
Pillar Networks for action recognition
B Sengupta

Cortexica Vision Systems Limited
Imperial College London

London, UK
b.sengupta@imperial.ac.uk

Y Qian
Cortexica Vision Systems Limited

30 Stamford Street SE1 9LQ
London, UK

yu.qian@cortexica.com

Abstract—Image understanding using deep convolutional net-
work has reached human-level performance, yet a closely related
problem of video understanding especially, action recognition has
not reached the requisite level of maturity. We combine multi-
kernels based support-vector-machines (SVM) with a multi-
stream deep convolutional neural network to achieve close to
state-of-the-art performance on a 51-class activity recognition
problem (HMDB-51 dataset); this specific dataset has proved
to be particularly challenging for deep neural networks due
to the heterogeneity in camera viewpoints, video quality, etc.
The resulting architecture is named pillar networks as each
(very) deep neural network acts as a pillar for the hierarchical
classifiers.

I. INTRODUCTION

Video understanding is a computer vision problem that
has attracted the deep-learning community, notably via the
usage of the two-stream convolutional network [12]. Such a
framework uses a deep convolutional neural network (dCNN)
to extract static RGB (Red-Green-Blue) features as well as
motion cues from another network that deconstructs the optic-
flow of a given video clip. Notably, there has been plenty
of work in utilising different types of network architectures
for factorising the RGB and optical-flow based features. For
example, an inception network [15] uses 1 × 1 convolutions
in its inception block to estimate cross-channel corrections,
which is then followed by the estimation of cross-spatial and
cross-channel correlations. A residual network (ResNet), on
the other hand, learns residuals on the inputs [5].

There are obvious problems that have impeded high accu-
racy of deep neural networks for video classification. Videos
unlike still images have short and long temporal correlations,
attributes that single frame (image) convolutional neural net-
work fail to discover. Therefore, the first hurdle is designing re-
current networks and feedforward networks that can learn this
latent spatio-temporal structure. Nonetheless, there has been
much progress in devising novel neural network architecture
since the work of [7]. Another problem is the large storage
and memory requirement for analysing moderately sized video
snippets. One requires a relatively larger computing resource to
train ultra deep neural networks that can learn the subtleties in
temporal correlations, given varying lighting, camera angles,
pose, etc. It is also difficult to utilise classical image aug-
mentation techniques on a video stream. Additionally, video-
based features (unlike in static images) evolve with a dynamics

BS and YQ contributed equally to this paper.

across several orders of time-scales. To add to this long
list of technical difficulties, is the problem of the semantic
gap, i.e., whether classification/labelling/captioning can lead
to “understanding” the video snippet?

We improve upon existing technology by combining Incep-
tion networks and ResNets using a Support-Vector-Machine
(SVM) classifier that is further combined in a multi-kernel
setting to yield, to the best of our knowledge, an increased
performance on the HMDB51 data-set [9]. Notably, our work
makes the following contributions:

• We introduce pillar networks that are deep as well as wide
(depending on use-case), enabling horizontal scalability

• Ability to classify video snippets that have heterogeneity
regarding camera angle, video quality, pose, etc.

II. METHODS

In this section, we describe the dataset, the network archi-
tectures and the multi-kernel learning based support-vector-
machine (SVM) setup that we utilise in our four-stream dCNN
pillar network for activity recognition. We refer the readers to
the original network architectures in [18] and [10] for further
technical details. While we do not report the results here,
classification methodologies like AdaBoost, gradient boosting,
random forests, etc. have classification accuracy in the range
of 5-55% for this dataset, for either the RGB or the optic-flow
based features.

A. Dataset

The HMDB51 dataset [9] is an action classification dataset
that comprises of 6,766 video clips which have been divided
into 51 action classes. Although a much larger UCF-sports
dataset exists with 101 action classes [14], the HMDB51 has
proven to be more challenging. This is because each video
has been filmed using a variety of viewpoints, occlusions,
camera motions, video quality, etc. anointing the challenges
of video-based prediction problems. The second motivation
behind using such a dataset lies in the fact that HMDB51 has
storage and compute requirement that is fulfilled by a modern
workstation with GPUs – alleviating deployment on expensive
cloud-based compute resources.

All experiments were done on Intel Xeon E5-2687W 3
GHz 128 GB workstation with two 12GB nVIDIA TITAN
Xp GPUs. As in the original evaluation scheme, we report
accuracy as an average over the three training/testing splits.



Fig. 1. The Pillar Network framework: In this specific instantiation, there are two types of networks, namely ResNets and Inception networks that factorise
static (RGB) and dynamic (optic flow) inputs obtained from the video. Whilst we do not use additional case specific deep tensors for the present work, under
such a multi-kernel learning framework, additional feature tensors (hand-crafted or otherwise) can be learnt, according to the specific need of the problem.
Ki refers to the individual kernels for the input video that are subsequently combined to yield a single kernel K for the SVM.

B. Inception layers for RGB and flow extraction

We use the inception layer architecture described in [18].
Each video is divided into N segments, and a short sub-
segment is randomly selected from each segment so that a
preliminary prediction can be produced from each snippet.
This is later combined to form a video-level prediction. An
Inception with Batch Normalisation network [6] is utilised for
both the spatial and the optic-flow stream. The feature size of
each inception network is fixed at 1024. For further details on
network pre-training, construction, etc. please refer to [18].

C. Residual layers for RGB and flow extraction

We utilise the network architecture proposed in [10] where
the authors leverage recurrent networks and convolutions over
temporally constructed feature matrices as shown in Fig. 1.
In our instantiation, we truncate the network to yield 2048
features, which is different from [10] where these features
feed into an LSTM (Long Short Term Memory) network. The
spatial stream network takes in RGB images as input with a
ResNet-101 [5] as a feature extractor; this ResNet-101 spatial-
stream ConvNet has been pre-trained on the ImageNet dataset.
The temporal stream stacks ten optical flow images using the
pre-training protocol suggested in [18]. The feature size of
each ResNet network is fixed at 2048. For further details on
network pre-training, construction, etc. please refer to [10].

D. Support Vector Machine (SVM) with multi-kernel learning
(MKL)

The basis of the second stage of our classification method-
ology rests on a maximum margin classifier – a support vector
machine (SVM). Given training tuples (xi, yi) and weights w,
under a Hinge loss, a SVM solves the primal problem [11],

min
w,b,ζ

1

2
wTw + C

n∑
i=1

ζi

s.t. yi
(
wTφ (xi) + b

)
> 1− ζi

ζi > 0, i = 1, . . . , n

(1)

As is customary in kernel methods, computations involving
φ are handled using kernel functions k (xi, xj) = φ (xi) ·
φ (xj). In all of our experiments, a Radial Basis Function
(RBF) based kernel has been used. C (fixed at 100) is the
penalty parameter and ζ is the slack variable.

For multiple kernel learning (MKL), we follow the recipe
by [13] (cf. [19]) and formulate a convex combination of sub-
kernels as,

κ (xi, xj) =

K∑
k=1

βkkk (xi, xj) (2)

where, βk > 0 and
K∑
k=1

βk = 1. As shown in [13], we then

formulate Eqn. 2 as a semi-infinite linear optimization prob-
lem. The value of β is obtained using a linear programming
(LP) solver.

III. RESULTS

We use 3570 videos from HMDB51 for training the SVMs
under a multiple kernel learning (MKL) framework. Utilising
four networks yield four features tensors that are fused in
steps, to form a single prediction (Figure 1). The feature
tensors for both RGB and Flow are extracted from the output
of the last connected layer with 1024 dimension for the



TABLE I
SVM ACCURACY RESULTS

Inception Network ResNet Kernel Fusion
optical flow RGB MKL optical flow RGB MKL

split-1 61% 54% 68.1% 58.5% 53.1% 63.3% 71.7%
split-2 62.4% 50.8% 69.2% 57.5% 48.6% 62.2% 72.5%
split-3 64% 49.2% 69.5% 57.2% 48% 62% 71.2%

Average 62.5% 51.3% 68.9% 57.7% 49.9% 62.5% 71.8%

Inception network and 2048 for the ResNet network. Four
separate SVMs are trained on these feature tensors. Results
have been shown for the two networks used – Inception (Table
I). We then fuse multiple kernels learnt from the individual
classifiers using a semi-infinite linear optimisation problem.
Average result from three splits is displayed in Table I. It is
apparent that combining kernels from various stages of the
prediction process yields better accuracy. It is indeed possible
to fuse hand-crafted features, such as iDT [17], to the features
generated from a dCNN – although not reported in this work
we anticipate features such as iDT will boost the accuracy of
the pillar networks. Such additional features take the place of
‘case-specific tensors’ in Figure 1.

Table II compares our method to a few other methods in
the literature. Of notable mention, are the TS-LSTM and the
Temporal-Inception methods that form part of the framework
that we use here. In short, synergistically, utilising multiple
kernels boosts the performance of our classification frame-
work, and enable state-of-the art performance on this dataset.

IV. DISCUSSION

Our main contribution in this paper is to introduce pillar
networks that are deep as well as wide (by plugging in other
deep networks, horizontally) enabling horizontal scalability.
Combining different methodologies allow us to reach close to
the current state-of-the-art in video classification especially,
action recognition.

We utilised the HMDB-51 dataset instead of UCF101 as
the former has proven to be difficult for deep networks due
to the heterogeneity of image quality, camera angles, etc. As
is well-known videos contain extensive long-range temporal
structure; using different networks (2 ResNets and 2 Inception
networks) to capture the subtleties of this temporal structure
is an absolute requirement. Since each network implements
a different non-linear transformation, one can utilise them
to learn very deep features. Utilising the distributed archi-
tecture then enables us to parcellate the feature tensors into
computable chunks (by being distributed) of input for an
SVM-MKL classifier. Such an architectural choice, therefore,
enables us to scale horizontally by plugging in a variety
of networks as per requirement. While we have used this
architecture for video based classification, there is a wide
variety of problems where we can apply this methodology
– from speech processing (with different pillars/networks) to
natural-language-processing (NLP).

Our framework rests on two stages of training – one
for training the neural networks and the other for training

the multiple kernels of the support vector machine (SVM).
Since both of the training stages are decoupled, it allows
for scalability wherein different networks can operate on a
plug-and-play basis. Indeed, there has been some work in
combining deep neural networks with (linear) SVMs [16] to
facilitate end-to-end training.

It would be useful to see how pillar networks perform on
immensely large datasets such as the Youtube-8m data-set
[1]. Additionally, recently published Kinetics human action
video dataset from DeepMind [8] is equally attractive, as pre-
training, the pillar networks on this dataset before fine-grained
training on HMDB-51 will invariably increase the accuracy of
the current network architecture.

REFERENCES

[1] S. Abu-El-Haija, N. Kothari, J. Lee, P. Natsev, G. Toderici, B. Varadara-
jan, and S. Vijayanarasimhan. YouTube-8M: a large-scale video classi-
fication benchmark. 2016.

[2] C. Feichtenhofer, A. Pinz, and R. P. Wildes. Spatiotemporal multiplier
networks for video action recognition. Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 2017.

[3] C. Feichtenhofer, A. Pinz, and A. Zisserman. Convolutional two-stream
network fusion for video action recognition. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pages 1933–
1941, 2016.

[4] B. Fernando and S. Gould. Discriminatively learned hierarchical rank
pooling networks. arXiv preprint arXiv:1705.10420, 2017.

[5] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 770–778, 2016.

[6] S. Ioffe and C. Szegedy. Batch normalization: Accelerating deep network
training by reducing internal covariate shift. In International Conference
on Machine Learning, pages 448–456, 2015.

[7] A. Karpathy, G. Toderici, S. Shetty, T. Leung, R. Sukthankar, and L. Fei-
Fei. Large-scale video classification with convolutional neural networks.
In Proceedings of the IEEE conference on Computer Vision and Pattern
Recognition, pages 1725–1732, 2014.

[8] W. Kay, J. Carreira, K. Simonyan, B. Zhang, C. Hillier, S. Vijaya-
narasimhan, F. Viola, T. Green, T. Back, P. Natsev, et al. The Kinetics
human action video dataset. arXiv preprint arXiv:1705.06950, 2017.

[9] H. Kuehne, H. Jhuang, R. Stiefelhagen, and T. Serre. HMDB51: a large
video database for human motion recognition. In High Performance
Computing in Science and Engineering 12, pages 571–582. Springer,
2013.

[10] C.-Y. Ma, M.-H. Chen, Z. Kira, and G. AlRegib. TS-LSTM and
Temporal-Inception: Exploiting spatiotemporal dynamics for activity
recognition. arXiv preprint arXiv:1703.10667, 2017.

[11] B. Scholkopf and A. J. Smola. Learning with Kernels: Support
Vector Machines, Regularization, Optimization, and Beyond. MIT Press,
Cambridge, MA, USA, 2001.

[12] K. Simonyan and A. Zisserman. Two-stream convolutional networks
for action recognition in videos. In Advances in neural information
processing systems, pages 568–576, 2014.

[13] S. Sonnenburg, G. Rätsch, C. Schäfer, and B. Schölkopf. Large scale
multiple kernel learning. Journal of Machine Learning Research,
7(Jul):1531–1565, 2006.

[14] K. Soomro, A. R. Zamir, and M. Shah. UCF101: a dataset of 101 human
actions classes from videos in the wild. arXiv preprint arXiv:1212.0402,
2012.



TABLE II
ACCURACY SCORES FOR THE HMDB51 DATA-SET. NOTICE THAT OUR METHOD IS THE CURRENT STATE-OF-THE-ART WERE WE TO IGNORE THE

HAND-CRAFTED IDT FEATURES.

Methods Accuracy [%] Reference

Two-stream 59.4 [12]
Rank Pooling (ALL)+ HRP (CNN) 65 [4]
Convolutional Two-stream 65.4 [3]
Temporal-Inception 67.5 [10]
TS-LSTM 69 [10]
Temporal Segment Network (2/3/7 modalities) 68.5/69.4/71 [18]
ST-ResNet + hand-crafted iDT 70.3 [10]
ST-multiplier network 68.9 [2]
Pillar Networks + SVM-MKL 71.8 this paper
ST-multiplier network + hand-crafted iDT 72.2 [2]

[15] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna. Rethinking
the inception architecture for computer vision. In 2016 IEEE Conference
on Computer Vision and Pattern Recognition, CVPR, pages 2818–2826,
2016.

[16] Y. Tang. Deep learning using linear support vector machines. arXiv
preprint arXiv:1306.0239, 2013.

[17] H. Wang and C. Schmid. Action recognition with improved trajectories.
In Proceedings of the IEEE international conference on computer vision,
pages 3551–3558, 2013.

[18] L. Wang, Y. Xiong, Z. Wang, Y. Qiao, D. Lin, X. Tang, and L. Van Gool.
Temporal segment networks: Towards good practices for deep action
recognition. In European Conference on Computer Vision, pages 20–
36. Springer, 2016.

[19] Z. Xu, R. Jin, I. King, and M. Lyu. An extended level method for
efficient multiple kernel learning. In Advances in neural information
processing systems, pages 1825–1832, 2009.


