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I. INTRODUCTION

Robots in the real world have to deal with complex
scenes involving multiple actors and complex, changing
environments. Both its continuous motion in the physical
world and the discrete goals it must accomplish are pertinent
to correctly completing a complex task. In particular, self-
driving cars are faced with a uniquely challenging task and
motion planning problem that incorporates logical constraints
with multiple interacting actors in a scene that includes other
cars, pedestrians, and bicyclists.

Current methods for task and motion planning (TAMP)
succeed at solving many sequential path planning and spa-
tial reasoning problems [8], but the combined discrete and
continuous state space tends to explode in size for complex
problems. The addition of linear temporal logic constraints
makes the search problem even more difficult, though there
has been recent progress in this direction [6]. On the other
hand, recent work in Deep Reinforcement Learning (DRL)
has shown promise in challenging domains including au-
tonomous driving[1} 9], and has been combined with Monte
Carlo Tree Search (MCTS) for game playing [7], where
it was able to achieve master-level performance. However,
the question remains open whether these approaches can be
integrated to produce reliable robot behavior.

We achieve the best of both worlds by using neural
networks to learn both low-level control policies and high-
level action selection priors, and then using these multi-level
policies as part of a heuristic search algorithm to achieve
a complex task. We formulate task and motion planning
as a variant of Monte Carlo Tree Search over high-level
options, each of which is represented by a learned control
policy, trained on a set of Linear Temporal Logic (LTL)
formulae [2]. LTL is an expressive language that has been
used to concisely and precisely specify a wide range of
system behaviors for robots. This approach allows us to
efficiently explore the relevant parts of the search space to
find high quality solutions when other methods would fail to
do so. Fig. [T] shows some scenarios to which our algorithm
was applied. For more details, see the full version of the

paper [3].
II. APPROACH

For this work, we assume the existence of a simulator
for the environment. One of our goals is to achieve robust
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Fig. 1: Solutions to simulated self driving car problems
containing an intersection and multiple vehicles.

behavior in complex scenes containing multiple other entities
with relatively few simulations. In a dynamic environment
with many actors and temporal constraints, decomposing the
problem into reasoning over goals and trajectories separately
is infeasible.

Instead, we use learned policies together with an approach
based on a variant of MCTS with two specializations. We
learn two types of policies: a policy 7/;(-, 0) for each high-
level option o that maps from arbitrary feature values to
controls:

75 (p(zw), 0) = arg max (V™ (d(zxw, uo)))

u

We also compute a second policy over options, 7(,:
7o (¢(zw)) = arg max (V" (6(zw, my (¢(zw), 0)0)))
o

Planning is a variant of Monte Carlo Tree Search. We
choose the next option to explore from a particular world
state s)i — 1 according to:

P(Si707;)
1 + N(Si, Oi)

where QQ*(s;,0;) is the average value of option o; from
simulated play, N(s;,0;) is the number of times option o;
was observed from s;, N(s;) is the number of times s; has
been visited, and P(s;, 0;) is the predicted value of option
o; from state s;. The goal of this term is to encourage useful
exploration while focusing on option choices that performed
well according to previous experience; it grants a high weight
to any terms that have a high prior probability from our
learned model. We use MCTS with Progressive Widening
to limit the number of new nodes added to the search tree.
Information from the execution is used to expected reward

Q(si,0;) = Q*(s4,04) + C
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Fig. 2: Comparison of MCTS on a test problem with
stopped car. Letters indicate option being executed: 0
root, D = default “stay in lane” policy, W = wait, C
Finish/complete level, R = lane change to the right. On the
left, we see tree search with a manually defined preference;
on the right, we see the tree using the high-level policy
acquired through DQN. Green leaves indicate success; red
leaves indicate failure. The right side finds a higher-reward
solution faster.
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following each high-level decision, allowing us to integrate
low and high level decision making.

Each discrete option is associated with an LTL formula ¢,
which establishes conditions that must hold while applying
that option. We can evaluate u; = my (o, p(x;w;)) to get
the next control as long as ¢, holds. In addition, we
have a shared set ® of LTL formulae that constrain the
entire planning problem. At every step, we check whether
a sampled trajectory satisfies all associated LTL formulae to
ensure it meets safety conditions.

We apply our approach to the problem of planning for a
self-driving car passing through an all-way stop intersection.
Our scenarios take place at the intersection of two two-
lane, one-way roads. Stop signs are described as “stop
regions”: areas on the road that vehicles must come to a
stop in before proceeding. Other vehicles follow a manually
defined driving policy, designed for good performance under
expected driving conditions. High level policies correspond
to lane changes, stopping at stop signs, following a car, or
continuing in the same lane.

The reward function is a combination of a a cost term
based on the current continuous state and a bonus based
on completing intermediate goals or violating constraints
(e.g. being rejected by the DRA corresponding to an LTL
formula). The cost term penalizes the control inputs, ac-
celeration and steering angle rate, as well as other terms
determined from the state of the simulated vehicle. We add
a terminal penalty of —100 for trajectories that hit obstacles
or violate constraints.

All control policies were represented as multilayer per-
ceptrons with a single hidden layer of 32 fully connected
neurons. We used the ReLu activation function on both the
input and hidden layer, and the tanh activation function on the
outputs. Outputs mapped to steering angle rate 1/) € [-1,1]
rad/s and acceleration a € [—2,2] m/s?. Control policies
were trained according to the Deep Direct Policy Gradients
algorithm [3]. We then performed Deep Q learning [4] on
the discrete set of options to learn our high-level options

policy. High-level policies were trained on a challenging road
environment with 0 to 6 randomly placed cars with random
velocity, plus a 50% chance of a stopped vehicle ahead in
the current lane.

III. RESULTS AND CONCLUSIONS

We generated 100 random worlds in a new environment
containing 0-5 other vehicles. We also test in the case with an
additional stopped car in the lane ahead. For cases with the
learned or simple action sets, we performed 100 iterations of
MCTS to a time horizon of 10 seconds and select the best
path to execute. Fig. 2] shows how the algorithm works in
practice with different methods for choosing the high-level
policy. With the learned high-level policy, we see excellent
performance on the test set for simple problems and three
failures in complex problems. These failures represent cases
where there was a car moving at the same speed in the
adjacent lane and a stopped car a short distance ahead, and
there was no good option to explore. Our system avoids these
situations where it is possible. When it predicts that such a
situation will arise, our planner would give us roughly 2
seconds of warning to execute an emergency stop and avoid
collision.

Our approach allows off-the-shelf DRL techniques to bet-
ter generalize to challenging new environments, and allows
us to verify their behavior in these environments by checking
LTL constraints during execution. We use learned neural nets
to prune possible solutions when performing task planning.
In the future, we will extend this work to use stochastic
control policies, and will also apply our system to real robots.
For more details, see the full version of the paper [S].
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