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Abstract— With the recent rise of virtual reality head-
mounted displays and consumer-grade GPUs capable of high
quality rendering to stereo displays, we believe virtual reality
(VR) is a viable way to collect real information about human
behavior without the difficulties often associated with capturing
natural performances in a physical environment. For example,
estimating whether someone is grasping an object or simply
touching it. We present a VR environment for experimentation
with household tasks, like washing dishes or doing laundry,
paired with a semantic extraction and reasoning system able
to utilize data collected in real-time to learn new activities
from a human demonstrator. The learning system performs
continuous segmentation of the motions of the user’s hands
and simultaneously classifies known actions while learning new
ones on demand. This enhanced system produced more accurate
results over previous VR-based training systems, improving the
recognition of activities from 80% to 92% while learning un-
known activities from more complex and realistic scenarios. The
learning system then constructs a graph of all observed activities
and their relationships through continuous observations. The
resulting activity and task data is abstract enough to allow for
easy knowledge transfer from the VR learning environment to
a physical robot and is still detailed enough to be useful for the
robot’s planning process, which was verified by transferring
knowledge from several VR training sessions to a PR2 robot.
The robot was able to utilize the information learned in VR
to carry out multi-step tasks without requiring every step be
explicitly given in the instructions.

I. INTRODUCTION

To improve human-robot interaction and the understanding
of how to behave in human spaces, it is important to train
robots with examples of real human behavior. Constructing
physical training environments is often difficult and costly
(e.g. embedding accelerometers in objects which can moved,
or tagging all the objects with visual markers and calibrating
a tracking system covering the space), and there are safety
issues which need to be addressed if the space is shared
between both humans and robots. One solution is the use of
virtual reality (VR) environments, which allow for fast imple-
mentation of different scenarios[1]. The system presented in
[2] provided improved realism and accuracy over a previous
VR-based training system[3], but one of the key challenges
in utilizing VR environments is ensuring that information
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Fig. 1. VR Training Overview. Users demonstrate activities in VR, motion
& object information goes to a ROS Node to classify the user’s actions.

learned by a virtual agent can be transferred to a physical
robot and applied in the real world. Building on the work
in [2], an experiment was carried out to evaluate the utility
of the information learned in VR for a physical robot and
to determine whether it was sufficient to aid in a physical
robot’s task planning process.

Several users were recorded performing tasks related to
dish washing in VR. Fig 1 shows an overview of the
system used to track and classify their activities. This system
produces a set of observed activities and the ontology classes
of the objects used in each (using the default KnowROB[4]
ontology), as well as a graph of the task space explored
by the participants. In the task graphs, each node represents
an activity, edges represent observed transitions between
activities, and edge weights store the number of observations
of each transition. Over the course of many observations, the
resulting graph represents the task space utilized by observed
users during their performance in VR. These results were
given to a PR2 robot, which was then commanded to perform
some simple tasks related to dish washing.

II. METHOD AND RESULTS

The same motion segmentation and classification system
(CRobot Agent ROS Node’ in fig 1) used to analyze human
motions in VR was used, without modification, on the PR2
to allow the robot to estimate its own state. This enabled
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Fig. 2. A generated task plan. Green nodes were in the original command,
blue nodes were inferred from the structure of the Task Graph.

the robot to understand how its current actions related to the
overall task space, and to know which activities could be
performed from its current state. A simple motion planning
module built around a state machine was implemented as
a proof of concept, with states corresponding to activities
and a transition function ensuring the prerequisites for each
activity were met (e.g. closing the robot’s gripper to tran-
sition from Reaching for an object to Taking the object).
Complex activities (e.g. Washing) were assigned predefined
motions, developed with the aid of Movelt![5], which were
parameterized by the objects involved and associated with
the corresponding state in the state machine.

Using the graph of activity relationships, the steps nec-
essary to perform a specific activity can be determined by
finding a path from a node matching the robot’s current
state to one matching the desired activity. Given sparse
or incomplete instructions, the robot can then construct a
complete task plan by finding paths between each sequential
pair of steps in the instructions, as shown in fig 2. Paths with
the greatest number of observed transitions between nodes
were selected, so the robot would take the most frequently-
observed sequence of actions.

This was tested by presenting the robot with an assortment
of objects (shown in fig 3), some of which were related
to dish washing activities and some which were irrelevant.
Given a set of instructions like, ”wash a dish then store it in
the drying area” the robot first constructed a plan containing
the complete set of necessary steps for the requested task
(e.g. reach for and take a sponge, move the sponge to
the dish before performing a washing action, etc.), and
using the activity definitions learned from the VR training
sessions identified the objects to be used by matching their
ontology definitions to constraints in the activity definition
(e.g. if an activity specifies an object with the ontology class
”FoodVessel” should be used, the robot would be free to
choose a bowl or plate, but should not choose a sponge or
fork) . As long as the activities in the instructions were in the
robot’s knowledge base (i.e. they had been learned through
observations in VR) the robot was able to successfully carry
out tasks regardless of the number of steps involved or
whether the task required performance of additional activities
not explicitly included in the instructions.

A demonstration of PR2 utilizing the learned data is
included in the video from [2]:

https://youtu.be/feF13VZ-rew

Fig. 3. PR2 "washing” a dish.

III. CONCLUSION

The activity definitions and task graphs from individual
trials produced by the system described in [2] can be merged
through a simple process, allowing for many trials to be
aggregated into a single data set describing the demonstrated
activities and their relationships in the overall task space. The
activity definitions provide a straightforward method of iden-
tifying which objects in the environment can be used for an
activity, and the task graphs make an effective data structure
for high-level task planning (i.e. identifying which activities
should be performed, when they should be performed, and
which objects should be used). A complete solution also
requires a good sensory system (to locate and classify objects
in the environment) and a robust motion planning module
(to carry out the necessary physical movements), but for the
problem of planning this system functions well, even when
given incomplete instructions.
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