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Abstract— Explicit representations of robot knowledge are
necessary to achieve competent robotic agents capable of per-
forming variations of tasks. While state-of-the-art knowledge
representations exist and are necessary, they are insufficient,
as they are designed to abstract away from how actions
are executed. We argue that representations that extend to
subsymbolic motion and perception level are needed to fill in the
gap. We propose a knowledge infrastructure that supports these
representations and provides a web-based service for humans
and robots to easily access and exchange the knowledge.

I. INTRODUCTION

In 2002 Ronald Brachman gave a seminal talk titled
”Systems That Know What They Are Doing” [1] at the
symposium for the cognitive systems program of DARPA
— the DARPATech 2002. In this talk he was pushing the
idea of cognitive computer systems where he defined the
latter in the following way: ”A truly cognitive system would
be able to learn from its experience — as well as by being
instructed — and perform better on day two than it did on
day one. It would be able to explain what it was doing
and why it was doing it. It would be reflective enough to
know when it was heading down a blind alley or when it
needed to ask for information that it simply couldn’t get to by
further reasoning. And using these capabilities, a cognitive
system would be robust in the face of surprises. It would
be able to cope much more maturely with unanticipated
circumstances than any current machine can.” The DARPA
cognitive systems program was groundbreaking, creating
the Cognitive Assistant that Learns and Organizes (CALO)
system [2] and the Siri agent as one of its commercial
offsprings. The program was focusing on and limited to soft-
ware agents that assisted knowledge workers in cooperative
office work such as reading emails, organizing meetings,
project management etc. These systems had huge success
for symbolic information processing tasks. Eventually, these
developments led to the creation of the Watson system [3].

While these major advances were achieved in the symbolic
and text-based information processing world, nothing com-
parable has yet happened in the area of autonomous robots.
The need for having a similar revolution in the autonomous
robotics domain is more and more widely accepted in the
community, perhaps most explicitly spelled out in the article
by Gill Pratt on the ”Cambrian explosion” in robotics [4].

We believe that the big barriers in realizing robotic agents
that know what they are doing are the difficulty in modeling
action and behavior representations, and explicitly stating
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commonsense and naive physics knowledge that relates mo-
tions to their effects. We require cognitive agents to be able to
answer queries such as "How did the robot grasp an object?”,
”Where did it stand during the grasping action?”, etc. We
take the ability to answer such queries as the criteria of
being cognitive in the sense of Brachman’s definition. Being
able to answer these queries requires a formal representation
of actions, their effects, the motions they generate, the
intentions and beliefs of the robot, as well as the causal and
teleological relations between these concepts.

In order to obtain this knowledge, we propose that the
robotic agents record their experiences of interacting with the
world and annotate them with automatically built up sym-
bolic representations of this information. The experiences
are subsymbolic recordings of the robot’s sensor and motion
streams, annotated with a symbolic narrative. The latter is
generated by, in a way, making the robot talk to itself about
the decisions, reasoning and perceptions that it performs
during action execution, and time-synchronizing the resulting
story with the subsymbolic data. This enables robots to
perform semantic retrieval of their experiences. This means
that we can learn definitions of symbolic concepts that can
be formulated items of the narrative in terms of subsymbolic
data. For example, we can learn an answer to the query:
”Where should I stand to pick up an object successfully?”,
and the answer will be a geometric entity.

Our research agenda is to learn grounded models of
manipulation actions that are general in a way that they can
be transferred to and exchanged between different robots, and
to collect these generalized representations into a knowledge
base for a web-based knowledge service OPENEASE (Fig.1).
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Fig. 1. OPENEASE web interface (http://open-ease.orq)

II. KNOWLEDGE SERVICE QUERIES

The recorded experiences can be queried using a Prolog-
based language which expands to temporal logics reason-
ing. The heterogeneous experience data is hooked into the



temporal reasoner via procedural attachments to symbols
in the terminological knowledge base. The knowledge base
appears to be purely symbolic to the end user while internally
symbols may be computed on demand from heterogeneous
data sources such as sensor data.

Relevant entities such as objects and actions are termino-
logically described in the knowledge base, and can be queried
using partial entity descriptions, similar to SQL queries. This
enables, for example, to ask questions such as “Where did
the robot stand when it performed a put-down action?”:

Query ?

entity (Tsk, [an, action,

[type, putting -down-an-object],
[performed -by, [a, robot,
[part, [an object,

[type, mobile-base],
[name, Base]]]]]]),
occurs (Tsk, [_,End]),
entity (Base, [an, object,
[pose, Pose, during, End]]),

show (cube (mobile_base), [pose(Pose)]).

This query reads as follows: “Find an action Tsk that was
performed by a robot with mobile base Base, which ended
at the time instant End. Furthermore, compute the pose of
the mobile base at time instant End.” The answer to this
question is the set of bindings for variables appearing in the
query accompanied by the scene visualization:

“ |

Tsk = log:’PuttingDownAnObject_0’,
Base = robot:’MobileBase_pr2’,

Pose = pose ([TX,TY,TZ], [RW,RX,RY,RZ]),
End = 1396512613.0.

.-

Answer

Various aspects of actions covered by NEEMs can be
accessed through entity queries. For example, questions such
as “How did the robot move its end effector while performing
put-down actions?” can easily be stated as entity query:

Query ?
entity (Tsk, [an, action,
[type, putting -down-an-object],
[subaction, [an, action,
[type, release -grasp],
[body - part, Part],
[grasp -spec, Spec]lll),
occurs (Tsk, [Begin,End]),

entity (Part , [an, object ,
[type, gripper], . )
[trajectory , Tr, during, [Begin,End]]]),
show (Tr).

Which reads as: “Find an action Tsk during which an
object was put down, with a sub-action during which the
end effector Part was releasing the grasp according to the
grasp specification Spec, and which occured during the time
interval [Begin,End]. Furthermore, compute the trajectory Tr
of the end effector Part and visualize it.”

Tsk = log: ’PuttingDownAnObject_0’,

Part = robot:’ GripperLeft_pr2’,

Spec = objects:’GraspSpecification_0 ",

Tr = comp:’ Trajectory_GripperLeft_pr2_0",
Begin = 1396512603.0,

End = 1396512613.0.

.-

Answer

A. Generalizing Knowledge

Symbolically annotated experiences are comprehensive
recordings of actions from which learning problems can
be derived by filtering the experiences according to criteria
specified in entity queries. The queries need to be written
such that the data is relayed to context and task. Action
parameters over which to generalize can be determined
through clustering. The base pose for putting down objects
on a table, for example, can be learned from experiences that
capture successful put-down actions:

Query ?
findall (Tsk,
entity (Tsk, [an, action,
[type, putting -down-an-object],
[success , true],
[target -location , [an, object,
[type, table]]]],
Tsks).

III. CONCLUSION

Having semantic representations of actions available at
such detailed level, including subsymbolic motions and data
extracted from images, we expect all the decision problems
done by the robot to be eventually automatically turned into
supervised learning problems through issuing the respective
queries to the knowledge base.
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