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Detecting object relationship from vision for cooking robot scene understanding

Problem description:

Cooking robot arm have to perform tasks such as grabbing, pouring, cutting ingredients. They
navigate in unconstrained environment, thus a good understanding of their surroundings is needed
to complete their tasks. The scene is analysed through vision via depth cameras, fixed to the robot
gripper and external to the robot. The aim of this project is to detect the objects and their relationship
(in contact, inside, above,...etc) in order to describe the environment in a comprehensive graph.

Tasks:

• Do a literature review on the existing methods [1] [2] [3] [4] [5] for describing the environment and
obtaining this description using vision

• Identify what will be specific needs and advantages of the cooking robot scenario
• Select an environment description and object relationship detection method that fits the cooking
robot needs

• Apply this method for the Franka Emika Panda robot arm cooking with fruit toys
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Experimental Evaluation of several Shared Control Architectures for bilteral teleoperation
of contact Tasks

Problem description:

Shared Control provides means to combine human problem solving and cognitive abilities, with the
precision and reliability of robotic execution. The idea in shared control is that an Autonomous agent
encodes some form of task knowledge, which is then exploited to deliver a degree of assistance to
perform the task. For instance, the control space can be partitioned such that the autonomy controls
a subset of the degrees of freedom, while the human is in charge of the rest [4, 3]. Another possibility
is to fuse human inputs with the outputs of the autonomous agent depending on some authority
allocation metric [1]. Alternatively, virtual fixtures can be devised to provide haptic guidance rendered
on the master interface, which can guide the operator along a desired path [2]. In this work, we
aim to validate several shared control architectures for the teleoperated execution of a drawing task.
Your task will be to extend an existing hardware setup and a developed learning based shared control
algorithm with several shared control architectures, as well as the validation of these approach in a
user study.

Tasks:

• Understand the fundamental concepts of shared control and haptic guidance
• Propose and implement potential shared control architectures that can be suited for the task
• Conduct a user study based on the proposed schemes
• Quantitative and qualitative analysis of the obtained results.
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The role of dynamic similarity for entrainment with a haptic stimulus

Problem description:

Dynamic similarity has shown to facilitate interpersonal synchronization in a joint action with visual
feedback [5]. Synchronization (entrainment) of a human’s movements with an external stimulus,
can be also observed e.g. during haptic interaction with another person [2, 3] or a moving reference
[1, 4, 6]. Moreover, it has been shown that entrainment is greater in individuals with a closer social
relationship [2]. Thus, the question arises, to what extent does the level of entrainment relate to the
amount of dynamic similarity? To answer this question, your task will be:

Tasks:

• Literature research
• Data post-processing and analysis
• Statistical analysis
• Answer the research question and discuss with respect to literature
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Integration of pressure insoles, IMU sensors and haptic belt for real-time biofeedback

Problem description:

Wearable devices have been developed and investigated [8] for improving postural control. They
provide a good opportunity for the application in everyday life [7]. Especially vibrotactile feedback is
feasible for applications in everyday life, since it is unobstrusive [9] and not restricting other sensory
functions, such as seeing, hearing, tasting [1]. Previous studies have used vibrotactile feedback at
di↵erent locations [2], most commonly around the waist [4, 5, 10, 12]. However, reaction times to
vibrotactile feedback are faster at locations closer to the head, except for the fingertips due their higher
tactile sensitivity [2]. Thus, recently a vibrotactile vest was investigated [11]. However, only a local
reduction of tilt angle deviation at the lower back could be observed, while center of pressure (CoP)
displacement did increase [11]. Though, previous studies with a vibrotactile belt showed a reduction
of body sway at both low back and CoP [3, 6]. It remains unknown, if these di↵erent observations are
due to the location of the feedback or to what extent also the location of the reference system plays
a role.

Tasks:

• either build vibrotactile belt (e.g. 1-2 students)
• or integrate Moticon pressure insoles in C++ code for real-time streaming (e.g. 1-2 students)
• or integrate Xsens dot sensors in C++ code for real-time streaming (e.g. 1-2 students)
• compute body sway threshold based on di↵erent reference locations and systems: upper back (IMU),
lower back (IMU), feet (pressure insoles)

• combine di↵erent systems and codes for application of real-time biofeedback
• conduct pilot study with application of real-time biofeedback by haptic belt and evtl. haptic vest
using pressure insoles and IMUs as reference sensors

• data collection and analysis
• compare the e↵ect of repulsive biofeedback on body sway 1) resulted from di↵erent reference sensor
locations (upper back, lower back, feet), 2) and evtl. resulted from a vibrotactile vest vs. a
vibrotactile belt compared to no feedback condition to answer the research question.
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