Vector Machines (SVM) on several datasets. Instead of solving
a quadratic problem when training an SVM, RLSC requires only the solution of a set of
linear equations. The authors define the RLSC problem as

minF (c) = minc∈Rn

1

2n

n
∑

i=1

(y −Kc)T (y −Kc) +
λ

2
cTKc, (2.6)

where n is the number of training examples, K is the positive semidefinite kernel matrix, y
is the labels vector, written as yi ∈ 1, ..., T for i = 1, ..., n, and c is the optimal solution to
the above problem. This function is minimized by its derivative with respect to c. Because
it is allowed to set the derivative to zero, it can be seen that the solution of a RLSC problem
can be found by solving a single system of linear equations:

(K + λlI)c = y (2.7)

By setting the derivative of a differentiable Lagrangain function equal to zero, the maximum
of the Lagrangian function with respect to a variable needs to be computed (not shown
here). After solving the concave maximization problem for this variable, the resulting c
satisfies the desired value for solving the equation 2.7.
In this thesis, we chose to use the RLSC algorithm instead of support vector machines
because we first reimplemented our object recognition system based on [52]. The authors
Pasquale et. al stress that they rely on GURLS to perform RLSC, which is the natural
variant of the classic regularized logistic regression (RLS) algorithm. They experienced
from previous work on the iCub that the used algorithm achieves comparable or better
results than the previously tested LIBLINEAR [53] and SVM [54] libraries.

2.3 Dimensionality Reduction Techniques

In this work, we extract high dimensional features from our dataset. These extracted fea-
tures are used to train our classifiers which make predictions on unknown data. Because

24 CHAPTER 2. BACKGROUND AND RELATED WORK

Figure 2.14: The visualization shows the result of a dimensionality reduction of high-
dimensional features reduced to a two-dimensional subspace of the data. The deep features
illustrate that deep networks are very effective as feature extractors. Source: [55]

the features are 4096-dimensional, it is very difficult and challenging to visually analyze
the data and determine which of those features contain the relevant information. The
problem of extracting information from high dimensional data is solved by dimensionality
reduction techniques [56]. The goal is to extract only a few reasonable features which
contain most of the information available in the 4096-dimensional features. For example,
Figure 2.14 illustrates how high-dimensional features can be geometrically projected onto
a two-dimensional subspace of the data. In this thesis, we apply a dimensionality reduc-
tion technique to visually analyze the relationship between the 4096-dimensional features.
Mathematically, the problem of dimensionality reduction can be stated as [56]: For a p-
dimensional real valued random variable X = [X1...Xp]

T , an algorithm : Rp → R
k with

k << p reduces the dimensionality of the data, such that S = f(X) contains as much of
the original information, possibly expressed by the variance, as possible. In the follow-
ing subsections, we first give an overview about PCA and afterwards explain the t-SNE
algorithm, which we use in this work.

2.3.1 Principal Componant Analysis (PCA)

The Principal Component Analysis (PCA) is among the most well-known unsupervised
reduction techniques. Unsupervised means that the data does not have to be labeled
prior to applying the algorithm. PCA [56, 57, 58] is a linear reduction technique which
finds a reduced number of independent variables that contain as much of the original
variance as possible. From a geometric interpretation, PCA projects the data onto a lower

2.3. DIMENSIONALITY REDUCTION TECHNIQUES 25

dimensional subspace. The number of dimensions in the subspace is k, which can be freely
chosen dependent on which lower dimension is desired or how much of the variance should
be included in the reduced data. When choosing k = 2, Figure 2.15 shows the geometric

Figure 2.15: The geometric interpretation of PCA for k = 2. The first principal compo-
nent, which is the eigenvector corresponding to the largest eigenvalue, is colored in red. The
second principal component is orthogonal to the first and is colored in green. These prin-
cipal components contain as much of the original variance as possible for two dimensions.
Source: [56]

interpretation of the largest two eigenvectors, or principal components. To apply PCA,
the first step is to apply the singular value decomposition (SVD)

X = UΣV T , (2.8)

where U is a unitary matrix containing orthogonal column vectors, Σ contains the positive-
semidefinite singular values σ of X in a rectangular diagonal matrix, and V is the matrix
containing the right singular vectors of X, whose unit vectors are also orthogonal. Then,
Uk contains the first k columns of U, which minimizes the equation

J(Uk) =
n

∑

i=1

∥

∥Xi − U[kU
T
k xi

∥

∥

2

2
. (2.9)

The reduced and uncorrelated data is computed as

S := UT
k X. (2.10)

26 CHAPTER 2. BACKGROUND AND RELATED WORK

2.3.2 t-Distributed Stochastic Neighbor Embedding (t-SNE)

In this thesis, we use the t-SNE algorithm [59, 60, 61, 62] to visualize our 4096-dimensional
features in a two-dimensional map. We chose this method because leading researchers in
deep learning have used this algorithm to show the underlying structure of large datasets
in two or three dimensions. The authors of t-SNE argue that the algorithm provides sig-
nificantly better results than other techniques on almost all datasets, especially when the
data is high-dimensional and lie on different, but related, low-dimensional manifolds. This
is the case in images of objects that are shown from different viewpoints and are split in
separate classes [59]. The algorithm is based on Stochastic Neighbor Embedding [63] that
is much easier to optimize. Several implementations of the algorithm exist. The Barnes-
Hut approximation can speed up the computation time of the algorithm. Laurens van der
Maaten applied the technique on datasets with up to 30 million examples. Figure 2.16
describes the basic concepts of the t-SNE algorithm. Graphical comparisons of dimension-
ality reduction and visualization techniques are shown in Figure 2.17.
In the following, we explain the background of the algorithm in more detail based on [59]:

Figure 2.16: Overview of the t-SNE algorithm in pseudo-code. Source: [59]

The t-SNE algorithm minimizes the difference between two distributions. The first mea-
sures pairwise similarities of the input objects and the second of the corresponding low-
dimensional points. Assume x1, x2, ..., xN are a set of high-dimensional data points, the dis-
tance between a pair of objects is computed by the Euclidean distance d(xi, xj) = ‖xi − xj‖.
Joint probabilities pij are computed by symmetrizing

pj|i =
exp(−d(xi, xj)

2/2σ2
i

∑

k exp(−d(xi, xk)2/2σ2
i)
, pi|i = 0 (2.11)

2.3. DIMENSIONALITY REDUCTION TECHNIQUES 27

(a) t-SNE (b) Sammon

(c) Isomap (d) LLE

Figure 2.17: Visualizations of the MNIST dataset with 6,000 handwritten digits. The t-
SNE algorithm (top left) is able to provide the best two-dimensional map compared to the
Sammon (top right), Isomap (bottom left), and LLE (bottom right) algorithms. Source:
[59]

with

pij =
pj|i + pi|j

2N
. (2.12)

The goal is to find a s-dimensional embedding ǫ, where s is typically equal to 2 or 3. The
similarities between two low-dimensional points are measured with a normalized heavy-
tailed kernel:

qij =
(1 + ‖yi − yj‖

2)−1

∑

k 6=l(1 + ‖yk − yl‖
2)−1

, qii = 0. (2.13)

According to [62], the locations of the s-dimensional embeddings are computed by mini-
mizing the Kullback-Leibler divergence between the joint distributions P and Q:

C(ǫ) = KL(P ||Q) =
∑

i 6=j

pij log
pij
qij

. (2.14)

In the embedding ǫ, the objective cost function is non-convex and minimized by

δC

δyi
= 4

∑

j 6=i

(pij − qij)qij
∑

k 6=l

(1 + ‖yk − yl‖
2)−1(yi − yj). (2.15)

28 CHAPTER 2. BACKGROUND AND RELATED WORK

2.4 Attributes and Affordances

In this section, the presented attributes and affordances describe the contextual infor-
mation in our experiments. The authors of [26] propose to extend the classical object
recognition problem from naming object classes to describing attributes. This approach
makes it possible to learn and recognize new objects by being able to describe attributes on
unknown objects. Similarly, the goal in this thesis goes beyond classical object recognition
in our experiments. Objects are recognized and described with three attributes and one
affordance. The models that predict the labels for attributes or affordance are trained on
our dataset. A challenge that exists during training is generalization. It is important that
the attributes can be learned correctly and wrong relationships are not learned instead
during training.

Figure 2.18: The methodology by the authors of [26]. Left image: the attribute-based
approach allows to describe unknown objects with textual descriptions. Right image:
extracted features of the image are used to train attribute classifiers. These can make
predictions about attribute classes on unknown object categories. For each of the evaluated
attributes, the authors selected beneficial features for training the classifiers.

The left diagram in Figure 2.18 gives an overview about the attribute-based approach of
Farhadi et. al [26]. Recognizing attributes in images allows to describe images with un-
known object categories, atypical attributes of known classes, and learn new models based
on the predicted textual description. The right image shows that features are extracted
from the images. The features are chosen that are beneficial for training attribute classi-
fiers. The trained classifiers predict attributes in images. These predicted attributes can
be either used to learn and describe object categories such as the class ’Bird’, or describe
unknown object classes with attributes. Farhadi et. al describe visual aspects with feature
representations: they use color and texture for materials, visual words for parts, and edges
for shapes. For each of those types, bag of words style features are used. They rely on tex-
ture descriptor [64] and the kmeans algorithm for quantization to 256 centers. HOG spatial
pyramids are used to construct visual words. The HOG descriptors are also quantized to
1000 kmeans centers. Canny edge detectors are used to find edges and their orientations,

2.4. ATTRIBUTES AND AFFORDANCES 29

which are saved into 8 unsigned bits. Color descriptors, based on LAB values, are sampled
for each pixel and also quantized to the nearest 128 centers using the kmeans algorithm.
These base features are used to generate histograms for each feature type of each cell in a
grid. Stacked together, the feature vector is 9751 dimensional.
In our system, we make use of the approach summarized in the right image. Unknown
classes are described with attributes that are learned on our collected dataset. Our system
differs that we do not preselect features which are relevant to the learned attributes. We
train the models end-to-end from the images to the attribute labels in Caffe [55]. For
GURLS [65], we extract 4096-dimensional features which are directly used to train the at-
tributes. Thus, their feature vectors are more than twice larger than ours. In the following,
we explain attributes and affordances based on [26].

2.4.1 Attributes

Attribute learning is difficult because the learned patterns must be generalized on unknown
data. Three main types of semantic attributes are considered in [26]: material (13 classes),
shape (5 classes), and part (46 classes). In total, they use 64 different attributes. ’Material’
consists of the classes ’has wood’, ’is furry’, ’has glass’, and ’is shiny’. For attribute ’Shape’,
they use ’is 2D boxy’, ’is 3D boxy’, and ’is cylindrical’. The attribute ’Part’ describes visible
parts, e.g. ’has head’, ’has leg’, ’has arm’, ’has wheel’, and ’has window’.
In comparison, we ignore the attribute ’Part’. Because our dataset has a small number of
classes, our models would not be able to generalize the learned parts on unknown data.
However, we adopted the material and shape labels and modified them to fit to our dataset.
We use basic 3D shapes for labeling our objects. These are ’sphere’, ’cuboid’, ’cylinder’,
and ’none’. For material, we use ’textile’, ’ceramic’, ’plastic’, ’organic’, and ’none’.
Another attribute which is very popular is color, such as described in [66]. In our system,
we have defined 10 different colors: ’black’, ’brown’, ’grey’, ’yellow’, ’red’, ’orange’, ’blue’,
’green’, ’white’, and ’none’.

2.4.2 Affordance

The concepts of affordances is linked to action possibilities on an object or on the envi-
ronment. Originally proposed by J.J. Gibson in [67] for use in psychology, his ideas about
affordances influenced many different fields, including autonomous robotics, industrial de-
sign, communication studies and human-machine interfaces. Sahin et. al point out in [68]
that there are three perspectives about affordances instead of one, and that Gibson’s ideas
on affordances were more a general theory than a specific theory of visual perception. In
the field of human-computer interaction, affordance was defined by Norman on [68, 69] as
’the perceived and actual properties of the thing, primarily those fundamental properties
that determine just how the thing could possibly be used.’ In robotics, a behavior is per-
ceived as a sensory-motor mapping which is equal to a function from certain sensors to

30 CHAPTER 2. BACKGROUND AND RELATED WORK

Figure 2.19: The three perspectives about affordances. 1) Observer, 2) Agent, and 3)
Environmental. Source: [67]

certain actuators. Affordances in autonomous robotics are mostly used for behavior-based
control. In our work, we use Norman’s definition of affordance, which is the action that can
be executed on the object with the robot. Because our dataset mostly contains household
objects, our affordances are ’eat’, ’drink’, ’clean’, ’work’, and ’none’.

2.5 Semantic Reasoning

Semantic reasoning is the science which deals with inferring logical consequences from a set
of facts or rules. These rules are commonly defined and specified in an ontology. The term
ontology is historically originated from a branch of philosophy, which computer scientists
adopted to reduce the complexity and organize the available knowledge for a particular
domain. In information technology, an ontology is used as a knowledge representation
model that defines the types, properties, and relationships of entities. Ontologies are
written in the Web Ontology Language (OWL)[70, 71], which is the recommended ontology
language by the World Wide Web Consortium (W3C). It is based on Description Logics
[72] and supports the use of IRIs, XML schemas and importing of ontologies from the web.
At the Institute for Cognitive Systems, we use semantic reasoning techniques to equip
our iCub robot with high level understanding and cognitive reasoning capabilities [73].
In recent research, this enabled the robot to recognize activities and intentions of human
activities [74, 75, 76] and transferring skills to humanoid robots [77]. In [75], a deep learning
algorithm was used to improve the recognition performance of human actions with spatio-

2.6. RELATED EXPERIMENTS 31

temporal feature learning.
In this study, semantic reasoning is used to enhance the object recognition algorithms
with logical reasoning capabilities. Our main goal is not only to enable our iCub robot
to correctly classify shown objects, but to demonstrate that it can learn new objects by
inferring semantic attributes based on contextual information from objects.

2.6 Related Experiments

In the previous sections, we described the state-of-the-art in research which is related to the
individual components of our system. In this section, we describe related research which
focuses on either teaching a robot to recognize new objects or combining classical object
recognition with contextual information. We compare our system with related experiments
made on the iCub from the Italian Institute of Technology (IIT) [52]. Another approach
[78] which includes natural language descriptions as contextual information is presented.
Furthermore, we look into another research study from the Institute for Artificial intelli-
gence (IAI) at the University of Bremen, which is called RoboSherlock [79].

2.6.1 iCubWorld

Figure 2.20: Visual recognition pipeline proposed by IIT’s iCub team. Source: [52]

Pasquale et. al were the first who implemented deep convolutional neural networks to teach
the iCub humanoid robot new objects [52]. They investigated how the good performance
of CNNs can be leveraged to advance the visual recognition capabilities of the iCub. The
performance of their system is benchmarked on the iCubWorld28 dataset. In their scenario,
a human supervisor shows a new object to the robot and verbally annotates it. The robot

32 CHAPTER 2. BACKGROUND AND RELATED WORK

tracks the object and learns it. Figure 2.20 visualizes the system used on the iCub. In
their system, features are extracted from the second last layer of a convolutional neural
network that is pre-trained on the ImageNet dataset. The features are used to train a
linear classifier, which predicts the class of the image. The central question they address
in their work is: ”How many objects can the iCub actually recognize?”[52]. The authors
stress that they chose this approach since it is impractical to train deep neural networks
in robotic settings. They evaluated the performance on images that were obtained on four
different acquisition days for training. The results show that on average for all training
days, the test accuracy is 70.3%. If a predictor is learned only on one acquisition day,
the performance lies between 53.5% and 64.8%. Therefore, it is lower than when all days
are trained. The authors also report the maximum number of objects that the iCub can
recognize: for a confidence level of 98%, the iCub robot can recognize two (of 28) objects.
The number of correctly recognized objects increases to 14 for a level of 50%, which is
every 2nd object from the iCubWorld28 dataset. The authors mention that the visual
recognition problem in robotics is still far from being solved. They propose to create a new
dataset which contains more object instances per category and more acquisition sessions
under different lighting conditions. Another proposal from the researchers is to apply an
online active learning technique that is able to let the robot decide when it acquired enough
images to correctly classify an object with the required confidence level. According to the
authors, this idea goes one step in the direction to reduce the number of training images
and improve the overall recognition by taking contextual information into account.

2.6.2 Visual one-shot learning

In [78], the authors Krause et. al present an approach to quickly teach a robot a new
object by providing contextual information based on natural language descriptions from
the human teacher. The authors state that the robot is immediately able to recognize the
described object after learning, which is critical for many human-robot interaction scenarios
in the real-world. The investigated method is called ”one-shot learning”, which enables an
agent to learn something from just one example. Together with the visual input, the robot
receives a linguistic label to be able to recognize other instances of the same object type.
The system is motivated by recent research that started to utilize contextual information in
one-shot learning in cognitive architectures. Their approach to detect objects is language-
guided: objects are described in natural language that obtains ”object categories, object
parts, surface patterns and symbols, object characteristics, spatial and merelogical relations,
and others”[78]. For example, ”a cup can be described as a cylindrical container with a
round handle attached on one side”[78]. The adjectives ’Cylindrical’ and ’Round’ are
considered as visually perceivable properties of objects, which we consider similarly as
attributes in this thesis. The words ’Container’ and ’Handle’ refer to parts of the perceived
object. The difference between their work and ours is that they use natural language
processing to deliver the relevant contextual information. When an object is new, the
robot can ask questions about the object properties to the human supervisor. Based on

2.6. RELATED EXPERIMENTS 33

this information, the robot performs a visual search for the object. If the robot was able
to recognize and learn the object, the robot can confirm the request.
In contrast, contextual information in our work is detected by prior trained deep neural
networks. That means the human supervisor corrects misclassified labels if the robot is
not able to guess the object.

2.6.3 RoboSherlock

RoboSherlock [79] is an open source software framework that can be used to implement
perception systems for everyday manipulation tasks. The system (shown in Figure 2.21)
is able to answer task-related queries about the objects located in the scene and supports
reasoning about objects. The researchers recognize that it is insufficient for a robot to only

Figure 2.21: RoboSherlock. Overview of the system. Source: [79]

classify an object without further analyzing the object and decomposing it into its func-
tional parts. RoboSherlock enables the robot to examine detected objects in a scene based
on their 3D shape, pose, and state. It further enhances the perception of the robot with
knowledge and reasoning based on the detected objects and environment context. RoboSh-
erlock uses unstructured information management (UIM) to realize the perception system
which is based on content analytics. The capabilities of the robot are tested in a kitchen
scenario with everyday objects. The authors use OpenEase as knowledge base for their
experiments. RoboSherlock receives perception tasks such as 1) looking for an object that
can hold one liter of water or 2) finding a Kellog’s cornflakes box on the table. These tasks
are challenging and therefore require the robot to combine its perception capabilities with
knowledge and reasoning methods. As sensor input, it uses RGB, RGB-D, stereo cameras.
a thermo camera and other sensors. For each detected object, a designated data structure
called Subject of Analysis (SOFA) is created, that collects and organizes information that
different RoboSherlock components infer about the object hypothesis [79]. The RoboSh-
erlock data structure Common Analysis Structre (CAS) consists of the images combined
with meta data. The system is able to analyze a scene and runs SOFA annotators which
labels the objects with color, shape, size, and if applicable, logo. Their proposed system is
capable of performing everyday manipulation tasks by leveraging the use of unstructured
information management. The resulting system processes information about the objects

34 CHAPTER 2. BACKGROUND AND RELATED WORK

located in a scene and can apply reasoning for interpreting perception information. How-
ever, their system is not developed to teach a robot to learn new objects. Furthermore, it
does not use deep learning algorithms for recognizing objects and contextual information.
The RoboSherlock system is a framework which is intended to be primarily used in object
manipulation tasks. In this thesis, we concentrate on learning unknown objects.

Chapter 3

System Design

Figure 3.1: Researchers from IIT were the first who explored the use of deep convolutional
neural networks for teaching iCub to recognize new objects [52].

This section provides an overview of the experimental setup and frameworks which have
been used in this research work. The first part describes the humanoid robot iCub (shown
in Figure 3.1) and the experimental setup at the Institute for Cognitive Systems at TUM.
The second part describes the software frameworks Caffe, GURLS, and KnowRob which are
needed to develop and realize the proposed system design. In modern machine learning and
computer vision applications, large datasets with human-labeled pictures are required to
enable the algorithms to learn the relevant features. Therefore, Part 3 introduces the widely
known dataset ImageNet and explains in further detail the evaluated datasets iCubWorld28
and TUM-ICS. As described in the following sections, the final proposed system in Section
4.2 relies on the newly created dataset TUM-ICS. After introducing the dataset and its

35

36 CHAPTER 3. SYSTEM DESIGN

prospective labels, Part 4 shows the knowledge base in the form of an OWL Ontology which
contains the a priori knowledge the iCub robot has about objects. Finally, our proposed
enhanced deep network is introduced in Part 5.

3.1 Experimental Setup

Figure 3.2: Our iCub robot. We tested our system on the humanoid robot platform iCub
at the Institute for Cognitive Systems at TUM. Top left: iCub in standby-mode. Top
right: Robot learns to recognize a laptop. Bottom left: We controlled and supervised the
robot learning on 4 displays with a PC (Intel i7 CPU with 8 cores, nvidia GTX 750 TI
GPU, 16GB RAM), one laptop, and speakers/headphones for the speech output. Bottom
right: Alternative view on the experimental setup for recognizing a new object.

The technical implementations and experiments in this work have been performed on the
iCub humanoid robot platform [73, 80]. It is designed by leading universities in Europe to
support collaborative research in cognitive development and achieve a greater impact by
focusing on one open-source platform. The iCub is the ideal robotic platform to develop
rational, social and intelligent behaviors for robotic systems [73]. The iCub is designed

3.2. SOFTWARE FRAMEWORKS USED FOR THE DEVELOPMENT 37

with perceptuo-motor capabilities with 53 degrees of freedom [77], a cognitive system
for learning and development, a software architecture and a support infrastructure that
encourage research collaboration and knowledge sharing. Figure 3.2 describes the robotic
setting in which we performed the experiments. As the visual recognition pipeline in the
experiments focuses on processing the images from the iCub cameras and not on leveraging
the iCub’s full motor control capabilities, we used a total 9 DoF, i.e. 6 DoF of the head
and 3 DoF of the torso to center the region of interest in the experiments. The robot
arms were manually put in a non-disturbing rest position. The iCub [80] and YARP [81]
software libraries are used to control the system and exchange the iCub’s camera data via
YARP ports. The proposed technical system in this thesis can be further adapted to any
robot or technical system which has a data connection to one or multiple cameras and a
powerful GPU to process visual information.

3.2 Software frameworks used for the development

This section explains the used frameworks Caffe, GURLS, and KnowRob. Each subsection
explains the choice of the framework for the evaluated system and provides background
information.

3.2.1 Caffe

Caffe is a modifiable framework for deep learning algorithms and provides a collection
of trained reference models. It was developed by Yangqing Jia et al. from the Berkeley
Vision and Learning Center (BVLC) [82]. The underlying C++ library is based on a BSD-
license with MATLAB and Python bindings. An active community of computer vision
researchers contribute via open source code to Caffe and collaborate on research projects,
industrial applications and develop new ideas to apply deep learning beyond vision in
natural language processing, motor control, and neuroscience applications.

Figure 3.3 compares Caffe with other CNN frameworks. The creators of Caffe highlight
two main differentiators: the first is that integration into existing systems and interfaces
is easier as the complete implementation is C++ based. After the models are trained,
they can be tested on non-specialized hardware in CPU mode. The second is that training
large neural networks on large datasets is computationally expensive. Caffe provides pre-
trained reference models off-the-shelf which deliver state-of-the-art results. These models
can be further finetuned for related tasks or datasets, or can function as a semantic feature
extractor [55].

Caffe is built for modularity: the software can be extended to new data formats, network
layers and loss functions. Caffe models are defined in the Google Protocol buffer format,
which features a human-readable text format and interface implementations with Python

38 CHAPTER 3. SYSTEM DESIGN

Figure 3.3: Comparison of popular deep learning frameworks [82]: Core language is the
main library language, while bindings have an officially supported library interface for
feature extraction, training, etc. CPU indicates availability of host-only computation, no
GPU usage (e.g., for cluster deployment); GPU indicates the GPU computation capability
essential for training modern CNNs.

and C++. A layer defined in Caffe takes one or more data blobs as input, and yields more
than one data blob as output. Layers perform forward passes and backward passes. A
forward pass takes an input and produces an output, and a backward pass obtains the
gradient to the output in order to compute the gradient with respect to the parameters
and previous inputs. The gradients are back-propagated to earlier layers in the network.

For brewing a network with Caffe, we need to prepare and label our data. We labeled our
training and validation data numerically for the respective object, attribute or affordance
class. Within the Caffe framework, the images are resized to a resolution of 256×256
and a mean image over the dataset is computed. The GPU is run in batches of 16 for
a total of 10,320 iterations (10 epochs). One epoch equals the number of images divided
by the batch size = 16,500/16, which is the number of iterations needed to process the
entire training data once. For every 1,000 iterations, we test the learned network on the
validation data. The initial learning rate is set to 0.02, and is decreased by a factor of 10
every 2,500 iterations. The network is trained with momentum 0.9 and a weight decay of
0.0005. A chart visualizing the test accuracy and loss for one network is provided in Figure
3.4.

3.2.2 GURLS

In previous work, researchers from IIT successfully used the Grand Unified Regularized
Least Squares (GURLS) [65] machine learning library to teach an iCub to recognize new
objects [52]. The GURLS machine learning library is based on the Regularized Least
Squares (RLS) loss function and comes in four different versions: the standard version
of GURLS is Matlab-based and works for datasets that fit into the computer’s RAM
memory. bGURLS uses memory-mapped storage to compute RLS on very large matrices in
Matlab. GURLS++ and bGURLS++ are the corresponding software libraries to GURLS
and bGURLS, but implemented in C++ for faster performance. Previous research [52]

3.2. SOFTWARE FRAMEWORKS USED FOR THE DEVELOPMENT 39

Figure 3.4: Test accuracy and test loss of our deep learning model finetuned to recognize
objects. We trained the network for 10 epochs. All layers except the FC 8 layer were kept
frozen during training. Thus, the performance reached high values very quickly, at about
1000 iterations.

with the iCub shows that RLS [83] achieves a comparable or higher performance than
the liblinear or SVM library [37]. In [52], GURLS was used to learn objects online with
incremental training data. In this thesis, we trained GURLS classifiers offline with the
bGURLS library, as the machine learning classifiers need to be fully trained on the given
dataset in order to learn new objects with contextual information. We chose bGURLS over
GURLS because the matrices with the extracted deep features have a high dimensionality
and are too large for the RAM memory. In this work, we show that the deep learning
network trained on ImageNet functions as a feature extractor and GURLS is able to be
trained on the features with supervised learning with good performance.

3.2.3 KnowRob

KnowRob [84, 85, 86, 87] is a knowledge processing system for robots and provides tools
for knowledge acquisition, representation and reasoning. It has been developed in the IAS
group at TUM and is maintained by the Institute for Artificial Intelligence in Bremen,
Germany.

Figure 3.5 explains how knowledge is acquired and represented in the KnowRob system.
The knowledge representation supports reasoning capabilities, provides multimodal inter-
action methods with humans and is integrated with the robot via ROS and JSON Prolog.
KnowRob’s implementation is based on the Web Ontology Language (OWL), Prolog, and
Java. OWL is a description language, which represents classes of objects, properties,
actions and the robot capabilities or action requirements in a XML file. The logical pro-
gramming language Prolog is used to interact with OWL. It is especially good for loading,

40 CHAPTER 3. SYSTEM DESIGN

Figure 3.5: KnowRob Overview. This overview illustrates the different components in the
knowledge processing system which are needed for knowledge acquisition, representation
in OWL, and reasoning. Source: [84].

storing, and reasoning about the ontology. When starting KnowRob, OWL files are parsed
into Prolog triples and asserted in the knowledge base as facts. To assert the knowledge, the
command rdf assert(S, P, O) is used, where S is the Subject, P is the Predicate, and O is
the Object. This knowledge can be accessed with the right predicates, e.g. owl has(S,P,O)
or rdf has(S,P,O). The reasoning engine is based on SWI-Prolog, which is a logic program-
ming language that has bindings to Java and C++. It is possible to interact with KnowRob
either from the command line via SWI Prolog or with C++ or Python interfaces via the
JSON Prolog module. When dealing with KnowRob, two important concepts are consid-
ered, such as the open-world and closed-world theorems. The web ontology language OWL
uses the open-world theorem, meaning that everything is assumed to be true unless we can
prove that it is false. Prolog uses the closed-world theorem, i.e. everything is considered
false unless something is stated or inferred that it is true.

Figure 3.6 shows the content of the standard KnowRob ontology. The ontology is divided
in subclasses and provides the robot with general terms it can reason in: subclasses of
owl:Thing are SpatialThing, TemporalThing, Agent-Generic, and MathematicalOrCom-

3.3. DATASETS 41

Figure 3.6: KnowRob Upper Ontology. This ontology contains the available knowledge of
a robot, in which the robot can perform semantic reasoning. Source: [88]

putationalThing. SpatialThing combines all classes that are maps, points, places, trajec-
tories, regions, and objects that are tangible and can be localized [88]. Examples for such
objects are Container or FoodVessel, which can further be separated into subclasses. Tem-
poralThing describes temporal related situations, events, and actions. MathematicalThing
or InformationBearingThing defines units, coordinate systems, matrices, vectors, and other
statistical facts. ObjectProperties, which can not be seen in this Figure, connect classes
with objects or attributes in the rdf triple(S, P, O) format.

3.3 Datasets

Historically, scientific datasets were by-products of research projects and were sometimes
not published together with the analyzed results [89]. In recent years with the rise of

42 CHAPTER 3. SYSTEM DESIGN

machine learning, datasets have become more important. Because algorithms learn features
and properties from a dataset and the task is to make predictions on new or unknown
data, the quantity and quality of a dataset is important for the algorithm’s performance.
In computer vision, classic data sets are the MNIST handwritten digits database [90],
CIFAR10/100 [91], Caltech 101 [92], Caltech 256 [93], Pascal VOC [94], and ImageNet
[95]. Because deep learning requires very large amounts of data with labels, the ImageNet
dataset has received the highest attention in deep learning in recent years.

3.3.1 ImageNet dataset

The dataset ImageNet [95] is one of the largest and well known datasets available to
the machine learning community. It consists of over 15 million high resolution images in
22,000 categories which are labeled by humans with Amazon’s Mechanical Turk tool. The
ImageNet Large Scale Visual Recognition Challenge (ILSVRC) is an annual competition
in object classification and detection, which started in 2010. It uses a subset of ImageNet
with about 1000 images in each of 1000 classes, with a total of 1.2 million images. The
Figure 3.7 shows an overview of the dataset’s 1000 classes.

Figure 3.7: ImageNet. This collage shows one picture for each of the 1000 classes. Source:
[96]

The objects in ImageNet are centered in the images with variable backgrounds and settings.
The benchmarks are compared with two error rates: top-1 and top-5, where for the top-5
error rate the correct label is not among the five most probable labels. In this work, the
GURLS classifiers are trained on the extracted features from the CNN model provided
in the standard Caffe version [52, 82] which is trained on the ImageNet dataset by Jeff
Donahue from BVLC. The network BVLC Reference ICS-CaffeNet is based on the network
architecture proposed in [6] and described in the previous Section.

3.3. DATASETS 43

3.3.2 iCubWorld28 dataset

The iCubWorld28 dataset consists of 7 distinct categories which are divided into 28 classes.
Figure 3.8 lists the names of the 7 categories and shows the differences of four objects per
category. More classes or different objects per category can make the computer vision
algorithms more robust to detect the correct object category. The dataset consists of
typical everyday objects that can be used in a household or kitchen environment for eating,
drinking, and cleaning. It is the intention of the creators of the iCubWorld dataset series
[97] to create a dataset that reflects the iCub’s daily visual experience. About 220 images
are acquired in each train and test set for one object per acquisition period. The acquisition
period was repeated for four consecutive days, resulting in a dataset that contains 25831
training and 24884 testing images, separated in 4 days (Day 1 through Day 4).

Figure 3.8: iCubWorld28 example images. One category consists of four classes, i.e.
’Plate1’, ’Plate2’, ’Plate3’, ’Plate4’ are four classes and they belong to the same category
Plate. This collage shows one picture for each of the 28 classes and 7 object categories.
Source: [52]

During the acquisition of the dataset, the robot tracks the shown objects which leads to
images that are centered in the dataset. The supervisor rotates the objects randomly in
front of the robot to collect a large variety of different views of the object. This acquisition
setup means that the hand of the human supervisor is always visible in the images, which
represents a big difference between the iCubWorld28 and ImageNet datasets, since the

44 CHAPTER 3. SYSTEM DESIGN

iCubWorld28 dataset
Object Material Shape Affordance

Laundry Detergent Plastic Cylinder Cleaning
Plate Ceramic Cylinder Eating

Dishwashing Detergent Plastic Cylinder Cleaning
Sponge Textile Cuboid Cleaning
Cup Ceramic Cylinder Drinking
Soap Textile Cuboid Cleaning

Sprayer Plastic Cylinder Cleaning

Table 3.1: Overview of iCubWorld28 objects with assigned labels. In total, there are 7
objects, 3 materials, 3 shapes, and 3 affordances. The models are not trained for the
attribute color. The dataset has no class ’Background’, which means that no attribute can
have the label ’None’.

ImageNet dataset does not contain hands in the images. The creators of the iCubWorld28
dataset provided the images with object labels. In the beginning of our experiments, we
use this dataset to train and test our models on object classes and contextual informa-
tion. Therefore, we additionally labeled the iCubWorld28 dataset for two attributes and
affordance. Table 3.1 shows the chosen labels for ’Object’, ’Material’, ’Shape’, and ’Af-
fordance’. Pasquale et. al did not consider contextual information in the iCubWorld28
dataset in their experiments [52].

3.3.3 TUM-ICS dataset

In order to learn new objects with contextual information based on detected attributes, it
is important to have a large dataset with objects that have different labels. In this section,
we introduce our collected dataset TUM-ICS, which was collected with the iCub cameras
in our experiments and contains 16,500 training images, 8,250 validation images and 8,250
testing images. These images were randomly split into training, validation, and test sets
from a total amount of 300,000 collected images. The images were either collected with
the iCub’s 320×240 or high resolution 640×320 cameras. In the high resolution case, the
pictures were resized to 320×240 before the whole dataset was cropped to 240×240. The
16,500 training images are created by 500 images per setting × 3 settings × 11 objects:
Each object class contains 500 training images per setting or 1,500 total per object. If one
object has multiple objects in its category, i.e. ’Plate’ consists of ’Plate white’, ’Plate red’,
’Plate orange’, ’Plate green’, the 1,500 images per object (e.g. ’Plate’) consist of a random
number of images of the white, red, orange, or green ’Plate’ class each. Following the
methodology of the creators of iCubWorld28, we held different everyday objects in front of
the iCub’s cameras and recorded the pictures with the yarpdatadumper module provided
by YARP. In contrast to iCubWorld28, the objects are not tracked by the robot during

3.3. DATASETS 45

the acquisition period. Therefore, the items are not centered in the images and located in
all areas of the cropped images, as they are randomly 2D and 3D rotated and translated
by the supervisor. Table 3.2 shows the full list of 23 object classes in the dataset with
the assigned labels. If multiple object classes exist in one category, the models trained
on object categories do not distinguish between object classes. For example, the machine
learning algorithms are trained on the object category ’Apple’ for both classes ’Apple
green’ and ’Apple red’. In one object category, the difference between two objects can be
the color, for example a yellow or green ’Cleaning Cloth’, or the material (e.g. ’Plate’ made
of ’Plastic’ or ’Ceramic’). As the attribute labels shown in Table 3.2 are a very important
prerequisite for our experiments, this table is shown in this section. The experimental
results are dependent on our system design, which includes the choice of the attribute
labels.

TUM-ICS dataset
Object Material Shape Color Affordance

Apple Organic Sphere
Green

Eating
Red

Banana Organic Cylinder Yellow Eating

Cleaning Cloth Textile Cuboid
Blue

CleaningGreen
Yellow

Cup Ceramic Cylinder
Black

DrinkingBlue
White

Dishwashing Detergent Plastic Cylinder
Blue

CleaningGreen
White

Laptop Plastic Cuboid Grey Working
Orange Organic Sphere Orange Eating

Plate

Plastic

Cylinder

Green

Eating
Plastic Orange
Plastic Red
Ceramic White

Smartphone Plastic Cuboid Black Working

Sponge Textile Cuboid
Brown

CleaningGreen
Yellow

Background none none none none

Table 3.2: Overview of all objects with assigned labels. In total, there are 11 objects, 6
materials, 4 shapes, 10 colors, and 5 affordances in the dataset.

46 CHAPTER 3. SYSTEM DESIGN

We recorded objects in three experimental setups with three different backgrounds: 1)
white background, 2) table, and 3) table with white background. The white background is
used to make sure that the robot can find and extract the important features in an object.
We realized in the table setting that it is easier to conduct our experiments with white
background as the lab can look different everyday because of ongoing research activities
and experiments in the background. Figure 4.8 displays the three different settings and
shows examples of the objects per class. The recordings for the first setting were taken
on consecutive days in very different daytime and light settings, as can be seen in the
images in the upper part of the figure. The second setting was obtained on two different
days with no notable change in light conditions, which can be seen in the similarity of
the ’Background’ class. The images in the third setting were taken on a single day. In
contrast to the iCubWorld28 dataset, we included a ’Background’ class for each setting
which improves the total object recognition performance of our CNN and lets the robot
identify that no object is in front of it during the experiments.

During the acquisition period, all images that were acquired in the first setting contain the
supervisor’s hand in the image. Because a table was used for the second and third setting,
objects were both placed on the table without a hand in the image and were rotated with a
visible hand in the images. Figure 4.8 illustrates these differences: hands are visible in all
pictures in the upper part except for the ’Background’ class, and are sometimes missing in
the middle and bottom part of the images. It is notable that the black table in the second
and third setting makes it difficult to see very dark objects in the images. Therefore, some
objects like ’Smartphone’ or ’Cup black’ have been lifted and held in front of the white
background.

3.4 OWL Ontology

Similar to the original KnowRob ontology, Figure 3.10 shows our defined ontology in the
OWL format. In our system, there is no necessity to let the robot know and reason about
the entire KnowRob ontology. Therefore, the ontology only contains the prior knowledge of
the robot about our created TUM-ICS dataset. The node ’Objects’ contains all 11 objects
that are defined in the dataset. Following the same methodology as in the KnowRob base
ontology, we used subclasses such as ’Container’ or ’FoodOrDink’ to summarize certain
object groups and obtain the same categorization as KnowRob, if possible. Subclasses
can have specific attributes, e.g. all classes that are subclasses of ’CleaningTool’ have the
affordance ’Cleaning’. The attributes material, shape, color, and affordance are also shown
in the ontology. The attribute ’Labels’ has two classes (True, Predicted) to differentiate
whether an object is assigned the true labels (true), or predicted labels (predicted) if the
output of the machine learning classifiers have detected different labels for an object, which
are not asserted for this object in the knowledge base. In the latter case, our system is
able to learn a known or unknown object with both true and predicted labels. The idea

3.4. OWL ONTOLOGY 47

Figure 3.9: ICS DATASET. This collage shows one picture for each of the 11 classes. The
dataset was obtained in three different settings: 1) white background, 2) table, and 3) table
with white background. The images shown in the first setting are taken with low-resolution
cameras, images in the second and third setting are acquired with high resolution cameras.
This is done because better lighting conditions were required for the black table. In the first
setting, the objects are held closer to the cameras than in the second and third settings.

is that it still needs to be possible to correctly recognize an object although the predicted
labels are not correct. The system is designed such that it can still find the correct object

48 CHAPTER 3. SYSTEM DESIGN

even when incorrect labels are obtained from the classifier.

Predicted Labels
Object Material Shape Color Affordance

True Banana Organic Cylinder Yellow Eating
Predicted Banana Organic Cylinder Green Cleaning

Table 3.3: The difference between true and predicted labels. The true labels are set during
definition of the object, either as initially declared and shown in Table 3.2, or as specified
in written form while a new object is being learnt. The predicted labels are the outputs of
the machine learning classifiers.

Table 3.3 illustrates an example. Consider an object has the set of true labels: ’Banana’,
’Organic’, ’Cylinder’, ’Yellow’, ’Eating’. However, the classifiers recognize it with different
labels: ’Banana’, ’Organic’, ’Cylinder’, ’Green’, ’Cleaning’. Then, our system is able to
detect the ’Banana’ because the system has been taught the object with both true and
predicted labels before. To give the true labels a higher importance, the Prolog search
query gives higher priority to the objects with true labels than the detected and finds the
result first. Not listed in Figure 3.10 are object properties. We have created five object
properties, one for each attribute or affordance and one for ’Labels’. The object property
helps to assign the correct attribute to an object. For example, if we assume that data
represents the defined namespace of our dataset, the query

rdf assert(data : Cup, data : hasMaterialType, data : Ceramic) (3.1)

asserts new knowledge into KnowRob. The object property ’hasMaterialType’ assigns the
material attribute ’Ceramic’ to the object ’Cup’.
In our system, the four most important Prolog predicates are 1)’setDefinitions’, 2) ’learn-
NewObject’, 3) ’checkObject’, and 4) ’checkObject all’. The predicates are called from
the C++ program we use in our final experiments via the JSON Prolog interface. 1) The
predicate ’setDefinitions’ is called in the beginning of the C++ program which initializes
the objects in our dataset with the assigned attributes. After this predicate is called,
knowledge reasoning can be performed.
2) The predicate ’learnNewObject’ is very important in our system, as it enables to learn
new objects on-line. When querying Prolog, all labels for ’Object’, ’Material’, ’Shape’,
’Color’, ’Affordance’, and ’TrueOrPredictedLabel’ need to be provided. This predicate is
called when the robot learns a new object with the corresponding labels provided by the
human supervisor. Algorithm 1 presents this algorithm in detail.
3) ’checkObject’ is used to retrieve the object from the knowledge base with two object
properties and two true or predicted labels. For example, the two attributes with the high-
est probabilities are queried. Alternatively, the labels with the maximum and minimum
probabilities can be queried as well. The code for this predicate is almost identical to
checkObject all’, with the exception that two attributes from material, shape, color, and
affordance must contain an empty string.

3.4. OWL ONTOLOGY 49

4) The predicate ’checkObject all’ requires all attributes to be provided as input to this
query. When this predicate is called, it asks for the object that matches all four attribute
labels in addition to the ’True’ or ’Predicted’ label flag. This algorithm is summarized in
Algorithm 2.

Algorithm 1 learnNewObject

Input: ?A, +Object, +Material, +Shape, +Color, +Affordance, +TrueOrPredictedLabel
Output: Learned object A

(atom concat(data, Object, B)),
(atom concat(data, Material, C)),
(atom concat(data, Shape, D)),
(atom concat(data, Color, E)),
(atom concat(data, Affordance, F)),
(atom concat(data, TrueOrPredictedLabel, G)),

owl subclass of(A, B), rdf assert(A, rdf:type, owl:’Class’),

rdf assert(A, data:’hasMaterialType’, C),
rdf assert(A, data:’hasShapeType’, D),
rdf assert(A, data:’hasColor’, E),
rdf assert(A, data:’isUsedFor’, F),
rdf assert(A, data:’isTrueOrPredicted’, G).

Return: A

50 CHAPTER 3. SYSTEM DESIGN

Algorithm 2 checkObject all

Input: ?A, +Material, +Shape, +Color, +Affordance, +TrueOrPredictedLabel
Output: Inferred object(s) A

ObjectProperty1=’hasMaterialType’;
ObjectProperty2=’hasShapeType’;
ObjectProperty3=’hasColorType’;
ObjectProperty4=’isUsedFor’;
ObjectProperty5=’isTrueOrPredicted’;

(atom concat(data, Material, B)),
(atom concat(data, Shape, C)),
(atom concat(data, Color, D)),
(atom concat(data, Affordance, E)),
(atom concat(data, TrueOrPredictedLabel, F)),

(atom concat(data, ObjectProperty1, B ObjP)),
(atom concat(data, ObjectProperty2, C ObjP)),
(atom concat(data, ObjectProperty3, D ObjP)),
(atom concat(data, ObjectProperty4, E ObjP)),
(atom concat(data, ObjectProperty5, F ObjP)),

owl has(A, B ObjP, B),
owl has(A, C ObjP, C),
owl has(A, D ObjP, D),
owl has(A, E ObjP, E),
owl has(A, F ObjP, F),
atom concat(data,Obj,A).

Return: A

3.4. OWL ONTOLOGY 51

Figure 3.10: OWL Ontology. This tree illustrates the prior knowledge our robot iCub has
at the beginning of our experiments. Object properties describe the connections between
objects, attributes, and affordance. After learning a new object, the knowledge base is
expanded by the new object with its corresponding attributes.

52 CHAPTER 3. SYSTEM DESIGN

3.5 Enhanced deep network

Our proposed system combines the machine learning algorithms and the knowledge
base, which we call enhanced deep network. As shown in Figure 3.11, we use five deep
convolutional neural networks in parallel that are trained end-to-end. For querying the
database, the predicted labels are sent to the knowledge and reasoning system via YARP.
Figure 3.12 illustrates the system design for the version with GURLS: we only use one

Figure 3.11: Caffe and knowledge reasoning.

deep neural network, which is trained on ImageNet, and five GURLS classifiers which
make predictions on the extracted features from the fully connected layer FC7. An

Figure 3.12: GURLS and knowledge reasoning. The GURLS classifiers are trained on
extracted 4096-dimensional feature vectors.

overview of the interaction with the robot during learning is shown in Figure 3.13. In
this system, it is necessary to supervise the robot learning with a human teacher. The
supervisor is responsible to either approve the robot guesses or to give input to the robot
by correcting certain predicted labels. In the following, we describe the workflow of our
proposed system in detail.

3.5. ENHANCED DEEP NETWORK 53

Figure 3.13: System overview from a UX/UI perspective. This example shows the version
with ICS-CaffeNet. We have also developed the system version with the ImageNet-trained
model and GURLS classifiers. The shown object to the robot can either be known or
unknown. iCub makes guesses based on the predicted labels by ICS-CaffeNet and queries
to the knowledge base. When the robot guesses the correct object or a new object has
been learned, the program restarts from the beginning.

An object is shown to the robot which is classified by our machine learning algorithms.
Five labels for object, material, shape, color, and affordance are predicted. Based on this
information, the robot makes a first guess based on the detected object. If the object
recognition algorithm performs well, this guess is expected to predict the correct object
if the shown object is known to the robot. When the machine learning classifiers fail to

54 CHAPTER 3. SYSTEM DESIGN

predict the known object or are not trained on this object category, our proposed system
can make further guesses based on contextual information, i.e. the object’s attributes and
affordances. In this case, the knowledge processing system reasons about the objects and
properties in the OWL ontology. It checks the knowledge base for objects that share the
same top two labels from material, shape, color, and affordance, based on the highest
probabilities. If no object is in the knowledge base with the top two labels, the object is
learned directly by the robot. If one object is found, the robot guesses the object - if it
is correct, the robot can continue with the next one. If it is false, the program goes to
the starting point of the object learning system. If more than one object is found in the
knowledge base, which is very likely after many new objects have been learned, the robot
makes a guess based on the first inferred object. This guess needs to be different than
the Caffe-guess, otherwise the second inferred object is guessed. Similarly with the other
options, a correct guess results in the end of this iteration and a new object can be shown.
If the first system guess is not correct, a second guess is made based on the attribute with
the highest probability and the attribute with the lowest probability. Before the second
guess, Active Learning [98] is applied by asking the supervisor if the predicted label with
the lowest probability is correct or not. This gives the user the chance to manually correct
the predicted label with the lowest probability. Active Learning produces a very high
likelihood that the resulting two labels are correct and thus finds the correct object in
the knowledge base. If multiple answers from the queried knowledge base exist, the guess
is made on the first inferred answer, requiring that this guess is different than the Caffe
Guess and Guess 1. If this is not the case, Guess 2 is based on the second or third inferred
answer from the knowledge base. When Guess 2 is incorrect, which happens especially
in cases when the tested object is unknown, the program jumps to the learning part of
the proposed system: the user is asked to manually type the name and correct the labels
of the 1) object, 2) material, 3) shape, 4) color, and 5) affordance. The system makes
a third guess to the knowledge base if an object exists with the labels of the attributes
of number 2)-5). If an object is found, which means that the object with true labels,
that are entered by the user into the system, already exists. In this case, the object is
learned with the original predicted labels that are detected by ICS-CaffeNet. We do this
because the object is known in the knowledge base with the true labels but not with the
detected labels. If Prolog finds multiple objects after Guess 3, the guess is based on the
first object which is not identical with Caffe Guess, Guess 1, and Guess 2. Learning objects
with the predicted labels enables the robot to identify objects although they possess other
labels in the truth. If no known objects are found, the system learns first the true labels,
which are entered by the user, and afterwards the predicted labels. This is done to ensure
that objects with the correct labels are given higher priorities than objects with predicted
labels. Otherwise, the robot would incorrectly reason to recognize an object based on the
predicted labels, although other objects exist which are labeled with the correct attributes.
The true and predicted labels of the objects are learned via RDF. For accessing the learned
knowledge about the objects in the next session, these queries are exported in two separate
text files and are loaded into the knowledge base when the system is launched. Table 4.15
illustrates how new objects are learned with the enhanced deep network over several trials.

3.5. ENHANCED DEEP NETWORK 55

Learning Overview: ICS-CaffeNet and Enhanced deep network
Method Example Object Trial 1 Trial 2 Trial 3 No. Trials

ICS-CaffeNet
Glass 0 - - -

Watermelon 0 - - -

Enhanced deep network
Glass 0 1 - 2

Watermelon 0 0 1 3

Table 3.4: This Table briefly explains how objects are learned with the enhanced deep
network. The system predicts the labels for object, material, shape, color, and affordance.
If the object is unknown, the deep learning network is not capable to recognize the correct
class. The system always ’fails’ to recognize a new object in the first ’trial’, as the first
column in this table shows. When the object is not recognized, we use the proposed
learning mechanism to learn both the predicted and user-corrected true labels with Prolog
queries. If the predictions are inaccurate, the predicted labels are different than the true
labels. An object is learned until it is recognized by the system in either the first or second
system guess. Two mock-up examples show how this system is trained. When the object
is detected, the cell is marked with 1, otherwise with 0. Glass is learned within two trials
and Watermelon with three trials. Immediately after the objects are learned, new objects
are trained.

Deep learning networks are not capable to learn unknown objects.

Chapter 4

Experiments and Results

This section is structured in two main parts. The first part compares the object recognition
performances of deep neural networks with the GURLS machine learning library on two
different datasets. Additionally, the obtained results are described and evaluated in more
detail to explain why the machine learning methods succeed or fail in these experiments.
The second part introduces and analyzes the proposed enhanced deep network, which
combines the output of machine learning algorithms with semantic reasoning to improve
the object recognition performance for both known and unknown objects. All experiments
have been done using both deep learning networks and GURLS classifiers. For simplicity,
we say a deep neural network is trained, although it would be more correctly to say that
the models were finetuned on the dataset, as all layers in the network except one were
kept frozen during training. In this thesis, the finetuned deep learning networks which are
trained end-to-end on the evaluated datasets are referred as ’ICS-CaffeNet’. In contrast,
GURLS classifiers are trained on extracted FC7 features of a deep learning network which
is pre-trained on the ImageNet dataset.

4.1 Object Recognition Performance

The object recognition performances are obtained on two different datasets, namely the
iCubWorld28 dataset published by Natale et. al [97] and the TUM-ICS dataset, which
was collected over the period of this thesis. The Caffe framework is used to train the deep
convolutional networks for the object, attributes and affordances in the images. For each
dataset, the models are compared with GURLS classifiers, which have been trained on
extracted FC7 features of an ImageNet-trained convolutional neural network.

56

4.1. OBJECT RECOGNITION PERFORMANCE 57

4.1.1 Results on the iCubWorld28 dataset

Before we obtained the TUM-ICS dataset, we trained, tested and evaluated our models
first on the iCubWorld28 dataset. This subsection provides the performance results for
28 classes, 7 classes, two attributes and affordance. Table 4.1 shows the object classes,
categories, and labels for the iCubWorld28 dataset.

iCubWorld28 dataset
Class Category Material Shape Affordance

LaundryDet1

Laundry Detergent Plastic Cylinder Cleaning
LaundryDet2
LaundryDet3
LaundryDet4

Plate1 ... Plate4 Plate Ceramic Cylinder Eating
DishwashingDet1 ... D.4 Dishwashing Detergent Plastic Cylinder Cleaning
Sponge1 ... Sponge4 Sponge Textile Cuboid Cleaning

Cup1 ... Cup4 Cup Ceramic Cylinder Drinking
Soap1 ... Soap4 Soap Textile Cuboid Cleaning

Sprayer1 ... Sprayer4 Sprayer Plastic Cylinder Cleaning

Table 4.1: Overview of the iCubWorld28 datasets with all classes, categories and defined
labels. The attribute ’Color’ is not considered for this dataset. Four object classes can be
summarized into one object category, in which all classes have the same attributes. The
category ’Laundry Detergent’ illustrates this in more detail. The class names of the other
objects are listed in abbreviated form, but also contain four objects per category.

4.1.1.1 Object (28 classes)

Training our models for 28 classes means that the models need to distinguish between
categories such as ’Plate’ and ’Soap’, for example, but also between the classes ’Plate1’
and ’Plate2’, for example. It is a much more challenging task to differentiate between
classes than categories. In this case, more fine-grained features in the images need to be
considered by the models. The differences between classes in categories can be different
colors (e.g. ’Plate1-4’) or different patterns (’Cup1-4’). Table 4.2 shows that the ICS-
CaffeNet model which is directly trained on iCubWorld28 performs better than GURLS
on the test set.

iCubWorld: 28 classes
Method ICS-CaffeNet GURLS
Accuracy 0.88 0.8

Table 4.2: ICS-CaffeNet and GURLS on iCubWorld28. ICS-CaffeNet performed better.

58 CHAPTER 4. EXPERIMENTS AND RESULTS

Figure 4.1: Confusion Matrix of iCubWorld28. Misclassifications only occur within the
same categories, especially between different cups, sprayers and plates. This means, for
example, ’Cup1’ is recognized instead of ’Cup2’. Based on this finding, reducing the
number of classes in this dataset from 28 to 7 classes improves the performances of the
tested algorithms.

4.1. OBJECT RECOGNITION PERFORMANCE 59

In the confusion matrix shown in Figure 4.1, we can see that the model misclassified some
classes, e.g. it recognized ’Cup 1’ instead of ’Cup 2’. This means that the classification
errors are only within the same object categories, such as ’Cup’. In order to avoid this, we
train our models on a smaller number of classes. In the following, we test if the performance
of our models increases when the we train the models on the 7 categories instead of 28
classes. In the next subsection, we check if this assumption is true.

4.1.1.2 Object (7 classes)

In this experiment, we propose to reduce the amount of classes from 28 to 7 by combining
similar objects such as ’Plate 1’ and ’Plate 2’ into the category ’Plate’. The goal is to
analyze if this change improves the object recognition accuracy, as the object category and
not the object class is important for our experiments. Following the same methodology as
described for 28 classes, we make a performance comparison.

iCubWorld: 7 classes
Method ICS-CaffeNet GURLS

Accuracy (28 classes) 0.88 0.8
Accuracy (7 classes) 0.98 0.91

Table 4.3: iCubWorld: 7 classes. The deep neural network achieves the highest perfor-
mances.

Table 4.3 compares the results: the experiment confirms our assumption that reducing the
number of classes leads to a higher overall performance - for both ICS-CaffeNet and our
GURLS classifier. At 98 percent accuracy, ICS-CaffeNet reaches nearly optimal perfor-
mance results for 7 classes. The GURLS performance is slightly lower, but also improved
by 10 percent.
In the remaining part of this thesis, we take only the 7 classes into consideration in-
stead of the original 28 classes of iCubWorld28. Therefore, when results are compared
between ’iCubWorld’ and our dataset in this thesis, the classes within iCubWorld are
treated as ’Plate’, ’Laundry Detergent’, ’Sprayer’, ’Cup’, ’Soap’, ’Dishwashing Detergent’,
and ’Sponge’.

4.1.1.3 Comparison with Pasquale et. al

Compared to the literature [52], our trained models achieve higher results than the reported
results from IIT, as shown in Table 4.4. Pasquale et. al trained their predictors on all
days (Day 1-4). We also trained both ICS-CaffeNet and GURLS on all four days, but
additionally included manually cropped images into the training set. These images are
provided in the standard iCubWorld28 dataset by Pasquale et. al, and are more closely

60 CHAPTER 4. EXPERIMENTS AND RESULTS

cropped around the shown object. In contrast to their work, we used bGURLS for off-line
training. The deep learning network achieves the best results in this comparison.

iCubWorld28 dataset: Performance Comparison
Method 28 classes 7 classes

GURLS (Pasquale et. al) 0.70 -

GURLS 0.80 0.91
ICS-CaffeNet 0.88 0.98

Table 4.4: Performance comparison with Pasquale et. al [52] from IIT. We report higher
results than IIT. The end-to-end trained ICS-CaffeNet model achieved the highest perfor-
mance, for both 7 and 28 classes.

Table 4.5 further compares how many objects our robot is able to recognize. The data
illustrates that iCub can recognize more objects with our trained models. For 28 objects,
the number of recognized objects with 98% confidence is similar to the number of recognized
objects from Pasquale et. al. However, with a lower confidence of 90% or 80% in the case
of [52], the recognition performance is higher with our models. There is only one object
which we can not recognize among 28 objects above 50% confidence with our models, which
is ’Cup3’. It is a white cup with a small black and red ’Segafredo’ logo (see Figure 3.8),
and often misclassified as ’Cup2’, which is a white cup with a spotted pattern in black
and red colors. In comparison, the data for 7 objects shows that we can recognize 4 of 7
objects above 98% and all objects above 90% accuracy, which is a significant improvement
compared with 28 classes.

Confidence
Method 98% 90% 80% 70% 50% # Total

Pasquale et.al 2 4 6 7 14 28

GURLS 28 1 10 16 20 27 28
ICS-CaffeNet 28 6 18 22 25 27 28

GURLS 7 4 7 7 7 7 7
ICS-CaffeNet 7 4 7 7 7 7 7

Table 4.5: The maximum number for objects that iCub is able to recognize on the iCub-
World28 dataset is 4 objects using Pasquale et. al with 90% of confidence. Our method
obtains a better accuracy of identifying 18 objects with the same 90% confidence. Notice,
that when 7 classes are used instead of 28, our method is able to recognize all 7 with 90%
confidence. The performance is compared with the Table from [52].

4.1. OBJECT RECOGNITION PERFORMANCE 61

iCubWorld: Attributes and Affordances
Method ICS-CaffeNet (%) GURLS (%)
Material 90 90
Shape 94 90

Affordance 95 90

Table 4.6: iCubWorld: Attributes and Affordances. Both methods obtain very high results.

4.1.1.4 Attributes and Affordances

In the previous three subsections, we considered the training and testing of our models
based on the object recognition performance, i.e. the accuracy our models achieved when
they were specifically trained for recognizing the correct objects. As the goal of this work is
to learn unknown objects, the current models trained on known objects can never correctly
recognize an unknown object. For example, if we show an orange to the robot, this would
not be able to recognize this new object since it was not previously trained. Therefore,
we proposed to include contextual information in our system. This subsection provides
the results of our models which are trained to recognize contextual information, which
Pasquale et. al did not consider in their experiments. The attributes material, shape,
and affordance are evaluated, since they are the most significant extracted from images
as stated in the literature []. We did not analyze the attribute color in the iCubWorld28
dataset.

As shown in Table 4.6, we were able to train ICS-CaffeNet and GURLS to achieve at least
90 percent on the test set. The accuracy of ICS-CaffeNet for shape and affordance are the
highest ones with 94 percent and 95 percent, respectively.

4.1.1.5 Need for a new dataset

Correctly recognizing known objects is a very critical and important prerequisite for learn-
ing new objects. When our robot iCub looks at an object, it needs to know if the object
is new or if it is already included in the knowledge base. If the robot falsely assumes it
does not know the object, the robot will start to learn the object although it was known
before. In this case, the supervisor spends a lot of time interacting with the robotic teach-
ing system, especially when the robot fails to recognize the correct attributes due to the
incorrect deep network model.

For this reason, we tested the trained models on images that were made within our lab
environment (see Figure 4.2 for an example). We tested the same 7 objects and performed
experiments to check if the robot can detect the correct object. Table 4.7 shows the results:
the accuracy is significantly lower than before. The performance values for ICS-CaffeNet
lie between 14 and 47 percents, compared to 90 to 98 percents before. This means the
accuracy is between 50 and 70 percentage points lower when having different test data for

62 CHAPTER 4. EXPERIMENTS AND RESULTS

iCubWorld: Object, Attributes and Affordances
Method ICS-CaffeNet (%) GURLS (%)
Object 29 41
Material 47 53
Shape 29 71

Affordance 14 61

Table 4.7: iCubWorld28: We achieved low performance with an overfitted iCubWorld
model on test images from another setting. Figure 4.2 shows two image examples. GURLS
performed better due to the overfitted CNN.

Figure 4.2: An example how low accuracies were obtained in this section. Top: The
performance is high for an iCubWorld model and an iCubWorld dataset. Bottom: The
accuracy is low for the same model tested on images from our lab environment.

ICS-CaffeNet. The performance of GURLS is between 41 and 71 percent, which is between
19 and 49 percentage points lower. The reason is that the GURLS classifier is trained on
extracted features from a deep neural network that has been trained on over 1 million
images. This makes the feature vector of an object highly descriptive. The results show
that we need to improve the object recognition performance for known objects. Otherwise,
the robot would too often struggle to correctly recognize an object when it needs to learn
a new one. One approach to improve the object recognition performance is to test if the
accuracy is higher on another dataset, which is explored in the next subsection.

The low accuracy data on the shown images were the initial reason why the TUM-ICS
dataset was collected. In this thesis, the results shown in the later sections ?? prove that it
was necessary to collect a new dataset. In fact, there are two reasons why the performance
in this experiment was low:

4.1. OBJECT RECOGNITION PERFORMANCE 63

(a) Cup (b) Plate (c) Sponge (d) Dishwashing Det

Figure 4.3: Testing four images from the TUM-ICS dataset with the corresponding mean
image file on finetuned models from different datasets.

• The results shown in this subsection are produced with an overfitted model. This is
the main reason why the performance is so low in this section for the deep neural
networks. In section 4.1.2.6, we provide more detail how this problem was solved and
describe our experiences with overfitting.

• Section 4.1.2.3 evaluates the performances of models trained and tested on two dif-
ferent datasets. Due to the performance comparison, this experiment shows that
creating a new dataset is necessary.

The next section analyzes the performances on the TUM-ICS dataset.

Object ImageNet model iCubWorld28 model TUM-ICS model

Cup (a) Cup Cup Cup
Plate (b) Toilet Seat Plate Plate
Sponge (c) Studio Couch Sponge Sponge

Dishwashing Det. (d) iPod Laundry Detergent Dishwashing Det.

Table 4.8: Predictions of models trained on different datasets on the four test images shown
in Figure 4.3 from the TUM-ICS dataset.

4.1.2 Results on the TUM-ICS dataset

For our proposed system in this thesis, it is very important the robot can recognize the
objects from our knowledge base. Obtaining a new dataset can be a work-intensive task
as light and room conditions, the availability of objects and the robot’s hard- and software
need to be stable during the acquisition period. A new dataset has the following two main
advantages: first, it gives the researchers control over the dataset. In this work, it means
that we can add more objects with different attributes such as different materials or colors
to the dataset. This is very important as we rely on contextual information to learn new

64 CHAPTER 4. EXPERIMENTS AND RESULTS

objects. The second advantage is that the new dataset is acquired in the same experimental
setup as we do the final experiments on the proposed system. This means our models are
optimized for this environment and can expect to obtain the maximum possible amount
of performance in the final experiments.
For our main dataset, we conducted a series of experiments, starting with the same method-
ology as with iCubWorld28. This subsection is divided into several experimental parts:

• First we evaluate the object recognition performance of the dataset.

• Secondly, we analyze the performance of the trained networks on contextual infor-
mation, i.e. the attributes material, shape, color, and affordance.

• Afterwards, we do a crosstesting experiment to test if the iCubWorld28 and TUM-ICS
trained models can recognize known and unknown objects from the other datasets.
Additionally, we compare these result with the performance of the trained models on
their own datasets.

• In the next subsection, we provide a detailed feature analysis, which visualizes the
relation between the 4096-dimensional feature vectors with different sets of labels.

• We use a prior trained network called GoogLeNet-CAM to highlight heatmaps in our
images where convolutional nets look at to predict the class.

• An extra paragraph is committed to describe how we overfitted a deep learning
network and showcase the differences in performance and in visualized layers.

• Finally, we test the trained networks on another set of images which contains images
of both known and unknown objects. These images were obtained during testing
the enhanced deep network, and are not included in the TUM-ICS dataset, i.e. they
were not used to train the model.

4.1.2.1 Object (11 classes)

Table 4.9 compares the results on the TUM-ICS dataset for 11 classes. With an accuracy of
99 percent, both ICS-CaffeNet and GURLS achieve nearly optimal results on the validation
dataset. Note that during training, the loss of ICS-CaffeNet is optimized on the validation
set. On the test set, the performance is slightly lower for ICS-CaffeNet. The GURLS
classifier also achieved a lower classification accuracy.

4.1.2.2 Attributes and Affordances

The accuracies of the algorithms in this subsection are more important for the performance
of our final system than the accuracies obtained on classifying objects. Comparing the
results in Table 4.10 for both validation and test set, the data shows the same pattern
as with 11 objects. ICS-CaffeNet and GURLS achieved very high performances on the

4.1. OBJECT RECOGNITION PERFORMANCE 65

TUM-ICS: 11 classes
Method ICS-CaffeNet (%) GURLS (%)

11 classes - Validation set 99 99
11 classes - Test set 84 67

Table 4.9: The images in the validation set were used to compute the loss of the model
during the optimization. The images from the test set are independent images used to
quantify the performance of the model.

TUM-ICS: Attributes and Affordances
Methods

ICS-CaffeNet (%) GURLS (%)
Attributes Val Test Val Test
Material 99 93 99 62
Shape 99 93 99 62
Color 99 68 99 61

Affordance 99 77 99 63

Table 4.10: TUM-ICS: Attributes and Affordances. The performance on the validation
set is nearly optimal. On the test set, ICS-CaffeNet performs better, especially for the
attributes material and shape.

validation set with 99 percents for all attributes. On the test data, the values of 93 percent
indicate that ICS-CaffeNet is able to generalize the correct prediction for the attributes
material and shape. The performance is worse for color and affordance, at 68 and 77
percent, respectively. For GURLS, all attributes and affordances reach a performance
of about 62 percent, showing that the deep neural networks are superior to the GURLS
classifiers.

4.1.2.3 Crosstesting: iCubWorld and TUM-ICS models

As mentioned previously, a crosstesting experiment is performed with the deep neural
networks that are finetuned on the iCubWorld28 and TUM-ICS datasets. Figure 4.4 sum-
marizes how the experiment is performed with two models on two datasets in four tests.
The goal is to evaluate if the models can recognize the correct objects, although the mod-
els were not trained on the respective datasets. In this experiment, about 1000 images
from the iCubWorld28 dataset and roughly 1000 images from the TUM-ICS dataset are
used (including unknown objects to the respective model). The images are evenly dis-
tributed across the acquisition days and object classes. In this experiment, we choose one
model (iCubWorld or TUM-ICS) and one dataset (iCubWorld or TUM-ICS) including the
dataset’s corresponding mean image file. In all four resulting cases, both the ’4 similar’
and ’3 different’ objects are tested. The ’4 similar’ objects are contained in both datasets,
which are ’Cup’, ’Dishwashing Detergent’, ’Plate’ and ’Sponge’. The ’3 different’ objects

66 CHAPTER 4. EXPERIMENTS AND RESULTS

Figure 4.4: Overview of the performed crosstesting experiment. The iCubWorld model
and TUM-ICS model are CaffeNets which are pretrained on ImageNet and finetuned on
the respective datasets. The models are tested on both their own and opposite dataset.
This experiment is done to evaluate how good the models perform on images from different
experimental settings. Four tests are done in total. The TUM-ICS model can either be
trained on 10 classes or 11 classes (including class ’Background’). The latter models are
compared in Table 4.12.

Crosstesting Experiment (in %)
iCubWorld Dataset TUM-ICS Dataset

iCubWorld model TUM-ICS model iCubWorld model TUM-ICS model
Attributes 4 similar 3 different 4 similar 3 different 4 similar 3 different 4 similar 3 different
Object 69 - 29 - 57 - 85 -
Material 74 86 33 26 64 7 84 98

Shape 84 84 59 58 87 6 85 98

Affordance 91 94 53 70 65 38 51 76

Table 4.11: Crosstesting: Object, material, shape, and affordance are tested in this exper-
iment. Because we use two different datasets and two different models, there are 4 tests
for which we perform the crosstesting experiment. The second row describes from which
dataset the tested images and corresponding image mean file come from. The image mean
files are important for classification because they are different for the datasets. The models
which are tested on this dataset are found in ’the third row. The names of the models
describe on which dataset these models were trained. The iCubWorld dataset consists of
7 classes, the TUM-ICS dataset has 11 classes (from which we only use 7, corresponding
to the 4 similar and 3 different). The objects ’Cup’, ’Plate’, ’Dishwashing Detergent’, and
’Sponge’ are included in both datasets. The category ”4 similar” contains the images from
these objects of the corresponding dataset. ”3 different” includes objects which are from
the same dataset, but on which the tested models are not trained on. Therefore, it is
impossible for a deep learning network to correctly recognize the object in the category ”3
different”.

are different for each dataset: the iCubWorld7-trained model is unfamiliar with ’Banana’,
’Cleaning Cloth’ and ’Laptop’ from the TUM-ICS dataset. The model trained on TUM-
ICS tests its performance on the ’3 different’ objects ’Laundry Detergent’, ’Soap’, and

4.1. OBJECT RECOGNITION PERFORMANCE 67

’Sprayer’.
The overview of the comparison is presented in Table 4.11. As expected, both models
perform well on their own dataset, reaching top 1-accuracies of about 70-90%. The TUM-
ICS model performs better on its dataset compared to the iCubWorld model, except for
the metric affordance: only three classes (i.e. ’Eating’, ’Drinking’, ’Cleaning’) exist for
affordance in the iCubWorld dataset, with 5 out of 7 objects are labeled as ’Cleaning’.
In contrast, TUM-ICS contains five affordance classes (’Eating’, ’Drinking’, ’Cleaning’,
’Working’, ’None’). Surprisingly, the iCubWorld-trained model performs very well on the
TUM-ICS dataset. For the object and material values on ’4 similar’, the achieved values
are only about 10 percentage points lower than on the iCubWorld dataset, while shape
remains about the same and affordance is 26 percentage points lower. However, for the ’3
different’ objects, the classification accuracy is significantly lower: the iCubWorld-trained
model achieved a merely 7% on material and 38% on affordance, while the shape was clas-
sified well with 66%. The performance of the TUM-ICS model on the iCubWorld dataset
is lower than the other combination on the known objects. This makes sense as the TUM-
ICS model is trained on the class ’Background’ which improves the recognition of the other
classes due to the softmax classifier in the network’s last layer. The performance of the
TUM-ICS model on the unknown objects reaches a similar magnitude in accuracy: ma-
terial is recognized with 26%, the correct shape with 58% and the affordance with 70%.
The reason for this result is the variability of our collected TUM-ICS dataset. The advan-
tage is the size: TUM-ICS contains more objects than iCubWorld which also has a higher
variability in the labels set. Most objects in iCubWorld have a long, cylindrical shape
that is made from ’Plastic’ and can be used for ’Cleaning’, for example the class ’Laundry
Detergent’. In the TUM-ICS dataset, only one object fits this description, i.e. the class
’Dishwashing Detergent’. Inspired by a previous dataset from the original ICUBWORLD
dataset series [97], some objects in our datsets are edible fruits or are different forms of
cups and plates, which enrich the dataset with a variety of shapes, materials and colors.
We performed the crosstesting experiment because the iCubWorld model had previously
scored low accuracies on the recorded set of images, as described in section 4.1.1.5. In
conclusion of this experiment, it was necessary to obtain a new dataset. The data shows
that the iCubWorld model reaches accuracies on our dataset in the range of 57, 64, 87,
and 65% while our model achieved 85, 84, 85, and 51%, respectively. The iCubWorld
model performs well, but for our specific research problem it is very benificial to obtain
the maximum amount of possible performance. This is due to the fact that our research
goal is to learn new objects by recognizing the contextual information of the questioned
object - which is based on the attributes and affordances of the known objects located in
our OWL ontology. The main advantage is that we can include new objects to the dataset
that provide new attributes, classes or labels our model can learn. Thus, a larger dataset
with a more unique set of labels means that some objects can be queried easier in the
knowledge base. However, for objects that share the most common labels, it can be very
difficult for the robot to guess the correct object since multiple objects fulfil the desired
criteria, for example the shapes ’Cuboid’ or ’Cylinder’ and material ’Plastic’.
Table 4.12 provides an additional perspective in analyzing the results of the crosstesting

68 CHAPTER 4. EXPERIMENTS AND RESULTS

experiment. The prior shown results were performed with a TUM-ICS model trained on 11
classes, including the class ’Background’. Because the iCubWorld model was not trained
on a background class which could improve the recognition accuracy for the other classes,
we evaluate the results of the model trained on 10 classes. The data indicates that the
model trained on 10 classes achieved a lower accuracy on objects on the TUM ICS dataset.
However, it slightly improves the performance of the other model on material and shape
by 1 percent. For affordance, it increased the performance of the model by 20-30%.
On the iCubWorld dataset, the opposite is true: the model trained on background has a
higher performance for object, material, and shape for both known and unknown objects.
For unknown objects, the accuracy for affordance with 70% is also higher than 60%. How-
ever, the results show that the performance of the TUM-ICS models are relatively low on
the iCubWorld dataset compared to the TUM-ICS dataset. As the iCubWorld-models also
achieve a lower performance on the TUM-ICS dataset compared to the TUM-ICS models,
it can be seen that the new dataset was needed to achieve a higher overall recognition
performance.

Crosstesting Experiment - Comparison TUM-ICS model trained on 10 and 11 classes (in %)
iCubWorld Dataset TUM-ICS Dataset
TUM-ICS model TUM-ICS model

10 classes 11 classes 10 classes 11 classes
Attributes 4 similar 3 different 4 similar 3 different 4 similar 3 different 4 similar 3 different
Object 24 - 29 - 69 - 85 -
Material 31 30 33 26 86 97 84 98

Shape 56 48 59 58 88 97 85 98

Affordance 60 60 53 70 85 95 51 76

Table 4.12: Crosstesting experiment Add-On. This table compares the performances of
the TUM-ICS models trained on 11 classes (including class ’Background’) and 10 classes
(without class ’Background”). The results shown for the model trained on 11 classes is the
same as previously shown in Table 4.11.

In the future, the possibly best and most reasonable approach to enrich the iCub’s percep-
tion capabilities from a dataset point of view is to only collect datasets that have few images
per category and combine it with existing datasets for training. This small amount of data
is much cheaper and easier to obtain than large datasets and can be used for finetuning the
networks. Finetuning does not require many images for training when the learning rates
are adjusted. Furthermore, the models can optimize their recognition performance on the
experimental setup settings.

4.1.2.4 Analysis of extracted features

In this subsection, we visualize extracted features and show how the ImageNet-trained
ICS-CaffeNet is able to serve as a feature extractor. In related research work, these visu-
alizations are usually done with extracted features from the validation data of the same
dataset. The resulting figures show that a neural network can function as a very good

4.1. OBJECT RECOGNITION PERFORMANCE 69

feature extractor. The figures illustrate this observations with clear boundaries between
clusters. In this thesis, we use an ImageNet-pretrained network to extract the FC7 features
from the training data of our collected TUM-ICS dataset. Although ImageNet and the
TUM-ICS dataset are completely different datasets, our purpose is to show that this deep
learning model can extract descriptive FC7 features from the TUM-ICS images. The better
the model separates the classes in clusters between each other, the easier it is for GURLS
to learn from the extracted features. This means that if the training data can be nicely
separated in 2-dimensions using a dimensionality reduction technique, we expect that the
classification accuracy for GURLS is higher for those attributes. For this experiment, we
used the training images of TUM-ICS, which consist of 16,500 images total. These images
were taken in three different settings: 1) the lab background with a table, 2) a white back-
ground without a table, and 3) a white background with a table. Alternatively speaking,
the 16,500 images consist of 5500 training images for each of the three settings.

Figure 4.5(a) shows 6 visualization plots which are obtained using the tSNE - Barnes Hut
implementation. Because this dimensionality reduction algorithm is unsupervised, the 4096
dimensional features are reduced to the same 16,500 2D point locations in all figures. The
colors in the figures are dependent on the labels of the corresponding attributes.
Figure 4.5(a) shows the clearest separation of all clusters: the green group contains all
images that belong to the background images with white background. These images were
taken on three different daytimes: in the morning, in the afternoon and at night. The
smaller green cluster between the blue and red group belongs to the images that were
taken at night in low light conditions, thus differing from the other two daytimes. The
blue group contains the features of the background images that are black and white, which
lies between the images with white background and the images in the lab with the darker
lab background. The latter group does not have white background images. The fact that
this group lies furthest away from the others proves that the trained neural network can
distinguish when and where an image has been acquired in this dataset.
The five remaining figures are more cluttered, as more classes exist. For object, we see in
Figure 4.5 (b) that the algorithm is able to divide the features into small clusters. The
clustering works well for the object’s 11 classes, but it is notable here that many small
subclusters or single points exist which do not lie in any larger group within the area.
The attribute material has six classes which are fairly divided in the visualization shown
in Figure 4.5 (c). The classes ’Organic’, ’Textile’, and ’Glass’ are almost perfectly divided
into three parts. The feature points for ’Ceramic’ are also well separated. Here, it is inter-
esting to see how close the groups for the settings white background and table with white
background lie together. The red ’Ceramic’ cluster of the table setting with white back-
ground overlaps with the classes ’Organic’, ’Plastic’, ’Textile’ in the center of the image.
This overlap shows that the 4096-dimensional feature vectors are similar in these images.
The purple-colored dots represent the background images, which lie very close together.
The purple clusters are larger for the setting when a table is used, indicating that more
than one color in the image leads to features that have a higher variance. As the white
background cloth only contains one color, the corresponding features remain a very tiny

70 CHAPTER 4. EXPERIMENTS AND RESULTS

(a) Day and Setting (b) Object

(c) Material (d) Shape

(e) Color (f) Affordance

Figure 4.5: Visualization of 16,500 4096-dimensional feature vectors reduced to 2 dimen-
sions. The used t-SNE dimensionality reduction technique is unsupervised, thus it does
not consider the labels during the optimization.

4.1. OBJECT RECOGNITION PERFORMANCE 71

cluster on the visualization graph.
Figure 4.5 (d) shows a good separation of the four different shapes. The 2D feature points
for ’Sphere’ are located close together, with the exception of a small subgroup of single
points in the center of the image. The points with ’Cuboid’ labels tend to form large
groups of points in the center of the image. The clusters for cylinders are separated well.
The visualization for ’Color’ is shown in Figure 4.5 (e). Because 10 different colors exist,
many small but well separated groups exist in the image. In the center part of the visual-
ization, features of ’Brown’, ’Blue’, ’White’, ’Orange’ and ’Yellow’ overlap, which indicates
that misclassifications may happen for color in the setting of table with white background.
The affordances ’Eating’, ’Cleaning’ and ’Working’ are well separated in 4.5 (f). The af-
fordance ’Drinking’ has the least amount of points except for ’Background’, but seems to
be the only one of the large four affordances to be separated over large areas compared to
the number of points. Besides the three main groups, two smaller point groups and single
red dots exist. These findings could give us a hint that ’Drinking’ is misclassified more
often than the other three affordances, which would explain the lower performance results
for affordance detected earlier.

4.1.2.5 Analysis of CNN Heatmaps

In the ImageNet dataset, objects are located in the center of the images with good light
conditions. No hands or other unintended objects disturb the images. Bolei Zhou et. al
have introduced a technique to expose the implicit attention of convolutional neural net-
works in an image [99]. Their models, which are either trained on ImageNet or Places205,
highlight the most informative image regions relevant to a predicted class. The highlighted
region can be interpreted as the part of the image, based on which the neural network
decides to which class the image belongs to. In this subsection, we use the pretrained net-
work GoogLeNet-CAM, which is trained on ImageNet for over 120,000 iterations, to test
where the most informative image regions are located in our dataset images. The results
show us which parts of the shown objects draw the highest attention of the network, and
if the hand of the supervisor holding the object disturbs the learning and classification of
the network.

Five heatmap activations from five of our eleven objects are shown in Figure 4.6. For
the object ’Cup’, the network focuses on the center part of the object in the first four
activations. In the last one, the cup’s handle lies in the attention of the network. Because
no hand is located in the image, the net’s attention focuses completely on the object in
the image.
The second test image contains the supervisor’s hand with arm, which clearly disturbs the
heatmap. As ’Sponge’ is a very small object, it does not grab the network’s attention in
any of the heatmap activations. The first three maps focus on the hand, the fourth on the
dark colored shirt, and the last one on the forearm.
The next example shows that it looks different for larger objects. Although the arm is

72 CHAPTER 4. EXPERIMENTS AND RESULTS

Figure 4.6: Our generated CAM heatmaps, produced with the pretrained GoogLeNet
network from [99]. The shown objects are from the classes ’Cup’, ’Sponge’, ’Cleaning
Cloth’, ’Background’, and ’Smartphone’. The left images are from the robot camera.
The five images shown next to the robot camera image on the right are activation maps.
The heatmaps highlight the regions where the convolutional neural network looks at when
classifying the image.

4.1. OBJECT RECOGNITION PERFORMANCE 73

located in about the same position in the image as in the previous example, the network
recognizes the blue ’Cleaning Cloth’ in the image. Two of the five activations solely focus
on the object, namely the second and the last one. The first and third heatmap center the
forearm while the fourth has two separate foci of attention: the fingers of the hand and
the black shirt.
The last test image is from the class ’Background’, which consists of the white fabric in
the upper part of the image and the black table on the bottom. Although the network is
not trained on our dataset, it is interesting to see that the heatmaps’ main area of interest
lies on the center part of the table where we would place our objects for classification. The
dark red parts of the heatmaps are on the table’s center in the first three images, and on
the left and right parts of the table in the last two images. The white fabric is mostly
ignored, except in the first activation map.
Due to the dark color of the table, it is hard to recognize black objects on the table.
Therefore, black objects are held in front of the white fabric in the table settings. Although
these are the only objects that are not placed on the table, the figure shows that the neural
network looks at the right parts in the image.

4.1.2.6 Overfitted Model

Based on our experiences in this work with training deep convolutional neural networks, we
donate one subsection in this thesis to the concept of overfitting. This subsection describes
how overfitting occured in the beginning of our experiments. All results shown in this thesis
are obtained with non-overfitted models, except the section 4.1.1.5 in which we explained
why we need a new dataset.
One reason why overfitting can occur is the dataset: during the acquisition period of the
TUM-ICS dataset, we estimate to have collected between 200,000 and 300,000 images.
Many images in our collected dataset were redundant, i.e. they look almost identically
due to our image acquisition frequency of 15 frames per second. Therefore, we only used
a subset of 16,500 for training, 8,250 for validation, and another 8,250 for testing from the
large dataset. Because of the ”low” number of images for training a deep learning network
and our solver settings, the model overfitted during training. Overfitting occurs when the
model is too complex for the dataset, which means that the number of its parameters is
too high relative to the number of images or observations. When a very complex model is
overfitting, it achieves high performances on the validation set by memorizing the training
data which it was trained on. However, it is not able to generalize the learned patterns
in the data to correctly predict unknown examples. Because our data was randomly split
into training, validation, and test sets from our recordings, the overfitted models performed
very well on all sets. Thus it was not recognizable that the models were overfitting until
they were tested with relatively poor performance on unknown objects. The performance
on known objects was also lower for overfitted models, but still above 50 percent.
In this subsection, we provide some results we obtained on the TUM-ICS dataset with the
overfitted models and compare it with the finetuned models. Afterwards, a look into the

74 CHAPTER 4. EXPERIMENTS AND RESULTS

ICS-CaffeNet model
Overfitted (%) Finetuned (%)

Known Unknown Known Unknown
Object 47 - 78 -
Material 56 11 87 62
Shape 72 23 90 65
Color 75 4 82 17

Affordance 55 8 22 38

Table 4.13: Performance of our overfitted model: it performs worse than the finetuned
model but still well on recognizing known objects. However, it is not able to generalize its
knowledge on unknown objects. The finetuned model surpasses the overfitted model in all
but one benchmarks.

visualized layers of the networks is taken for a comparison in Figure 4.7. The overfitted
network, whose layers were all trained, is compared with the finetuned network, whose
layers 1-7 were kept frozen and the last fully connected layer was finetuned.

Table 4.13 provides a performance overview of the overfitted model. It is able to correctly
predict the object, material and affordance of known objects for accuracies between 47 and
55 percents. Shape and color are classified with 72% to 75%. Despite the good performance
on known data, the performance on unknown objects shows that the model is overfitting:
the model is supposed to accurately predict the detected attributes and affordances. The
classification accuracy lies merely between 4 and 23 percent, which is worse than randomly
guessing the attributes in all cases. This data shows that the model memorizes the training
data without understanding the underlying concepts during classification. The following
example shows why we need a nearly optimal classification accuracy: the probability to
make the correct prediction based on all four labels is 0.11×0.23×0.04×0.08 = 0.00008096
percents and for the top 2 0.11×0.23 = 0.0253 percents. The accuracy is too low to retrieve
the right detected objects from our knowledge base. The goal is to reach values close to
1, so that the robot can make accurate guesses and knows if the object is known or not.
The right columns in the table represent the performance values for the finetuned model.
It outruns the overfitted value in each entry except for affordances of the known objects.
The low performance for affordance displays that it is not possible to predict the correct
affordance in images based on the objects that are recorded in our dataset.

4.1.2.7 Testing on known and unknown objects

Before we test the entire system, which consists of a combination of either ICS-CaffeNets
or GURLS classifiers and knowledge, we check the performance of our machine learning
models on an extra dataset of known and unknown objects. This set of images was obtained
while we tested our knowledge system. The images differ to the original TUM-ICS dataset

4.1. OBJECT RECOGNITION PERFORMANCE 75

(a) Input image (b) Conv Filter-1 (c) Input image (d) Conv Filter-1

(e) Conv Output-1 (f) Conv Filter-2 (g) Conv Output-1 (h) Conv Filter-2

(i) Conv Output-2 (j) Conv-3 (k) Conv Output-2 (l) Conv-3

(m) Pooling-5 (n) Label: Plate (o) Pooling-5 (p) Label: Cup

Figure 4.7: Layer Visualizations: Overfitted vs. Finetuned. The left side in the figure
represents selected layers of the overfitted model, the right side shows the same layers of
the finetuned model. Note the different learned filters on the top right images: the finetuned
features are more distinctive. The overfitted model falsely predicts ’Plate’ instead of ’Cup’.

76 CHAPTER 4. EXPERIMENTS AND RESULTS

Figure 4.8: Unknown objects. The shown objects are put on the black table and are tested
with both our finetuned ICS-CaffeNets and our proposed system. Beginning from the left,
the objects are from the classes: ’Bowl’, ’Box’, ’Display’, ’Glass’, ’Headphones’, ’Ice Tea’,
’Keyboard’, ’Kindle’, ’Kiwi’, ’Laundry Detergent’, ’Lemon’, ’PC Mouse’, ’Paprika’, ’Soap’,
’Soap Box’, ’Towel’, ’Waterbottle’, ’Watermelon’. Not displayed but also used for learning
are ’Book’, ’Cornflakes’, and ’Sprayer’.

4.1. OBJECT RECOGNITION PERFORMANCE 77

Comparison: Known and Unknown Objects
ICS-CaffeNet method (%) GURLS method (%)
Known Unknown Known Unknown

Object 78 - 11 -
Material 87 62 19 18
Shape 90 65 33 26
Color 82 17 11 12

Affordance 22 38 31 19

Table 4.14: Performance of our finetuned ICS-CaffeNet and GURLS on known and un-
known objects. ICS-CaffeNet obtains the best results on object, material, shape, and color.
GURLS achieved a higher accuracy on affordance. For both ICS-CaffeNet and GURLS,
the attribute shape is the best metric.

that they are moved by hand in horizontal lines along and across the visible parts of the
table. The objects are not rotated, but the extreme positioning of the objects in the
corners of the table is challenging for the machine learning classifiers. Figure 4.8 shows
the unknown objects when standing still or being held in front of the robot camera. This
performance analysis is based on 761 images of the known objects and 1041 images from
the unknown images.
Visualizations of this experiment are shown in Figure 4.9 for ICS-CaffeNet. The results
for GURLS are not shown as ICS-CaffeNet produces much better results, as compared and
summarized in Table 4.14. The Figure for the attribute ’Material’ shows that especially
’Ceramic’ and ’Glass’ can not be correctly predicted on unknown objects. These attributes
could therefore not be learned and generalized as desired.
The attribute ’Shape’ suggests that the performances of the classes ’Cylinder’ and ’Cuboid’
are lower than for ’Cylinder’ and ’Cuboid’. The class ’None’, which only the object class
’Background’ has, and ’Sphere’ are recognized well.
Unknown, blue objects are correctly predicted while no yellow object could be detected.
In the other cases, the data follows the same pattern: the algorithm’s accuracy on the
unknown objects is between 20 and 40 percentage points lower than the accuracy on known
objects.
The graph for affordance shows that the predictions for ’Working’ and ’Cleaning’ are nearly
the same for all three image datasets. Otherwise, the prediction accuracy on known and
unknown objects is about the same, although that the class ’None’ is never recognized.

Following the analysis of the performances in Figure 4.9, Table 4.14 provides the numerical
results for the performance analysis on known and unknown objects. As we have seen in
the prior shown visualizations, ICS-CaffeNet performs very well on the known objects, with
the exception of affordance. The performance on the unknown objects is good for material
and shape, but very low for color with 17 percents. Affordance reaches 38 percents, which
is better than for the known objects. Both values for color and affordance indicate that
the underlying relationships of the metrics were not learned properly by the model. For

78 CHAPTER 4. EXPERIMENTS AND RESULTS

(a) Material (b) Shape

(c) Color (d) Affordance

Figure 4.9: The performance of ICS-CaffeNet on attributes and affordance is compared on
a set of extra images of known (red line) and unknown (yellow line) objects on the same
testing day. The models are trained on ’Known’ objects, but on other images. The blue
line represents the accuracy we obtained on our test set. Top left: The materials ’Ceramic’
and ’Glass’ could not be generalized on unknown objects. Top right: ’Cylinder’ obtains the
lowest accuracy. Bottom right: This chart illustrates that our dataset does not have enough
object classes with different colors. The accuracy for unknown objects is very low. Bottom
right: Because of the low accuracy for both known and unknown objects, it becomes
visible that it cannot be seen in an image for which tasks an object can be used. The
class ’Working’ (’Laptop’, ’Smartphone’, ’Kindle’, ’Keyboard’, ’Display’, ’Book’) obtains a
nearly perfect score. It is possible that other relationships have been learned to distinguish
these objects from the others. Possibly, because most of them consist of ’Plastic’ material,
have a screen and their shape is rectangular.

4.2. ENHANCED DEEP NETWORK RESULTS 79

color, this means that 1) the dataset did not have enough images with different colors
available for training, or 2) that the set of images which we tested in this experiment were
not chosen by testing all colors known to the model or may be extreme cases such that
wrong predictions are made compared to the initial labeling.
In contrast, the results for GURLS are very low, ranging only between 11% for the known
objects to 33% for the known shape. When comparing the data of the known and un-
known objects for GURLS, the values of unknown objects are similar for each attribute.
This shows that the linear, regularized least-squares loss function of GURLS was not able
to learn the intended relationships from the high-dimensional feature data. The resulting
values are also very close to randomly guessing the correct attribute: in rounded form
these are for object 1/11 =∼ 9% (GURLS (known)/(unknown): 11%/-), for material
1/6 =∼ 16.7% (GURLS (known)/(unknown): 19%/18%), for shape 1/4 = 25% (GURLS
(known)/(unknown): 33%/26%), for color 1/10 = 10% (GURLS (known)/(unknown):
11%/12%) and for affordance 1/5 = 20% (GURLS (known)/(unknown): 31%/19%). Con-
sequently, we expect to achieve a much better overall system performance of our proposed
system with our ICS-CaffeNet models in the final experiments.

4.2 Enhanced deep network results

This section presents the experimental results of the proposed system. It combines the
machine learning algorithms and the knowledge base, which we call enhanced deep net-
work. We first provide an overview of the system from a user-interface and user-experience
perspective before we analyze the results for ICS-CaffeNet and GURLS in the following
subsections. An overview of the interaction with the robot during learning is shown in
Figure 3.13. In this system, it is necessary to supervise the robot learning with a human
teacher. The supervisor is responsible to either approve the robot guesses or to give in-
put to the robot by correcting certain predicted labels. In the following, we describe the
workflow of our proposed system in detail.

4.2.1 ICS-CaffeNet and Semantic Reasoning

The results of our experiment with ICS-CaffeNet are described in this subsection. The
performance of the five ICS-CaffeNets is benchmarked with our proposed ICS-CaffeNet
and reasoning system. The results are evaluated based on four values: we compare the
object recognition accuracy of ICS-CaffeNet (object only) on the known and unknown
objects and provide the same for our proposed system. The data displayed in the table
4.15 compares the number of detected objects to the number of trials and percentage points.
Note that the performance of ICS-CaffeNet on unknown objects is 0.00 because it cannot
predict a class which it was not trained on. In the first trial of our reasoning system, the
system always fails to classify the right object, but it learns it to be able to recognize it

80 CHAPTER 4. EXPERIMENTS AND RESULTS

the next time. Because we tested each object for at least 2 trials and the system always
fails to recognize it in the first iteration, the performance of our proposed system cannot
be much higher than 0.5, except we tested a correctly predicted object multiple times.

ICS-CaffeNet and knowledge reasoning system
Guess ICS-CaffeNet ICS-CaffeNet + Reasoning System

Accuracy Known 11/11 100 % 11/11 100 %
Accuracy Unknown 0/49 0 % 27/49 55 %

Table 4.15: ICS-CaffeNet and KnowRob. ICS-CaffeNet cannot recognize an object which is
unknown. Our reasoning system always fails in the first trial when recognizing an unknown
object, but learns it for the next tests.

The system was tested for eleven trials (or iterations) with ICS-CaffeNet on known
objects. The deep neural network was able to always classify the correct object. Thus,
the performance achieved for the Caffe-only version is 11/11 or 100%. Because the deep
neural network makes one Caffe guess before we do up to three guesses afterwards, the
correct object is detected every time, also leading to a perfect recognition performance.
Even when the Caffe guess is not used in the enhanced deep network, we also achieved
100% performance by using semantics with our first and second guesses in a separate test,
which is not listed in the table.
A much more challenging task is to be able to learn and recognize new objects, which is
the main motivation for this research project. Because the deep networks are not trained
on unknown objects, they are not able to recognize new objects. Thus, the performance
is 0/49 or a mere 0%. It is the drawback of convolutional neural networks that they need
a lot of data per object for classification. When seeing a new or unknown object, the
reasoning also fails because its knowledge base does not contain an object which matches
the name of the object with or without the desired attributes. However, the robot learns
the object with the text input provided by the supervisor and is able to recognize all
objects in the first or second guess of our reasoning method. In the experiment, we
achieved a performance of 27 detected objects in 49 trials, reaching a performance of over
55%. In a few cases, when the recognition failed in the system, a third iteration was
needed to recognize the new object. In this case, a common reason is that the predicted
labels have changed in the second trial after the object was learned in the first trial. Con-
sequently, the object was also considered unknown in the second iteration. However, this
leads to more sets of predicted labels which improves the overall recognition for this object.

In Table 4.16, we provide the testing results of the enhanced deep network. Previously, we
described how many trials we need with our system to learn an object until it is recognized.
In this table, we measure the ICS-CaffeNet performance only for testing, which we did not
do in the previous part. For each class in the iCubWorld7 and TUM-ICS dataset, we
performed five tests to recognize the object. The comparison between ICS-CaffeNet and
the enhanced deep network shows that the reasoning improves the recognition. Similar to

4.2. ENHANCED DEEP NETWORK RESULTS 81

the crosstesting experiment described in section 4.1.2.3, we tested the deep learning model
which is trained on TUM-ICS on the iCubWorld dataset. The ”4 similar” category contains
the objects which the model is also trained on in our dataset. ”3 different” contains the
classes which are unknown for our model. In the performed experiment, our model failed
to detect similar objects from the iCubWorld dataset, resulting in 0 % accuracy. This is
due to the different background and lighting conditions. Meaning that the network cannot
generalize towards a different dataset. For unknown objects in both datasets, the model
cannot recognize any classes. At 85%, the performance on known objects from our dataset
was as good as expected. The data of the reasoning system shows that it improves the
performance of the standalone deep network in all cases. For known objects, it achieves
the nearly perfect score of 98%. Although the deep network failed in the other cases, the
enhanced deep network is able to recognize many of them (65%, 67%, 47%). This data
demonstrates that the system was successfully learned with the new objects as described
earlier. It obtains the highest values on the TUM-ICS dataset, and scores the lowest on
unknown objects from the iCubWorld dataset. This experiment demonstrates that the
enhanced deep network increases the object recognition performance, especially when the
predictors’ classifications fail.

Comparison: ICS-CaffeNet and ICS-CaffeNet + Semantic Reasoning
TUM-ICS Dataset (%) iCubWorld Dataset (%)

Methods 11 known 22 unknown 4 known 3 unknown
ICS-CaffeNet 85 0 0 0

ICS-CaffeNet + Reasoning 98 65 67 47

Table 4.16: Comparison between ICS-CaffeNet and ICS-CaffeNet with Semantic Reason-
ing. The performance of recognizing objects is compared on known and unknown objects,
both on the iCubWorld and TUM-ICS datasets. The enhanced deep network is already
trained on the unknown objects, as illustrated in the previous table. We tested each ob-
ject class five times with our on-line learning system. During the testing, the predicted
attributes are not learned.

Summarizing the results for ICS-CaffeNet, this experiment shows that deep learning net-
works are very powerful for classifying objects for which they are trained on. However,
these models fail on classifying new objects. Our semantic reasoning system can be used to
teach the robot unknown objects. The results also show that our system is able to detect
known objects. Thus, it improves the results for both known and unknown objects.

4.2.2 GURLS and Semantic Reasoning

In this subsection, we repeat the same experiment with GURLS classifiers. In the previous
section, we have seen that the overall recognition performance of GURLS is lower than
ICS-CaffeNet, especially on unknown objects. Our proposed reasoning system with ICS-

82 CHAPTER 4. EXPERIMENTS AND RESULTS

CaffeNet has shown that it can improve the performance of our deep learning system. We
first evaluate the system performance as before and analyze if the reasoning system can
neutralize the lower accuracy of GURLS.

GURLS and knowledge reasoning system
GURLS GURLS + Reasoning System

Accuracy Known 4/28 14 % 22/28 79 %
Accuracy Unknown 0/53 0 % 14/53 26 %

Table 4.17: GURLS and KnowRob. GURLS cannot recognize an object which is unknown.
The reasoning system always fails in the first trial when recognizing an unknown object,
but learns it for the next tests.

In this experiment, we needed to perform 28 trials for known objects since it took longer
in some cases to recognize the correct object. GURLS recognized only 4 out of 28 objects
or 14%, which is a big difference to the previous 100% ICS-CaffeNet was able to recognize.
In contrast, our reasoning system performed well: despite the poor classification accuracy,
the system could recognize 22 out of 28 objects, or 79%. This value is lower than the 100%
accuracy which ICS-CaffeNet achieved. It shows that the system is capable to include
contextual information into the reasoning process which improves the recognition accuracy.
As expected for the unknown objects, GURLS is not able to classify objects which it is not
trained on: it achieves 0%. Out of 53 trials, the reasoning system learned and recognized
14 objects, which represents an accuracy of 26%. The 53 trials were made on 14 objects,
which means that an average of almost four trials were needed to correctly recognize an
object. This means that the system needed to learn about three sets of predicted labels
for the object in order to robustly recognize it in future trials. One particular problem
this creates is the large number of objects that exist in the knowledge base. After having
learned many objects, the query for a particular object can lead to 10 to 20 inferred
solutions (some with multiple entries). In some cases, almost all trained objects appear
in the answers from the knowledge base. One GURLS guess and three system guesses are
not enough to retrieve the correct object, even if it is in the inferred objects. The reason
for the large amount of inferred objects is the larger number of trials we performed for
each object. Thus, we learned a different set of predicted labels multiple times. In every
case, the predicted labels are different than before due to the inconsistency of the GURLS
classifiers during recognition.
The results show that the reasoning system also improves the recognition performance
achieved by GURLS only. However, the resulting performance of recognizing unknown
objects is below 26%, which makes it a lot of manual work to teach the robot to learn
new objects. In a few cases, the system fails to recognize the correct object because of the
large number of inferred objects. One solution to overcome this problem is to use a better
machine learning classifiers, such as our ICS-CaffeNet models, and have a higher number
of labels for each attribute. This gives each object in the database unique characteristics.
Following this approach, each query will result in only one or a few inferred objects, which

4.2. ENHANCED DEEP NETWORK RESULTS 83

results in a much higher system performance.

Chapter 5

Discussion

In this work, we presented our experiments and analyzed the results in detail to extract
important insights into how well our algorithms performed. In this chapter, we discuss our
findings: we first interpret our results compared to our expectations based on related work
and previous experiments. We provide an overview about the key results and give expla-
nations to possible causes and consequences. In the next section, we describe limitations
of our research work. Suggestions for possible future research are made in the last section.

5.1 Interpretation of results

Because deep learning algorithms achieve close-to-optimal results for many object recog-
nition tasks, we expected and achieved very high performance of our models trained on
objects. A much more challenging task is to learn attributes and affordance from our
relatively small dataset and generalize the learned relationships on unknown data. On
the test set, the ICS-CaffeNet models trained on objects and contexts achieved accuracies
between 68 and 93 percents. GURLS classifiers scored lower accuracies. Although the
ImageNet-trained ICS-CaffeNet functions as a deep feature extractor and separates the
features in a high dimensional space, the GURLS’s underlying RLS loss function is not
able to generalize the learned concepts. The problem is that multiple settings within our
dataset makes it more difficult for the linear RLS loss function to differentiate between the
classes.
Among known and unknown objects, material and shape were the best attributes which
could be visually recognized from the images. The results on unknown objects indicate
that color could not be generalized. This is surprising as we included objects with differ-
ent colors in one category to weaken the relationship between learned objects and learned
colors. Consequently, more objects per color are needed to improve the recognition accu-
racy. The values for affordance indicate that it is not possible to predict the affordance
of an unknown object in a single image. Prior knowledge about the object is required,

84

5.1. INTERPRETATION OF RESULTS 85

or semantic reasoning about other attributes could be used to infer the affordance. For
example, the attribute ”has parts” could infer that a cup can be used for ’holding’ because
of a recognized handle.
To prevent overfitting on a small dataset, it is required to freeze all layers of the net-
work except the last one during training. Otherwise, the network learns and optimizes its
parameters on the noise of the training data and does not ”understand” the underlying
relationship. Visualizations show that the learned features of a finetuned ICS-CaffeNet
model are more distinctive than the features of an overfitted model, due to the larger and
more diverse ImageNet dataset. In contrast to the overfitted model, the finetuned model
is able to generalize the learned relationships on unknown data.
We created the new dataset TUM-ICS, which contains 23 object classes within 11 object
categories. It provides a greater variety of labeled attributes than the iCubWorld28 dataset,
which is beneficial for training our models on contextual information. The crosstesting ex-
periment proves that the reason we obtained poor performance with iCubWorld28-trained
models on test images from another setting is due to overfitting. In the beginning of our
experiments, we falsely assumed that the background, room settings and lighting condi-
tions were the main cause for the lower classification accuracies.
Heatmaps indicate that our models look both on the object and the supervisor’s hand in
the images. However, when no hand can be seen in the camera’s field of view, the heatmaps
highlight only the areas around the object. To ensure that learning occurs on the objects
and not on the hand positions, we included images into our dataset which show our objects
without scene-disturbing hands. We conclude from the high classification performance that
the models have learned to distinguish between the classes based on the characteristics of
the shown objects.

Both the deep learning network and the proposed enhanced deep network are able to
recognize all known objects in the final experiment. However, the stand-alone deep
learning network has one drawback despite its performance: it fails when the object is
unknown. In contrast, our system is able to learn the new object based on the object’s
contextual information. In the CNN version, every object could be learned and recognized
by the system in no more than three trials. Although the system is not able to recognize
an unknown object in the first trial, the system learns it and is able to recognize it in one
of the next trials. Because the GURLS classifiers perform worse than the deep learning
models, the recognition performance of the enhanced network on known objects was lower.
In this case, the reasoning system improves the overall recognition accuracy significantly.
Even if the predicted labels are wrong, our system enables the robot to learn the object
with the predicted labels and recognize it in a later trial. Figure 5.1 provides an overview
of the benefits of the enhanced deep network.

86 CHAPTER 5. DISCUSSION

Comparison

Deep Learning Enhanced Deep Network

Recognizes known obj ✓ ✓

Performance known obj (%) 85 98

Ability to learn unknown obj ✗ ✓

Recognizes unknown obj ✗ ✓

Performance unknown obj (%) 0 65
Considers visually similar objs ✓ ✓

Considers context: material ✗ ✓

Considers context: shape ✗ ✓

Considers context: color ✗ ✓

Considers context: affordance ✗ ✓

Considers contextually-similar objs ✗ ✓

Recognizes obj w/ wrong prediction ✗ ✓

Improves recognition w/ semantics ✗ ✓

Total Score 2 13

Table 5.1: Comparison between the standalone deep learning network ICS-CaffeNet, which
was the best-performing machine learning method in our experiments, and our proposed
enhanced deep network. This overview summarizes the overall benefits of the proposed
system design. The system improves the recognition of known objects and enables the
robot to learn new objects by including contextual information in the recognition process
with semantic reasoning.

5.2 Limitations of the proposed method

The combination of deep learning with semantic reasoning is a very good approach to give
cognitive systems the ability to understand and interpret objects within an environment.
Nonetheless, applying deep learning in robotics also provides drawbacks and limitations.
Although our collected and multi-labeled dataset is among the most important enablers
of our system, it also embodies a limiting factor. For our use case, the limiting factor
is not primarily the number of our training images, but the variety of different objects
with distinctive and unique attributes which we used for training. If an attribute or label
does not exist in our initial dataset, it is not possible to predict this class on unknown
objects. In a dataset, each represented class of an object or attribute must have several
different examples to ensure that the right relationships can be learned. Otherwise, a
correlation between the recognized object class and the detected attribute exists, as we
have experienced during our first tests with e.g. the object ’Apple’ and the color ’Green’.
Including more objects per category with different attributes solves this problem.
Learning new objects on-line using our enhanced deep network requires human supervision.

5.3. OUTLOOK 87

If no teacher, user, or co-worker is present, the system can not be used to teach our robot
new objects. Supervision of our system requires either reading or listening to the robot’s
speech output and interacting with the robot via text input. When the robot learns a
new object, the corrected labels must be provided by the supervisor. Enabled speech
recognition on the robot or further automation of the object learning process could reduce
the amount of effort needed from the teacher.
When the classification output is false and changes during the learning of an object,
our enhanced deep network learns the unknown objects multiple times with different
predicted labels. This enables the robot to recognize the object in the future, even if the
classification fails. On the other hand, it is a problem if many objects are inferred that
have been learned with many attributes. These objects with the same predicted (but not
true) attributes make it hard to query and retrieve the correct object from the knowledge
base. To prevent this, we equipped our system with four guesses the robot is allowed to
make during testing. Because our deep learning networks predict very accurately, the
system learns the new objects very fast. On the other hand, our experimental results
of GURLS show that in some cases the number of guesses is not enough. This happens
especially if the classification fails and many objects have been learned. Additionally,
objects in the knowledge base are prioritized which have true labels. That means, if the
correct object could be inferred in our reasoner with the same predicted labels such as e.g.
’Plate’ has as true labels, the solution ’Plate’ has a higher priority than the new object.
This problem can be solved by either increasing the number of system guesses, introducing
a larger number of unique attributes and/or labels, or using more accurate classifiers.
Lastly, simultaneously recognizing objects and contextual information with deep learning
requires computation power. Because of our technical equipment, this issue has not been a
problem for us in our research experiments. However, for autonomous mobile robots which
have very limited energy resources and/or low-performing CPU/GPUs, it is not possible
to use deep learning in robotics (yet). Specialized hardware and current advances in effi-
cient computing architectures for deep learning will resolve this problem in the near future.

5.3 Outlook

The performance of our overall system is highly dependent on the 1) deployed algorithms,
2) the dataset which we use for training, 3) our overall system architecture, and 4) the
amount of required supervision. Each of these points provides a starting point to increase
the system performance by improving only one of them. Theoretically, by using a better
model, a dataset which contains twice as many objects and labels per category, and a
slightly changed system architecture, we could very likely achieve an incremental increase
in system performance.
However, the goal of a promising follow-on research project would not be to gain a small
percentage increase in performance. The goal of this thesis is to demonstrate that combin-

88 CHAPTER 5. DISCUSSION

ing deep learning with semantic reasoning improves the object recognition performance of
a robot and enables to learn new objects on-line. Our results indicate and prove that our
proposed system enriches the robot’s visual recognition capabilities. Consequently, new
ways need to be found to overcome the necessary hurdles which prevent the adoption of
similar perception systems in today’s robotics.
A promising approach would be to provide one common, but modified ImageNet-trained
model. For each image, the network predicts not only the object but also the contextual
information. It is enough and much more efficient to use one deep learning network to
predict an object’s attributes. However, as we have experienced during the experiments,
the classification of this network on known and unknown objects will not always be cor-
rect. Here, the approach from this thesis could be used to learn new objects based on the
predicted labels. Human supervision could be reduced by decreasing the involvement of
the teacher and substituting it with a cloud-based system. Through parallel processing
of large amounts of data, the cloud-system is able to more accurately predict an object
class than the robot. When a new object is learned by a robot, certain objects can be
synchronized with the cloud and the knowledge can be shared among the robots.
The application of natural language processing algorithms in robotics could further make
the human-robot interaction more natural. Teaching robotic systems to learn new objects
or tasks can be performed in a gamified manner with speech commands.
For the reasoning part, accessing the internet as a knowledge resource could significantly
increase the object learning capabilities. Based on the existing KnowRob ontology, learned
objects can be easier integrated and grouped within the ontology. By following this ap-
proach, the knowledge base can be extended to many 100s, 1000s or millions of objects
with specifically labeled-attributes. The technical potential of utilizing deep learning net-
works and semantic reasoning to learn about object properties and the robot’s environment
could be fully leveraged. Knowledge sharing among robots can make the inferred knowl-
edge available to all robots.
Based on this outlook, promising future research could involve how natural language pro-
cessing can be used to make the supervision easier. Open-source deep learning networks
which predict object and contextual information would be beneficial to enhance the visual
recognition performance in robotics. From an architectural point of view, research also
needs to answer which role the internet can play to enhance a robot’s learning capabilities
without making the robot dependent on it. Knowledge sharing across the cloud is very
promising, but it is important to find out to which degree a robot should rely on the knowl-
edge which is inferred locally compared to updates it receives from the cloud. Therefore,
”knowledge fusion” and semantic reasoning are needed to update the available knowledge
and enable a robot to autonomously and intelligently act in an environment.

Chapter 6

Summary and Conclusion

In this thesis, we presented and analyzed deep learning algorithms that are trained on
objects, attributes and affordances. We combine deep learning and semantic reasoning
techniques to improve a robot’s visual recognition capabilities and teach iCub to recognize
new objects based on contextual information.
To achieve our goal, we first evaluated the performance of finetuned convolutional neural
networks and RLS classifiers, which are trained on extracted high-dimensional feature
vectors. For this analysis, two datasets are used for training and testing, namely the
iCubWorld28 and the introduced TUM-ICS dataset. For both evaluated datasets and all
metrics, analysis shows that the deep learning models were able to generalize the learnings
and achieved better results than RLS classifiers. Visualizations demonstrate that deep
networks can detect the relevant parts of an image and extract semantic features from our
dataset.
Lastly, we proposed and compared two versions of enhanced deep networks that combine
the benefits of machine learning algorithms with semantic reasoning techniques. The results
validate that the systems improve the overall recognition accuracy and learning capabilities
of our iCub robot. For known and unknown objects, the recognition performance improved
from 85% to 98% and from 0% to 65%, respectively. Even if the classifiers’ predictions are
wrong, the system makes it possible to recognize the shown object.
Although human supervision is required, robotic systems benefit from this system due
to the evidence that semantic reasoning techniques enhance stand-alone machine learning
algorithms. In the future, concepts of our system can be adapted to enrich autonomous
perception systems with contextual understanding and on-line learning capabilities of new
objects.

89

List of Figures

2.1 Yann LeCun is considered as the ’father’ of convolutional neural networks.
The image shows the famous LeNet-5 [30], which is applied to document
recognition. A typical convolutional neural network consists of several non-
linear layers. The input is an image and the output is a vector. The output
vector contains the probability of the image belonging to each class. This
network has four different types of layers which are named as: ’convolution’,
’subsampling’, ’full connection’, and ’gaussian connection’. This network
was introduced in 1998. Since the introduction of AlexNet [6] in 2012,
networks are deeper and use dropout to reduce overfitting. 8

2.2 End-to-end learning with deep convolutional neural networks. Top: Tradi-
tional approach. Interest points are detected with e.g. SIFT and described
in 128 dimensional descriptors. Classifiers such as SVM can be used to learn
and predict from these features. Bottom: State-of-the-art approach since
2012. The object recognition pipeline is learned end-to-end with deep con-
volutional neural networks, which eliminates hand-engineering of features.
The nets are trained with backpropagation. The figure is inspired by: [35] . 10

2.3 The principle of end-to-end learning, which is achieved by forward passes
and backpropogation. Source: [38] . 11

2.4 This visualization shows that a neural network layer consists of several
stages: 1) Convolution, 2) ReLU, 3) Max Pooling. Normalization is not
applied in this layer. This Figure is similarly shown in [29]. 12

2.5 Max pooling. Pooling reduces the number of parameters by applying pooling
units over 4 non-overlapping regions of the image, as the authors of [39]
describe. 13

2.6 An illustration of the architecture of Krizhevsky’s network, showing the
separation in blocks for two GPUs running in parallel. One GPU runs the
blocks at the top of the figure while the other runs the blocks at the bot-
tom. The convolution, max-pooling and normalization operations take place
between the blocks. The used filtering kernels of each layer are illustrated
as cuboids in the previous layer. In this figure, the block’s notations are
three-dimensional: a block of size 13×13×192 is equivalent to 192 feature
maps of size 13×13. Source: [6, 28] . 15

90

LIST OF FIGURES 91

2.7 ImageNet test images with the five most probable labels. The correct label
is shown with a red bar (if it is in the top 5). Source: [6] 17

2.8 The relocalization results for Alex Kendall’s deep convolutional neural net-
work camera pose regressor [45]. Top: input images. Middle: predicted
camera poses of the corresponding visual reconstructions. Bottom: input
images are shown again with middle images overlaid in red. 18

2.9 SegNet Architecture. The network is trained pixel-wise and segments the
road scene in 11 different class color codes. Source: [47] 19

2.10 Example images for SegNet. The road scene images are segmented in 11
different class color codes. Source: [47] . 19

2.11 Google’s Neural Image Caption Generator [15], which consists of GoogLeNet
[7] (top) and a language generating RNN (middle), is used to describe the
content within images in sentences. Examples are shown in the bottom. . . 20

2.12 Four images are shown with associated questions and answers from the Vi-
sual7W dataset. The system provides correct answers to the questions given
the input images. Source: Facebook AI Research [49] 21

2.13 Visuomotor policy architecture. Source: [19]. 22

2.14 The visualization shows the result of a dimensionality reduction of high-
dimensional features reduced to a two-dimensional subspace of the data.
The deep features illustrate that deep networks are very effective as feature
extractors. Source: [55] . 24

2.15 The geometric interpretation of PCA for k = 2. The first principal com-
ponent, which is the eigenvector corresponding to the largest eigenvalue, is
colored in red. The second principal component is orthogonal to the first
and is colored in green. These principal components contain as much of the
original variance as possible for two dimensions. Source: [56] 25

2.16 Overview of the t-SNE algorithm in pseudo-code. Source: [59] 26

2.17 Visualizations of the MNIST dataset with 6,000 handwritten digits. The
t-SNE algorithm (top left) is able to provide the best two-dimensional map
compared to the Sammon (top right), Isomap (bottom left), and LLE (bot-
tom right) algorithms. Source: [59] . 27

2.18 The methodology by the authors of [26]. Left image: the attribute-based ap-
proach allows to describe unknown objects with textual descriptions. Right
image: extracted features of the image are used to train attribute classifiers.
These can make predictions about attribute classes on unknown object cat-
egories. For each of the evaluated attributes, the authors selected beneficial
features for training the classifiers. 28

2.19 The three perspectives about affordances. 1) Observer, 2) Agent, and 3)
Environmental. Source: [67] . 30

2.20 Visual recognition pipeline proposed by IIT’s iCub team. Source: [52] . . . 31

2.21 RoboSherlock. Overview of the system. Source: [79] 33

92 LIST OF FIGURES

3.1 Researchers from IIT were the first who explored the use of deep convolu-
tional neural networks for teaching iCub to recognize new objects [52]. . . 35

3.2 Our iCub robot. We tested our system on the humanoid robot platform iCub
at the Institute for Cognitive Systems at TUM. Top left: iCub in standby-
mode. Top right: Robot learns to recognize a laptop. Bottom left: We
controlled and supervised the robot learning on 4 displays with a PC (Intel
i7 CPU with 8 cores, nvidia GTX 750 TI GPU, 16GB RAM), one laptop,
and speakers/headphones for the speech output. Bottom right: Alternative
view on the experimental setup for recognizing a new object. 36

3.3 Comparison of popular deep learning frameworks [82]: Core language is the
main library language, while bindings have an officially supported library
interface for feature extraction, training, etc. CPU indicates availability of
host-only computation, no GPU usage (e.g., for cluster deployment); GPU
indicates the GPU computation capability essential for training modern CNNs. 38

3.4 Test accuracy and test loss of our deep learning model finetuned to recognize
objects. We trained the network for 10 epochs. All layers except the FC 8
layer were kept frozen during training. Thus, the performance reached high
values very quickly, at about 1000 iterations. 39

3.5 KnowRob Overview. This overview illustrates the different components in
the knowledge processing system which are needed for knowledge acquisi-
tion, representation in OWL, and reasoning. Source: [84]. 40

3.6 KnowRob Upper Ontology. This ontology contains the available knowledge
of a robot, in which the robot can perform semantic reasoning. Source: [88] 41

3.7 ImageNet. This collage shows one picture for each of the 1000 classes.
Source: [96] . 42

3.8 iCubWorld28 example images. One category consists of four classes, i.e.
’Plate1’, ’Plate2’, ’Plate3’, ’Plate4’ are four classes and they belong to the
same category Plate. This collage shows one picture for each of the 28 classes
and 7 object categories. Source: [52] . 43

3.9 ICS DATASET. This collage shows one picture for each of the 11 classes.
The dataset was obtained in three different settings: 1) white background,
2) table, and 3) table with white background. The images shown in the
first setting are taken with low-resolution cameras, images in the second
and third setting are acquired with high resolution cameras. This is done
because better lighting conditions were required for the black table. In the
first setting, the objects are held closer to the cameras than in the second
and third settings. 47

3.10 OWL Ontology. This tree illustrates the prior knowledge our robot iCub
has at the beginning of our experiments. Object properties describe the
connections between objects, attributes, and affordance. After learning a
new object, the knowledge base is expanded by the new object with its
corresponding attributes. 51

3.11 Caffe and knowledge reasoning. 52

LIST OF FIGURES 93

3.12 GURLS and knowledge reasoning. The GURLS classifiers are trained on
extracted 4096-dimensional feature vectors. 52

3.13 System overview from a UX/UI perspective. This example shows the version
with ICS-CaffeNet. We have also developed the system version with the
ImageNet-trained model and GURLS classifiers. The shown object to the
robot can either be known or unknown. iCub makes guesses based on the
predicted labels by ICS-CaffeNet and queries to the knowledge base. When
the robot guesses the correct object or a new object has been learned, the
program restarts from the beginning. 53

4.1 Confusion Matrix of iCubWorld28. Misclassifications only occur within the
same categories, especially between different cups, sprayers and plates. This
means, for example, ’Cup1’ is recognized instead of ’Cup2’. Based on this
finding, reducing the number of classes in this dataset from 28 to 7 classes
improves the performances of the tested algorithms. 58

4.2 An example how low accuracies were obtained in this section. Top: The
performance is high for an iCubWorld model and an iCubWorld dataset.
Bottom: The accuracy is low for the same model tested on images from our
lab environment. 62

4.3 Testing four images from the TUM-ICS dataset with the corresponding mean
image file on finetuned models from different datasets. 63

4.4 Overview of the performed crosstesting experiment. The iCubWorld model
and TUM-ICS model are CaffeNets which are pretrained on ImageNet and
finetuned on the respective datasets. The models are tested on both their
own and opposite dataset. This experiment is done to evaluate how good
the models perform on images from different experimental settings. Four
tests are done in total. The TUM-ICS model can either be trained on 10
classes or 11 classes (including class ’Background’). The latter models are
compared in Table 4.12. 66

4.5 Visualization of 16,500 4096-dimensional feature vectors reduced to 2 dimen-
sions. The used t-SNE dimensionality reduction technique is unsupervised,
thus it does not consider the labels during the optimization. 70

4.6 Our generated CAM heatmaps, produced with the pretrained GoogLeNet
network from [99]. The shown objects are from the classes ’Cup’, ’Sponge’,
’Cleaning Cloth’, ’Background’, and ’Smartphone’. The left images are from
the robot camera. The five images shown next to the robot camera image
on the right are activation maps. The heatmaps highlight the regions where
the convolutional neural network looks at when classifying the image. . . . 72

4.7 Layer Visualizations: Overfitted vs. Finetuned. The left side in the figure
represents selected layers of the overfitted model, the right side shows the
same layers of the finetuned model. Note the different learned filters on the
top right images: the finetuned features are more distinctive. The overfitted
model falsely predicts ’Plate’ instead of ’Cup’. 75

94 LIST OF FIGURES

4.8 Unknown objects. The shown objects are put on the black table and are
tested with both our finetuned ICS-CaffeNets and our proposed system. Be-
ginning from the left, the objects are from the classes: ’Bowl’, ’Box’, ’Dis-
play’, ’Glass’, ’Headphones’, ’Ice Tea’, ’Keyboard’, ’Kindle’, ’Kiwi’, ’Laun-
dry Detergent’, ’Lemon’, ’PC Mouse’, ’Paprika’, ’Soap’, ’Soap Box’, ’Towel’,
’Waterbottle’, ’Watermelon’. Not displayed but also used for learning are
’Book’, ’Cornflakes’, and ’Sprayer’. 76

4.9 The performance of ICS-CaffeNet on attributes and affordance is compared
on a set of extra images of known (red line) and unknown (yellow line) ob-
jects on the same testing day. The models are trained on ’Known’ objects,
but on other images. The blue line represents the accuracy we obtained
on our test set. Top left: The materials ’Ceramic’ and ’Glass’ could not
be generalized on unknown objects. Top right: ’Cylinder’ obtains the low-
est accuracy. Bottom right: This chart illustrates that our dataset does
not have enough object classes with different colors. The accuracy for un-
known objects is very low. Bottom right: Because of the low accuracy for
both known and unknown objects, it becomes visible that it cannot be seen
in an image for which tasks an object can be used. The class ’Working’
(’Laptop’, ’Smartphone’, ’Kindle’, ’Keyboard’, ’Display’, ’Book’) obtains a
nearly perfect score. It is possible that other relationships have been learned
to distinguish these objects from the others. Possibly, because most of them
consist of ’Plastic’ material, have a screen and their shape is rectangular. . 78

List of Tables

3.1 Overview of iCubWorld28 objects with assigned labels. In total, there are 7
objects, 3 materials, 3 shapes, and 3 affordances. The models are not trained
for the attribute color. The dataset has no class ’Background’, which means
that no attribute can have the label ’None’. 44

3.2 Overview of all objects with assigned labels. In total, there are 11 objects,
6 materials, 4 shapes, 10 colors, and 5 affordances in the dataset. 45

3.3 The difference between true and predicted labels. The true labels are set
during definition of the object, either as initially declared and shown in
Table 3.2, or as specified in written form while a new object is being learnt.
The predicted labels are the outputs of the machine learning classifiers. . . 48

3.4 This Table briefly explains how objects are learned with the enhanced deep
network. The system predicts the labels for object, material, shape, color,
and affordance. If the object is unknown, the deep learning network is not
capable to recognize the correct class. The system always ’fails’ to recognize
a new object in the first ’trial’, as the first column in this table shows. When
the object is not recognized, we use the proposed learning mechanism to
learn both the predicted and user-corrected true labels with Prolog queries.
If the predictions are inaccurate, the predicted labels are different than the
true labels. An object is learned until it is recognized by the system in
either the first or second system guess. Two mock-up examples show how
this system is trained. When the object is detected, the cell is marked with
1, otherwise with 0. Glass is learned within two trials and Watermelon with
three trials. Immediately after the objects are learned, new objects are trained. 55

4.1 Overview of the iCubWorld28 datasets with all classes, categories and de-
fined labels. The attribute ’Color’ is not considered for this dataset. Four
object classes can be summarized into one object category, in which all
classes have the same attributes. The category ’Laundry Detergent’ illus-
trates this in more detail. The class names of the other objects are listed in
abbreviated form, but also contain four objects per category. 57

4.2 ICS-CaffeNet and GURLS on iCubWorld28. ICS-CaffeNet performed better. 57

95

96 LIST OF TABLES

4.3 iCubWorld: 7 classes. The deep neural network achieves the highest perfor-
mances. 59

4.4 Performance comparison with Pasquale et. al [52] from IIT. We re-
port higher results than IIT. The end-to-end trained ICS-CaffeNet model
achieved the highest performance, for both 7 and 28 classes. 60

4.5 The maximum number for objects that iCub is able to recognize on the
iCubWorld28 dataset is 4 objects using Pasquale et. al with 90% of confi-
dence. Our method obtains a better accuracy of identifying 18 objects with
the same 90% confidence. Notice, that when 7 classes are used instead of 28,
our method is able to recognize all 7 with 90% confidence. The performance
is compared with the Table from [52]. 60

4.6 iCubWorld: Attributes and Affordances. Both methods obtain very high
results. 61

4.7 iCubWorld28: We achieved low performance with an overfitted iCubWorld
model on test images from another setting. Figure 4.2 shows two image
examples. GURLS performed better due to the overfitted CNN. 62

4.8 Predictions of models trained on different datasets on the four test images
shown in Figure 4.3 from the TUM-ICS dataset. 63

4.9 The images in the validation set were used to compute the loss of the model
during the optimization. The images from the test set are independent
images used to quantify the performance of the model. 65

4.10 TUM-ICS: Attributes and Affordances. The performance on the validation
set is nearly optimal. On the test set, ICS-CaffeNet performs better, espe-
cially for the attributes material and shape. 65

4.11 Crosstesting: Object, material, shape, and affordance are tested in this ex-
periment. Because we use two different datasets and two different models,
there are 4 tests for which we perform the crosstesting experiment. The sec-
ond row describes from which dataset the tested images and corresponding
image mean file come from. The image mean files are important for classi-
fication because they are different for the datasets. The models which are
tested on this dataset are found in ’the third row. The names of the mod-
els describe on which dataset these models were trained. The iCubWorld
dataset consists of 7 classes, the TUM-ICS dataset has 11 classes (from
which we only use 7, corresponding to the 4 similar and 3 different). The
objects ’Cup’, ’Plate’, ’Dishwashing Detergent’, and ’Sponge’ are included in
both datasets. The category ”4 similar” contains the images from these ob-
jects of the corresponding dataset. ”3 different” includes objects which are
from the same dataset, but on which the tested models are not trained on.
Therefore, it is impossible for a deep learning network to correctly recognize
the object in the category ”3 different”. 66

LIST OF TABLES 97

4.12 Crosstesting experiment Add-On. This table compares the performances of
the TUM-ICS models trained on 11 classes (including class ’Background’)
and 10 classes (without class ’Background”). The results shown for the
model trained on 11 classes is the same as previously shown in Table 4.11. 68

4.13 Performance of our overfitted model: it performs worse than the finetuned
model but still well on recognizing known objects. However, it is not able to
generalize its knowledge on unknown objects. The finetuned model surpasses
the overfitted model in all but one benchmarks. 74

4.14 Performance of our finetuned ICS-CaffeNet and GURLS on known and un-
known objects. ICS-CaffeNet obtains the best results on object, material,
shape, and color. GURLS achieved a higher accuracy on affordance. For
both ICS-CaffeNet and GURLS, the attribute shape is the best metric. . . 77

4.15 ICS-CaffeNet and KnowRob. ICS-CaffeNet cannot recognize an object
which is unknown. Our reasoning system always fails in the first trial when
recognizing an unknown object, but learns it for the next tests. 80

4.16 Comparison between ICS-CaffeNet and ICS-CaffeNet with Semantic Rea-
soning. The performance of recognizing objects is compared on known and
unknown objects, both on the iCubWorld and TUM-ICS datasets. The
enhanced deep network is already trained on the unknown objects, as illus-
trated in the previous table. We tested each object class five times with our
on-line learning system. During the testing, the predicted attributes are not
learned. 81

4.17 GURLS and KnowRob. GURLS cannot recognize an object which is un-
known. The reasoning system always fails in the first trial when recognizing
an unknown object, but learns it for the next tests. 82

5.1 Comparison between the standalone deep learning network ICS-CaffeNet,
which was the best-performing machine learning method in our experiments,
and our proposed enhanced deep network. This overview summarizes the
overall benefits of the proposed system design. The system improves the
recognition of known objects and enables the robot to learn new objects by
including contextual information in the recognition process with semantic
reasoning. 86

Bibliography

[1] Michael Copeland. What is the difference between artificial intelligence, machine learn-
ing, and deep learning? https://blogs.nvidia.com/blog/2016/07/29/whats-difference-
artificial-intelligence-machine-learning-deep-learning-ai/, July 2016.

[2] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard, and
L. D. Jackel. Handwritten digit recognition with a back-propagation network. In
David Touretzky, editor, Advances in Neural Information Processing Systems (NIPS
1989), volume 2, Denver, CO, 1990. Morgan Kaufman.

[3] Y. LeCun, L. D. Jackel, B. Boser, J. S. Denker, H. P. Graf, I. Guyon, D. Henderson,
R. E. Howard, and W. Hubbard. Handwritten digit recognition: Applications of
neural net chips and automatic learning. In E. Sanchez-Sinencio and C. Lau, editors,
Artificial Neural Networks, pages 463–468. IEEE press, 1992.

[4] Q.Z. Wu, Y. LeCun, L. D. Jackel, and B.S. Jeng. on-line recognition of limited
vocabulary chinese character using multiple convolutional neural networks. In Proc.
of the 1993 IEEE International Symposium on circuits and systems, volume 4, pages
2435–2438. IEEE, 1993.

[5] Y. LeCun and Y. Bengio. Pattern recognition and neural networks. In M. A. Arbib,
editor, The Handbook of Brain Theory and Neural Networks. MIT Press, 1995.

[6] Alex Krizhevsky, Ilya Sutskever, and Hinton Geoffrey E. ImageNet Classification with
Deep Convolutional Neural Networks. Advances in Neural Information Processing
Systems 25 (NIPS2012), pages 1–9, 2012.

[7] Christian Szegedy, Scott Reed, Pierre Sermanet, Vincent Vanhoucke, and Andrew
Rabinovich. Going deeper with convolutions. pages 1–12.

[8] Ross Girshick, Jeff Donahue, Trevor Darrell, Jitendra Malik, and U C Berkeley. Rich
feature hierarchies for accurate object detection and semantic segmentation. 2012.

[9] Jonathan Long, Evan Shelhamer, and Trevor Darrell. [Slices] Fully convolutional
networks for semantic segmentation. Cvpr 2015, 2015.

[10] Matthew D. Zeiler and Rob Fergus. Visualizing and Understanding Convolutional

98

BIBLIOGRAPHY 99

Networks arXiv:1311.2901v3 [cs.CV] 28 Nov 2013. Computer Vision–ECCV 2014,
8689:818–833, 2014.

[11] Anh Nguyen, Jason Yosinski, and Jeff Clune. Deep Neural Networks are Easily Fooled:
High Confidence Predictions for Unrecognizable Images. 2014.

[12] Arnab Paul and Suresh Venkatasubramanian. Why does deep learning work? - A
perspective from group theory. CoRR, abs/1412.6621, 2014.

[13] H. W. Lin and M. Tegmark. Why does deep and cheap learning work so well? ArXiv
e-prints, August 2016.

[14] Nitin Indurkhya and Fred J. Damerau. Handbook of Natural Language Processing.
Chapman & Hall/CRC, 2nd edition, 2010.

[15] Oriol Vinyals, Alexander Toshev, Samy Bengio, and Dumitru Erhan. Show and tell: A
neural image caption generator. Proceedings of the IEEE Computer Society Conference
on Computer Vision and Pattern Recognition, 07-12-June-2015:3156–3164, 2015.

[16] Richard S. Sutton and Andrew G. Barto. Introduction to Reinforcement Learning.
MIT Press, Cambridge, MA, USA, 1st edition, 1998.

[17] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei a Rusu, Joel Veness,
Marc G Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg
Ostrovski, Stig Petersen, Charles Beattie, Amir Sadik, Ioannis Antonoglou, Helen
King, Dharshan Kumaran, Daan Wierstra, Shane Legg, and Demis Hassabis. Human-
level control through deep reinforcement learning. Nature, 518:529–533, 2015.

[18] David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van
Den, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot,
Madeleine Leach, Koray Kavukcuoglu, Thore Graepel, and Demis Hassabis. Mastering
the Game of Go with Deep Neural Networks and Tree Search. (1):1–37.

[19] Sergey Levine, Chelsea Finn, Trevor Darrell, and Pieter Abbeel. End-to-End Training
of Deep Visuomotor Policies. Arxiv, page 6922, 2015.

[20] Li Fei Fei. If we want machines to think, we need to teach them to
see. http://www.wired.com/brandlab/2015/04/fei-fei-li-want-machines-think-need-
teach-see/, 2015.

[21] Yoshua Bengio. Learning deep architectures for ai. Found. Trends Mach. Learn.,
2(1):1–127, January 2009.

[22] Olga Russakovsky and Li Fei-fei. Attribute learning in large-scale datasets.

[23] Victor Escorcia, Juan Carlos Niebles, and Bernard Ghanem. On the relationship
between visual attributes and convolutional networks. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pages 1256–1264, 2015.

100 BIBLIOGRAPHY

[24] Christoph H. Lampert, Hannes Nickisch, and Stefan Harmeling. Learning to detect
unseen object classes by betweenclass attribute transfer. In In CVPR, 2009.

[25] Vittorio Ferrari and Andrew Zisserman. Learning visual attributes.

[26] Ian Sheshadri, Aashish, Endres. Describing Objects by their Attributes. pages 1778–
1785, 2012.

[27] Iman Awaad, Gerhard K Kraetzschmar, and Joachim Hertzberg. Finding Ways to
Get the Job Done: An Affordance-Based Approach. International Conference on
Automated Planning and Scheduling (ICAPS), pages 499–503, 2014.

[28] Niklas Barkmeyer. Deep learning: Convolutional neural networks for object recog-
nition. TUM Advanced Seminar. Supervisor: Andreas Holzbach, TUM Institute for
Cognitive Systems, February 2015.

[29] Yoshua Bengio, Ian J. Goodfellow, and Aaron Courville. Deep learning. Book in
preparation for MIT Press, 2014.

[30] Yann Lecun, Leon Bottou, Yoshua Bengio, and Patrick Ha. Gradient-Based Learning
Applied to Document Recognition. (November):1–46, 1998.

[31] Receptive Fields in the Cat’s Visual Cortex Hubel and Wiesel.pdf.

[32] Kunihiko Fukushima. Biological Cybernetics. 202, 1980.

[33] Dan Cires and Ueli Meier. Multi-column Deep Neural Networks for Image Classifica-
tion arXiv : 1202 . 2745v1 [cs . CV] 13 Feb 2012 Multi-column Deep Neural Networks
for Image Classification. (February), 2012.

[34] Nitish Srivastava, Geoffrey E. Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan
Salakhutdinov. Dropout : A Simple Way to Prevent Neural Networks from Overfitting.
Journal of Machine Learning Research (JMLR), 15:1929–1958, 2014.

[35] Pieter Abbeel. Uc berkeley eecs. Research website.

[36] David G. Lowe. Distinctive image features from scale-invariant keypoints. Int. J.
Comput. Vision, 60(2):91–110, November 2004.

[37] Christopher K. I Williams. Learning With Kernels: Support Vector Machines, Regu-
larization, Optimization, and Beyond. Journal of the American Statistical Association,
98(3):489–489, 2003.

[38] Evan Shelhamer. This Business of Brewing : Caffe in Practice. Stanford course CS231.

[39] Deep learning tutorial. http://deeplearning.net/tutorial/. Accessed December 18th,
2014.

[40] University of Montreal Yoshua Bengio. Introduction to gradient-based learning.
http://www.iro.umontreal.ca/ pift6266/H10/notes/gradient.html. Accessed January
17th, 2015.

BIBLIOGRAPHY 101

[41] Geoffrey E. Hinton. Rectified linear units improve restricted boltzmann machines
vinod nair.

[42] Yann Lecun and Koray Kavukcuoglu. Convolutional Networks and Applications in
Vision. pages 253–256, 2010.

[43] Dan Cires, Ueli Meier, and Jonathan Masci. A Committee of Neural Networks for
Traffic Sign Classification. 1(1).

[44] Raia Hadsell, Pierre Sermanet, Jan Ben, and Ayse Erkan. Learning Long-Range
Vision for Autonomous Off-Road Driving. 1(1).

[45] Alex Kendall, C V May, and King College. Convolutional networks for real-time
6-DOF camera relocalization.

[46] Hugh Durrant-Whyte and Tim Bailey. Simultaneous localisation and mapping (slam):
Part i the essential algorithms. IEEE ROBOTICS AND AUTOMATION MAGA-
ZINE, 2:2006, 2006.

[47] Vijay Badrinarayanan, Alex Kendall, and Roberto Cipolla. SegNet: A Deep Con-
volutional Encoder-Decoder Architecture for Image Segmentation. The Astrophysical
Journal, 815:43, 2015.

[48] K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale
image recognition. CoRR, abs/1409.1556, 2014.

[49] Allan Jabri, Armand Joulin, and Laurens Van Der Maaten. Revisiting Visual Question
Answering Baselines. 2016.

[50] Mariusz Bojarski, Davide Del Testa, Daniel Dworakowski, Bernhard Firner, Beat
Flepp, Prasoon Goyal, Lawrence D. Jackel, Mathew Monfort, Urs Muller, Jiakai
Zhang, Xin Zhang, Jake Zhao, and Karol Zieba. End to end learning for self-driving
cars. CoRR, abs/1604.07316, 2016.

[51] Ryan Rifkin, Gene Yeo, and Tomaso Poggio. Regularized least-squares classification.

[52] G Pasquale. Teaching iCub to recognize objects using deep Convolutional Neural
Networks. pages 1–5, 2015.

[53] Rong-En Fan, Kai-Wei Chang, Cho-Jui Hsieh, Xiang-Rui Wang, and Chih-Jen Lin.
Liblinear: A library for large linear classification. J. Mach. Learn. Res., 9:1871–1874,
June 2008.

[54] Chih-Chung Chang and Chih-Jen Lin. Libsvm: A library for support vector machines.
ACM Trans. Intell. Syst. Technol., 2(3):27:1–27:27, May 2011.

[55] Jeff Donahue, Yangqing Jia, Oriol Vinyals, Judy Hoffman, Ning Zhang, Eric Tzeng,
and Trevor Darrell. DeCAF: A Deep Convolutional Activation Feature for Generic
Visual Recognition. Icml, 32:647–655, 2014.

102 BIBLIOGRAPHY

[56] Martin Kleinsteuber, Hao Shen, and Matthias Seibert. Information Retrieval In High
Dimensional Data. 2014.

[57] B. C. Moore. Principal Component Analysis in Linear Systems: Controllability, Ob-
servability, and Model Reduction. IEEE Trans. Automatic Control, AC-26:17–32,
1981.

[58] Jonathon Shlens. Shlens2006 PCATutorial. pages 1–13, 2005.

[59] L J P Van Der Maaten and G E Hinton. Visualizing high-dimensional data using
t-sne. Journal of Machine Learning Research, 9:2579–2605, 2008.

[60] Laurens Van Der Maaten. Learning a Parametric Embedding by Preserving Local
Structure. JMLR Proceedings vol. 5 (AISTATS), pages 384–391, 2009.

[61] Laurens Van Der Maaten and Geoffrey Hinton. Visualizing non-metric similarities in
multiple maps. Machine Learning, 87(November):33–55, 2012.

[62] Laurens Van Der Maaten. Accelerating t-sne using tree-based algorithms. The Journal
of Machine Learning Research, 15:3221–3245, 2014.

[63] Geoffrey E Hinton and Sam T Roweis. Stochastic neighbor embedding. Advances in
neural information processing systems, pages 833–840, 2002.

[64] Manik Varma and Andrew Zisserman. A statistical approach to texture classification
from single images. International Journal of Computer Vision, 62:61–81, 2005.

[65] Andrea Tacchetti, Pavan K Mallapragada, Matteo Santoro, and Lorenzo Rosasco.
GURLS: a Least Squares Library for Supervised Learning. (1):1–5, 2013.

[66] Ranjay Krishna, Yuke Zhu, Oliver Groth, Justin Johnson, Kenji Hata, Joshua Kravitz,
Stephanie Chen, Yannis Kalanditis, Li-Jia Li, David a. Shamma, Michael S. Bernstein,
Li Fei-Fei, Yannis Kalantidis, Li-Jia Li, David a. Shamma, Michael S. Bernstein, and
Fei-Fei Li. Visual Genome: Connecting Language and Vision Using Crowdsourced
Dense Image Annotations. Arxiv, page 44, 2016.

[67] James Jerome Gibson. The Theory of Affordances, 1977.

[68] E. Sahin, M. Cakmak, M. R. Dogar, E. Ugur, and G. Ucoluk. To Afford or Not to
Afford: A New Formalization of Affordances Toward Affordance-Based Robot Control.
Adaptive Behavior, 15:447–472, 2007.

[69] D.A. Norman. The Psychology of Everyday Things. The Psychology of Everyday
Things. Basic Books, 1988.

[70] Frank Van Harmelen Deborah L. McGuinness. Owl web ontology language overview.
W3C recommendation 10.2004-03, 2004:1–12, 2004.

[71] From SHIQ and RDF to OWL The Making of a Web Ontology Language. (0).

BIBLIOGRAPHY 103

[72] Franz Baader, Diego Calvanese, Deborah L. McGuinness, Daniele Nardi, and Peter F.
Patel-Schneider. The Description Logic Handbook: Theory, Implementation, and Ap-
plications. Cambridge University Press, 2003.

[73] Karinne Ramirez-amaro, Ewald Lutscher, Andreas Holzbach, and Gordon Cheng.
iCub @ ICS-TUM : Semantic Reasoning , Constrained Manipulation and Humanoid
Vision enable on the iCub. (June):2014, 2014.

[74] Karinne Ramirez-amaro, Eun-sol Kim, Jiseob Kim, Byoung-tak Zhang, Michael Beetz,
and Gordon Cheng. Enhancing Human Action Recognition through Spatio-temporal
Feature Learning and Semantic Rules. IEEE-RAS International Conference on Hu-
manoid Robots, pages 456–461, 2013.

[75] Jiseob Kim Byoung-Tak Zhang Michael Beetz Gordon Cheng Karinne Ramirez Amaro,
Eun-Sol Kim. Enhancing human action recognition through spatio-temporal feature
learning and semantic rules. In IEEE-RAS International Conference on Humanoid
Robots, Atlanta, USA, 2013. IEEE.

[76] Karinne Ramirez-Amaro, Michael Beetz, and Gordon Cheng. Understanding the in-
tention of human activities through semantic perception: observation, understanding
and execution on a humanoid robot. Advanced Robotics, 29(00):345–362, 2015.

[77] Gordon Cheng Karinne Ramirez-Amaro, Michael Beetz. Transferring skills to hu-
manoid robots by extracting semantic representations from observations of human
activities. Artificial Intelligence, 2015.

[78] E. Krause. Learning to recognize novel objects in one shot through human-robot
interactions in natural language dialogues. Artificial Intelligence, 2014.

[79] Author Names Omitted and Anonymous Review. ROBOSHERLOCK: Unstructured
Information Processing for Robot Perception. pages 1549–1556, 2015.

[80] Giorgio Metta, Lorenzo Natale, Francesco Nori, Giulio Sandini, David Vernon, Lu-
ciano Fadiga, Claes von Hofsten, Kerstin Rosander, Manuel Lopes, José Santos-Victor,
Alexandre Bernardino, and Luis Montesano. The iCub humanoid robot: An open-
systems platform for research in cognitive development. Neural Networks, 23:1125–
1134, 2010.

[81] Giorgio Metta, Paul Fitzpatrick, and Lorenzo Natale. YARP: yet another robot plat-
form. International Journal on Advanced Robotics Systems, 3(1):43–48, 2006.

[82] Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey Karayev, Jonathan Long, Ross
Girshick, Sergio Guadarrama, Trevor Darrell, and U C Berkeley Eecs. Caffe: Convo-
lutional architecture for fast feature embedding. 2014.

[83] Data Mining. The Elements of Statistical Learning. The Mathematical Intelligencer,
27:83–85, 2009.

104 BIBLIOGRAPHY

[84] Moritz Tenorth and Michael Beetz. KNOWROB — Knowledge Processing for Au-
tonomous Personal Robots.

[85] Moritz Tenorth, Dominik Jain, and Michael Beetz. Knowledge Representation for
Cognitive Robots. K{ü}nstliche Intelligenz, 24:233–240, 2010.

[86] Moritz M Tenorth. Knowledge Processing for Autonomous Robots. page 225, 2011.

[87] Moritz Tenorth, Ulrich Klank, Dejan Pangercic, and Michael Beetz. Web-enabled
Robots – Robots that use the Web as an Information Resource. Robotics & Automation
Magazine, IEEE, 18:58–68, 2011.

[88] Mortiz Tenorth. Overview of the knowrob upper ontology. Website.
http://www.knowrob.org/doc/knowrob taxonomy, August 2016.

[89] The importance of having data-sets., 2006.

[90] Yann LeCun. The mnist database of handwritten digits.
http://yann.lecun.com/exdb/mnist/.

[91] Alex Krizhevsky. Learning Multiple Layers of Features from Tiny Images. . . . Science
Department, University of Toronto, Tech. . . . , pages 1–60, 2009.

[92] Caltech 101 dataset. http://www.vision.caltech.edu/Image Datasets/Caltech101/.

[93] AD. Perona P. Griffin, G. Holub. The caltech 256. caltech technical report. Technical
report, Caltech, 2006.

[94] Mark Everingham, Luc Gool, Christopher K. Williams, John Winn, and Andrew
Zisserman. The pascal visual object classes (voc) challenge. Int. J. Comput. Vision,
88(2):303–338, June 2010.

[95] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma,
Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael S. Bernstein, Alexan-
der C. Berg, and Li Fei-Fei. Imagenet large scale visual recognition challenge. CoRR,
abs/1409.0575, 2014.

[96] Andrej Karpathy. What i learned from competing against a convnet on
imagenet. http://karpathy.github.io/2014/09/02/what-i-learned-from-competing-
against-a-convnet-on-imagenet/, September 2014.

[97] Intituto Italiano di Technologia. icubworld28 dataset. http://old.iit.it/projects/data-
sets.

[98] B Settles. Active learning literature survey. Technical report, University of Wisconsin-
Madison, 2009.

[99] Bolei Zhou, Aditya Khosla, Agata Lapedriza, Aude Oliva, and Antonio Torralba.
Learning deep features for discriminative localization. In Computer Vision and Pattern
Recognition, 2016.

	Contents
	Introduction
	Background and Related Work
	Convolutional Neural Networks
	Major Concepts
	Architecture
	New applications for deep learning

	Regularized Least-Squares Classification
	Dimensionality Reduction Techniques
	Principal Componant Analysis (PCA)
	t-Distributed Stochastic Neighbor Embedding (t-SNE)

	Attributes and Affordances
	Attributes
	Affordance

	Semantic Reasoning
	Related Experiments
	iCubWorld
	Visual one-shot learning
	RoboSherlock

	System Design
	Experimental Setup
	Software frameworks used for the development
	Caffe
	GURLS
	KnowRob

	Datasets
	ImageNet dataset
	iCubWorld28 dataset
	TUM-ICS dataset

	OWL Ontology
	Enhanced deep network

	Experiments and Results
	Object Recognition Performance
	Results on the iCubWorld28 dataset
	Results on the TUM-ICS dataset

	Enhanced deep network results
	ICS-CaffeNet and Semantic Reasoning
	GURLS and Semantic Reasoning

	Discussion
	Interpretation of results
	Limitations of the proposed method
	Outlook

	Summary and Conclusion
	List of Figures
	List of Tables
	Bibliography

