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Abstract—The World Wide Web Consortium (W3C) created the foun-
dations for widespread interoperability in the Internet of Things (IoT)
with the publication of the Thing Description (TD) standard in the context
of the Web of Things (WoT). TDs allow to interact with new as well as
existing IoT devices by describing their network-facing interfaces and
how to interact with them in a standardized way that is both human- and
machine-readable. An important question that is left in this domain is how
to create, represent and share systems of IoT devices, called Mashups.
The techniques introduced in this paper improve the management of
such Mashups. We propose two representations for such systems that
both have unique advantages and are capable of representing interactions
with Things, combined with application logic: A subset of the Unified
Modeling Language Sequence Diagram presentation, referred to as WoT
Sequence Diagram, and a TD that is enhanced with additional keyword-
object pairs, referred to as WoT System Description. For the latter, we
present an algorithm to automatically generate code that can be deployed
to a device, making it act as a Mashup controller. By stating their
syntactical and semantical foundations, we show how each representation
is defined and how it can be validated. Furthermore, we systematically
show that both representations can be used interchangeably in the context
of representing WoT Mashups and demonstrate this with conversion
algorithms. We also make the definitions and validation methods for the
proposed representations, the reference implementations of the mentioned
algorithms and our evaluation publicly available. Our contribution thus
allows safer system composition for WoT and enables a systematic
approach to build WoT Mashups.

Index Terms—System Description, Mashups, Web of Things, Thing
Description, Internet of Things

I. INTRODUCTION

The Internet of Things (IoT) has gained popularity in recent years
[1] with the interest in it shifting from its definition towards how one
can profit from the possible advantages. It is now already part of many
people’s lives and, as a result, a huge market for smartwatches, smart
TVs, cleaning robots, surveillance cameras and many other internet-
connected devices has established itself. Apart from such devices, a
variety of IoT platform providers, industrial IoT systems, data stores,
analytics and other related services have also emerged.

While the number of IoT devices rises, one challenge gains
importance: How to use their capabilities in the most beneficial way
in order to create complex systems? Therefore, it is crucial to enable
interoperability between devices from different manufacturers and do-
mains. The fact that there is not one best practice or standard has led
to the development of many different standards and implementations,
which, in turn, results in silos and high integration efforts.

This problem is addressed by the Web of Things (WoT) [2] and
a corresponding World Wide Web Consortium (W3C) architecture
approach [3]. It proposes Thing Descriptions (TDs) as the central
element to describe the network-facing interfaces for composing
applications of an IoT device, called a Thing in the context of this
paper, and how to interact with them. A standard for a TD [4] has
been published by the W3C to solve the problem of interoperability
between IoT devices, describing their network-facing interfaces in a
way that is human-readable and machine-understandable.

The problem left in this context is how to create systems composed
of different Things, to perform a joint task that one Thing is not
capable of. These systems consist of an application logic, which is
implemented as code executed by a controller as shown in Figure
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Figure 1. The two representations (Sequence Diagram (a), System Description
(b)) for WoT Mashups proposed in this paper that can be converted (c) into
each other to combine their advantages. Furthermore, Code Generation (d)
according to the WoT Scripting API standard can be deployed in a Mashup
Controller. The generated code implements the Mashup application logic (e)
and allows simple exposure of own Interaction Affordances (f).

1 (e), including interactions with involved Things and are called
Mashups in the WoT context.

For example, a Mashup that incorporates environmental sensor
devices that measure temperature, humidity and air pressure, can
compute a rain probability for the near future and expose it. Other
Mashups or devices, such as an actuated window, can read this value
and execute actions based on it, without having to read all sensor
values and compute the probability by themselves, which is illustrated
with Mashup 1 in Figure 2.

Motivation: Considering the significantly rising number of possi-
ble useful Mashups, it is necessary that creating, changing, accessing
and sharing Mashups becomes as simple as possible to unfold the
potential benefits of the WoT. Especially, a developer with two or
more Things should be supported to create executable code, which
implements any application logic to perform a Mashup task, by
minimizing his/her required manual effort. Furthermore, creating
Mashups with at least simple application logic should be possible
for anyone, even without the need to program code manually.

Problem: The introduction of the WoT simplified the creation of
IoT device systems, as one does not have to manually look up every
required interface of every involved device and how to interact with
it. However, creating a Mashup is still a manual task that is done by
programming the application logic. This makes it difficult to benefit
from advantages such as less error prone and faster development,
reusing Mashup application logic and low maintenance effort due to
the implementation specific differences.

There already exist Model Driven Engineering (MDE) approaches
to create IoT- or even WoT-Mashups that benefit from the mentioned
advantages. While they present a major improvement to Mashup
creation, there is currently a big fragmentation in the representation of
the created Mashups. The main reason is that many MDE approaches
are built upon frameworks, such as the Eclipse Modeling Framework
[5]. This fragmentation does not negatively affect the functionality of
the created Mashups, but it limits their reusability, documentation of
functionalities and exposure of these functionalities for other Things.



Contributions: To further improve the management of WoT
Mashups, we present the following contributions in Section III:

• two new formats for representing a Mashup. The first rep-
resentation is using a subset of Unified Modeling Language
(UML) Sequence Diagrams that is human-understandable even
for complex application logic.
The second format represents Mashups with a valid TD that is
enhanced with further keywords and called System Description
(SD) in this paper. It has the advantage of representing the
Mashup in a well-defined textual way, building on existing
standards. Also, an SD can be consumed such as a TD by other
Things, allowing them to interact with the Mashup as consumers.

• a proof of equality of both representations for the given context,
making it possible to convert the representations into each other,
as shown in Figure 1 (c). The conversions allow one to save and
transmit a Mashup in a standardized textual way while being able
to present it human-understandable with a standardized graphical
representation.

• an algorithm to automatically generate executable code that
implements the application logic of a Mashup, represented by
the SD that is the input of the algorithm.

We discuss related work in Section IV, evaluate our contributions in
Section V with a case study and conclude with Section VI.

II. WEB OF THINGS

The WoT concept was first proposed in 2009 [2] to facilitate the
interoperability and usability in the IoT. This has then resulted in a
standardization group formed in the W3C and the initial standards
being published in 2019 [3]. The core concept of the WoT is that
Things expose Interaction Affordances, by providing well described
interfaces for them and Consumers such as other Things, cloud
services or browsers can interact with the Exposed Things via these
Interaction Affordances. In this context, an Interaction Affordance is,
for example an exposed property that can be read, thus resulting in
a readProperty interaction.

A. Architecture of the Web of Things

The WoT architecture standard of W3C defines use cases, re-
quirements and the abstract architecture of the Web of Things. It
is complemented by:

• The Thing Description standard defines an equally named
representation that provides information about an IoT device,
especially about the possible interactions via the network-facing
interfaces of the Thing. These interactions are grouped into:

– Properties can be read, written and observed and represent a
state of the Thing, such as a sensor value.

– Actions can be invoked and execute a function of the Thing,
which might manipulate its state, e.g., executing a movement.

– Events can be subscribed to and result in a notification each
time the event occurs, for example any alert.

• The Binding Templates [6] provide information on how IoT
platforms can be integrated to create Things in a WoT-conform
way. This information can be used to create protocol bindings
for a TD to interact with a Thing as a Consumer.

• The Scripting API standard [7] specifies functions to simplify
the creation of scripts that discover, fetch, consume, produce and
expose TDs. The specification defines an ECMAScript-based
API, which has a reference implementation1.

Furthermore, security and privacy guidelines are provided in the
architecture specification, but they are out of the scope of this paper.

B. Mashups in the Web of Things

One of the major benefits in the WoT is the simple creation of WoT
Mashups, which refer to the similarly named mashups in the Web 2.0
and are mentioned in the WoT context since its presentation [2], [8].
These Mashups combine different Things and application logic to
perform a joint task. Therefore, the Mashup controller consumes the

1https://github.com/eclipse/thingweb.node-wot
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Figure 2. A hierarchical WoT Mashup cascade indicated by the arrows
from Exposed Thing to Consumers. The two Mashups are both Consumer
and Exposed Thing at the same time and involve the Things: Barometric
air-pressure sensor (a), humidity sensor (b), temperature sensor (c), window
position sensor (d) and the Consumer: Smartphone (e), actuated window (f).

TDs of all Things involved in the Mashup and executes interactions
and processing according to the Mashup’s application logic. Every
Mashup can also expose the added functionality by exposing own
Interaction Affordances for other Consumers.

Figure 2 illustrates this for a smart-home use case, where Things
are exposed hierarchically. The use case mentioned in Section I,
which involves environmental sensors and a Mashup controller that
computes a rain probability to expose it to an actuated window, is
demonstrated with Mashup 1 in this figure. Additionally, a second
window that is equipped with a position sensor, is shown together
with a second Mashup (Figure 2-Mashup 2) to provide an alert event
that notifies a subscribed Consumer (smartphone) that it will probably
rain in the near future if the window is opened.

III. MASHUP MANAGEMENT APPROACH

We present our approach to improve the management of WoT
Mashups in this section. Therefore, we start explaining the motivation
and scope of the approach and continue as listed:

• We define the Sequence Diagram (Section III-B) and System
Description (Section III-C) representation and present how to
validate them.

• In Section III-D we show that using the representations inter-
changeably is possible by proving their equality.

• We note the conversion and code generation algorithms in
Section III-E.

Finally, we present a discussion of our approach in Section III-F.

A. Motivation and Scope of Work

The WoT Scripting API provides functions to write communi-
cation protocol- and implementation-independent application code
for a Mashup. To remedy this currently manual process of writing
application code, a model to express the application logic in a
standardized and textual way is necessary. This can be used as input
for the automatic code generation, to create program code that can be
deployed to a Thing to act as a controller, as shown in the industrial
Mashup example in Figure 1. To make it accessible and use existing
standards, especially in the context of the WoT, we propose the SD
to describe a Mashup including its interactions and application logic.

In order to provide an insight, even for complex application
logic, we propose an accompanying graphical representation based
on the UML Sequence Diagram. The graphical representation is
also standardized by the use of UML elements and gives a human-
understandable overview of Mashup application logic and executed
interactions. To be able to always represent a Mashup in the required
format, which allows one to benefit from advantages of both repre-
sentations, we provide conversion algorithms.

As input for the creation of Mashups including application logic,
sequences of interactions, written in UML Sequence Diagram repre-
sentation, are used. We refer to these sequences as Atomic Mashups
in the scope of this work and they can be simply created manually
(low effort) or can be also generated automatically in the future.

To constrain the Atomic Mashups to useful combinations and
react to asynchronous data-pushes, we work with the assumption



1@startuml diagramName

2[->"Agent"

3activate "Agent"

4"Agent"->"Sensor":

readProperty:

"temperature"

5activate "Sensor"

6"Sensor"-->"Agent":

response

7deactivate "Sensor"

8[<-"Agent"

9deactivate "Agent"

10@enduml

Listing 1. PlantUML notation
instance, defining the interaction
between a Mashup controller,
referred to as agent and a
temperature sensor.

Agent Sensor

readProperty: "temperature"

response

Figure 3. UML Sequence Diagram
presentation, generated by a Plan-
tUML implementation, of a Mashup
controller reading the property tem-

perature from an Exposed Thing.

that they consist of at least one receiving interaction: ReadProp-
erty, subscribeEvent, observeProperty or invokeAction with a return
value, followed by at least one sending interaction: WriteProperty
or invokeAction, where the interaction direction is defined by the
Mashup’s perspective. Thus, we can define the sending interactions
to be executed upon reception of the asynchronous data-pushes,
resulting from subscriptions or observations.

B. Sequence Diagram Representation and Validation

The creation of visual Mashup presentations is motivated by the
idea of giving an insight into the application logic which is simpler
to understand than program code. In the remainder of this section,
we define WoT Sequence Diagrams, present how one can validate
instances of these diagrams and show, by comparing them to UML
standard elements, that our diagram presentations are UML-conform.

To generate a presentation of a Mashup, we propose a subset
of UML Sequence Diagrams, which are a standardized presentation
method. More specifically, we define a subset of PlantUML [9], which
provides a broadly supported, simple to integrate diagram generator
implementation, with a corresponding textual representation. A sim-
ple example of this textual notation is the Listing 1 that defines the
presentation shown in Figure 3.

PlantUML and its entire functionality are not always UML specifi-
cation compliant. Thus, to ensure the UML compliance, we reference
every graphical element to its corresponding UML element. The
usage of only the defined subset of PlantUML can be checked by
validating it against a context-free grammar2 which we define in
extended Backus-Naur form (EBNF) to specify the allowed language.
A Backus-Naur form [10] (BNF) definition of a grammar is machine-
readable and BNF extensions are often used to define programming
languages, thus a multitude of parser generators and visualization
algorithms exist.

We use a common EBNF notation defined by the W3C in [11].
In contrast to BNF, it allows to include symbols in the specified
language, which are required for the used PlantUML subset. In
Listing 2, an extract from this grammar is shown and the full grammar
can be obtained from our repository3. The grammar shown in the
listing defines how a readProperty interaction is composed, therefore:

• interactionReceive optionally begins and/or ends with a get-
set and intermediate must be interactionPre followed by re-
ceiveSubs, receiveInv, receiveObs or receiveRead (line 1).

• interactionPre is composed of the strings ’ ”Agent” ’ and ’ − >
’ followed by interactionTo followed by the string ’:’, with an
S after every element (line 2).

• <?TOKENS?> defines the end of non-terminal definitions and
begin of terminal definitions (line 8).

2A parser generator can generate a validator from the grammar.
3For the remainder of the paper, our repository refers to this:

https://github.com/tum-esi/wot-system-description GitHub repository.

1interactionReceive ::= getset? interactionPre (

receiveSubs | receiveInv | receiveObs |

receiveRead ) getset?

2interactionPre ::= ’"Agent"’ S ’->’ S

interactionTo S ’:’ S

3receiveRead ::= ’readProperty:’ receiveMiddle

readResponse L deactTo L

4receiveMiddle ::= S interactionName L actTo L

5readResponse ::= interactionTo S ’-->’ S ’"Agent"’

S ’:’ S ’response’

6deactTo ::= ’deactivate’ S interactionTo

7interactionTo ::= ’"’ Ntitle ’"’

8<?TOKENS?>

9L ::= S? (#x000A | #x000D #x000A?)+ S?

10S ::= [#x0020#x0009]+

11Ntitle ::= [a-zA-Z] ([a-zA-Z0-9] | ’-’ | ’_’)+

Listing 2. Extract from EBNF grammar definition for the used PlantUML
subset, the whole grammar is included in our repository. The upper part
defines the non-terminals (lines 1–7) and is separated from the terminals
(lines 9–11) by the tokens expression (line 8).

• L and S denote a line break and space, respectively, by defining
Unicode symbol sequences (lines 9, 10).

The usage of this grammar results in any further Sequence Diagram
notation to be a valid PlantUML instance, which can be interpreted
by any PlantUML implementation.

The possible resulting Sequence Diagram presentations are visual-
ized in Figure 4, where one example of every graphical element we
can use to represent a WoT Mashup is visualized. The labels in the
figure are explained with referring to the corresponding elements of
the UML standard [12] and describing the meaning of these elements
in the Sequence Diagram subset:

1) The UMLShape (Gate) and UMLEdge (Message, synchronous
call or reply) with UMLLabel (Message) and the literal top:,
function:, action: or property: followed by a name. It represents
the equivalent of a function call for programming languages and
defines, which application logic is described in the diagram.

2) The UMLShape (Lifeline, line) with UMLLabel (Lifeline, rect-
angle) represents the lifeline of either the device executing the
Mashup application logic as a controller, called Agent or one of
the Things the controller interacts with.

3) The UMLShape with UMLLabel (Comment) represents the
getter and setter function for Mashup variables or properties

4) The UMLShape (CombinedFragment) containing a UMLLabel
(CombinedFragment) with literal strict and two UMLShape
(InteractionOperand). It represents a WoT interaction sequence
consisting of one or more receive interactions that are followed
by one or more send interactions as explained in Section I.

5) The UMLShape (CombinedFragment) with literal par con-
taining UMLLabel (CombinedFragment) and two or more
UMLShape (InteractionOperand). It represents an interaction set
with all interactions direction either send or receive and defines
that the contained interactions can be executed in arbitrary order.

6) The UMLEdge (Message, synchronous call) with UMLLabel
(Message) represents a WoT operation.

7) The UMLEdge (Message, reply) with UMLLabel (Message)
confirmation, response or output represents a operation reply.

8) The UMLEdge (Message, asynchronous signal/call) with
UMLLabel (Message) data-pushed represents asynchronous
pushed data, due to, for example an event subscription

9) The UMLShape (ExecutionSpecification) representing the abil-
ity of a lifeline to initiate WoT operations.

10) The UMLShape (CombinedFragment) containing a UMLLabel
(CombinedFragment) with literal break and one UMLShape
(InteractionOperand) containing the UMLLabel (InteractionCon-
straint) data-pushed. It represents the execution of the send
interactions on the reception of the first asynchronous pushed
data.

11) The UMLShape (CombinedFragment) containing a UMLLabel



Agent MotionSensor1 MotionSensor2 Lightbulb1 Lightbulb2

top:motionMashup()

defaultInput true
set Condition1

strict

par

subscribeEvent: "motionDetected"

confirmation

data-pushed

subscribeEvent: "motionDetected"

confirmation

data-pushed

break [data-pushed]

par

writeProperty: "brightness"

writeProperty: "brightness"

loop [Condition1]

{20000ms..20000ms}

alt [Condition2 == "bulb1"]

[else]
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Figure 4. Example of an UML presentation of a Mashup, showing every
UML element used in WoT context at least once. The represented application
logic controls two lightbulbs by processing the received information of two
motion sensors.

(CombinedFragment) with literal loop and one UMLShape
(InteractionOperand) containing a UMLLabel (InteractionCon-
straint). It represents the equivalent of a loop in programming.

12) The UMLLabel (DurationConstraint)4 represents a duration that
the application logic execution has to pause.

13) The UMLShape (CombinedFragment) containing a UMLLabel
(CombinedFragment) with literal alt represents the equivalent
of an if statement in programming languages. Optionally, it can
also include an else equivalent.

By the given references of UML standard elements for every
element contained in the PlantUML subset, together with their
meaning for WoT Sequence Diagrams, one can simply retrace the
UML-conformity of these elements. With the usage of the defined
PlantUML notation subset, we can thus assure that the generated
Sequence Diagrams are always UML-conform.

C. System Description Representation and Validation

In the following paragraphs, we present the WoT System De-
scription representation and motivate its usage. Furthermore, we
explain the syntactical and semantical definition of this Mashup
representation and show how an instance of it can be validated.

The SD representation of a Mashup, which we propose, is based
on a TD with additional keywords. To be able to describe a Mashup
instead of a single Thing, the SD allows to describe one or more
Things the Mashup controller interacts with. Furthermore, application
logic can be represented, consisting of executing interactions and
programming structures e.g. loops, if -statements or wait commands.
The SD representation has the advantages:

• It enables one to represent a model of a Mashup that can be
used as input for automatic code generation.

• The representation can express functionality and data that is
for internal use or externally accessible via WoT Interaction
Affordances, which are simple to access for other Things.

• It is framework independent by building on open standards:
TD, JavaScript Object Notation (JSON), JSON-Linked Data
(JSON-LD) and JSON Schema.

The most important added keywords are:

4due to the used UML Sequence Diagram generator the additional
UMLEdge (DurationConstraint) is omitted, and the constraint always applies
to the previous and next element.

Type of item Represents

interact interaction sequence, called Atomic Mashup

wait a time delay before further task execution

case a conditional execution

loop the repeating execution of another path array

get
getter function for Mashup variables, proper-

ties or default values

set setter function for variables or properties

ref reference to an action or a function

Table I
DEFINED Path ARRAY ITEM OBJECT TYPES AND THEIR CORRESPONDING

REPRESENTATION

The Things keyword defines a JSON object that has to be on the
top level of the SD and its properties have the title key of
a TD. The properties are also JSON objects themselves and
include a fragment or the entire TD of a Thing. The Things
child elements represent all Things that the Mashup can interact
with. This structure allows required forms to interact with, to be
referenced inside the SD. Therefore, every forms child element
has to have not only a href key like in the TD, but also an
op key as described in the TD specification. This property can
have the value of one or more operations to indicate all semantic
intentions for which the form is valid.

The Path keyword defines a JSON array and can be a property of
an action-object, function-object, property-object or on the top
level of the SD. Its functionality is similar to the one of the Path
keyword described in [13], where the Path represents an array
of executable interactions. The path elements we present can
furthermore represent application logic and have to be objects
of the types shown in Table I.

The Functions and Variables keywords enhance the SD by repre-
senting internal structures that are, in contrast to Properties and
Actions keywords, not intended to be externally accessible. Both
keywords define JSON objects and have to be on the top level
of the SD. Their properties are also JSON objects and represent
Mashup internal functions and variables.

The aforementioned vocabulary can thus describe a Mashup in a
textual format where a JSON-LD representation, like TD, would be
possible. Similar to the TD we annotate and specify the syntax with
a JSON Schema [14], which is available in our repository. It allows
to validate an SD instance and also gives guidance on how a JSON
serialization of an SD should be. The Schema we define also includes
references to the TD Schema5 to ensure that every SD instance is also
a valid TD instance.

In addition to the JSON Schema, we define a JSON-LD [15]
context for the SDs in order to make semantic statements and links
about every possible content of an SD. The JSON-LD instance
contains machine-understandable expressions, e.g. that an SD belongs
to and enhances the semantic context of a TD. Thus, every Mashup
can be described in a machine-understandable way by representing
it with an SD, which contains a link to the context in our repository.

With the aforementioned explanations and the JSON Schema and
JSON-LD context in our repository, one can simply retrace the
definition of the SD Mashup representation and validate a given SD
instance against this definition.

D. Equivalence Proof

To be able to benefit from the advantages of both presented
representations, we prove their equality in this section. This is needed
to ensure that the representations can be systematically converted
into each other. By doing so, the following proof guarantees that
conversions do not result in a loss of information. To the extent of our

5https://github.com/w3c/wot-thing-description/blob/master/validation/td-
json-schema-validation.json



knowledge, a relationship between the standardized UML Sequence
Diagram presentation and a semantically well-defined model for an
IoT device system has not been established so far, which is further
motivating the need for a proof.

1) Methodology: To prove the equality of the representations in
the context of representing Mashups, we define a Mashup formally
with a top-down approach. Additionally, we check the resulting
definitions for consistency within both representations. Therefore, we
compare the semantics of the representations, explained in the next
paragraphs, with our Mashup definition.

For the Sequence Diagrams, the EBNF grammar and the PlantUML
conversion define the space of possible UML elements as shown in
Figure 4. From these UML elements formalisms can be concluded,
and we follow the definitions in [16], where it is shown which UML
element results in which semantic trace.

The SD can be validated to follow the Mashup formalism by
checking the possible design space spanned by the JSON schema
definitions, which is semantically specified with the given JSON-LD
context and the annotations in the JSON Schema.

For the proof of equality, we focus on the semantic consistency
with the Sequence Diagram representation, as it is an established
standard for interaction representation that comes with defined se-
mantic meanings, while the SD is based on a JSON-LD notation that
explicitly allows to define semantics.

In the remainder of this section, we first define a Mashup formally
and the order between single application logic elements (Equations 1–
3 in Section III-D2). We continue with presenting the equality of the
representations for every application logic element, e.g., loop, Atomic
Mashup or conditional execution (Equations 4–17 in Section III-D3).
Building up on these equations, we show that one can conclude
the equality of the WoT System Description and WoT Sequence
Diagrams with Equation 18 in Section III-D4.

The steps in the following proof and some definitions can be better
understood after reading [16]. However, for scientific completeness,
we still note all equations and hereby indicate that a detailed
explanation of all definitions would require more space.

2) Mashup overview and application logic: The equality which
is the simplest to show is that the TDs given with the diagram
representation contain the same information relevant for building
a Mashup as the TD fragments of the Things vocabulary term of
the SD. The reason is that each Things child element is defined to
equal the Mashup-relevant parts of one TD. Furthermore, a set of
PlantUML Sequence Diagrams equal in total to the SD Functions,
Actions, Properties, Variables and Path properties. The Variables and
Properties without a path property can be deduced from the diagrams,
where their name is represented with their first occurrence.

One Sequence Diagram, out of the set of diagrams representing the
Mashup, equals exactly to one element in the Properties, Functions
or Actions Property of the SD or the Path on the top level of the
SD. Thus, the title of the SD equals the name of the sequence started
with the top keyword and each function, action or property name
equals one sequence diagram. The corresponding diagram starts with
a message from gate, the event occurrence at the diagram border
in the top left corner, to the Agent lifeline with function, action or
property keyword followed by a colon and the name.

The content of these diagrams and the content of the path prop-
erties in the SDs are representing the application logic elements
that have to be executed in the given order. Thus, one sequence of
application logic elements execution e can be defined as:

e := e1e2...en|∀i∈n : ei ∈ C, n ≥ 1 (1)

where e is defined as concatenation of n elements of the set of
application logic elements C that consists of at least one element.

The application logic representation is ensured to be valid by the
EBNF grammar we defined, allowing one or more application logic
elements following each other that are ordered by being concatenated
in the diagrams. According to the UML specification, this results
in weak sequencing, but we can assume the result to be strictly
sequenced. The reason is that all Atomic Mashups and with them

all event occurrences, except the application logic call and return as
first and last messages, are encapsulated within a strict combined
fragment and every interaction includes one event occurrence on the
Mashup controller lifeline.

By defining two substrings u and v of one execution sequence e,
we show that the order of execution is according to Equation 1:

strict(u, v) = e1e2...eiei+1...en|∀i ∈ {1 ≤ i ≤ n− 1}

with u = e1, e2, ..., ei, v = ei+1, ei+2, ..., en
(2)

Equation 2 proves that the order of the execution elements equals the
definition. The strict function in the equation is defined with X and
Y , which represent two not further constrained sets for the remainder
of the paper:

strict(x, y) := xy |x ∈ X, y ∈ Y (3)

In the SD, the application logic elements are represented by the path
property defining a JSON-Array with at least one item, which is
specified to be ordered by the JSON-LD "@container": "list"

property-value pair.
Each element of the application logic has to be either a getter

function, setter function, reference, Atomic Mashup, loop, pause
execution or a conditional execution. This is ensured by the syntax
rules of both representations.

The preceding equations and explanations show that Sequence
Diagrams and SDs are generally equally structured, can contain the
same application logic elements and their execution order, of these
elements, is equal to the one we define for a Mashup in Equation 1.

3) Application logic elements: We will show the equality of
representation of every application logic element, a WoT Mashup
can contain such as a loop, in the following paragraphs. This is
necessary to prove the equality of both representations, which enables
combining their advantages. The term combined fragment, which is
used commonly this section, refers to the UML element that consists
of a box and a literal, e.g., par, loop or alt. This element is illustrated
in Figure 4, e.g., Labels 5, 11 and 13, and contains further UML-
elements, which are ordered according to the definition of the literal
of the fragment.

The loop element of the application logic has to represent the
contained application logic and information about how to repeat the
execution of this logic. The loop can either be defined to repeat the
execution by a given number of times, or to loop infinite times with
or without a given duration interval per loop cycle. The resulting
execution order of a loop with m repetitions and the containing
application logic e with ”n” elements is defined as:

loop(m, e) := e11e12...e1ne21e22...emn |e = e11e12...e1n (4)

with e1j = eij | ∀i ∈ {1, 2, ...,m}, ∀j ∈ {1, 2, ..., n}

In the proposed UML representation, the use of the loop combined
fragment that can be represented with the function loop fragment (lf)6

ensures the correct execution order:

lf(e, p, q) := lf(e, p, q, 0) (5)

lf(e, p, q, i) :=

{

{ǫ} |i ≥ q
strict(e, lf(e, p, q, i+ 1) |else

(6)

where p is the minimum number of executions and q is the maximum
number of executions. Since we define that p = i+1 and q = m, lf
results in the same execution sequence as loop (Equation 4):

⇒ lf(e, p, q) = loop(m, e) (7)

The loop information is given inside the UML constraint of the
combined fragment, noted with brackets, or in the loop object for the
SD. For both representations, the syntax ensures that the requirements
for application logic representation hold for the application logic
contained in the loop and both numbers are defined to be naturals.

6We omit the definition of the lf function for p ≥ i < q, since we define
p = i+ 1.



The getter and setter functions both represent whether the target
is a property or variable and its name. The setter function additionally
has to contain information about the value that the target will be set
to, this can be an explicitly noted value or the reference to another
variable or property. The reference command in the application
logic is similarly structured, with the difference that only another
application logic sequence, represented by an action or a function, is
a valid target. All these requirements are ensured by the syntax of
the representations.

The conditional execution cond (Equation 8), similar to an if
statement in programming languages, defines the execution of one
application logic sequence if a certain condition is true. Furthermore,
it allows to optionally define a second application logic to be executed
if the condition is not fulfilled, similar to an else statement:

cond(e, f) := e ∪ f ∪ ǫ |e ∈ C, f ∈ {C ∪ {ǫ}} (8)

In the Sequence Diagrams, the conditional execution is represented
with the alternative combined fragment alt. This results in exactly
one of the application logic lists being executed and can be defined
with two sets X and Y :

alt(x, y) = {x} ∪ {y} |x ∈ X, y ∈ Y (9)

In the SD, a mandatory content and optionally an else-content that
are specified as application logic themselves represent the possible
execution logic sequences.

For both representations, the condition that determines which
application logic is to be executed is defined by the syntax. It can
consist of a variable or property being a Boolean value or given in
addition with a value or other variable/property to compare it with.
Additionally, the terms allOf, oneOf, anyOf and not are defined in
the representations and semantically equal the JSON Schema terms as
defined in [17]. In the SD, they are specified as properties, containing
further condition elements. In the diagrams, they are represented by
the keyword followed by braces, which allow to nest them and contain
the further condition expressions.

The pause execution command is defined by a natural number
that specifies the time to pause in milliseconds. In UML Sequence
Diagrams, a duration constraint with the same value for minimum and
maximum duration represents this command. The SD JSON Schema
ensures that a number equal or bigger one that is a multiple of 1.0
is used to specify the pause time.

The Atomic Mashup, which is introduced in the beginning of
Section III-A, refer to the application logic element that contains
interactions with Things involved in the Mashup. To constrain this
element to useful sequences and be able to represent asynchronous
reception of data, we define the Atomic Mashup to consist of an
unordered sequence of receive interactions followed by an unordered
sequence of send interactions. The send interactions can be executed
on reception of either the first receive interaction reply, or the last
receive interaction reply.

The Atomic Mashups atom are defined by all invoked receiving
interactions, all invoked sending interactions and the information
whether the sending interactions should be executed on receiving the
first or last pushed data. This information determines when to execute
the sending interactions, based on the reception of asynchronous data
pushes resulting from a subscription of an event or observation of a
property in the receiving interactions.

The resulting execution sequence depends on the Boolean break
definition b, which can be true or false:

atom(r, s, b) :=

{

rs for b = {t}
pre(r)s for b = {f}

r ∈ R
n
, s ∈ S

m
, b ∈ {t ∪ f}

(10)

where R is the set of receiving interactions and S the set of sending
interactions. The resulting application logic sequence consists of n
receiving and m sending interactions. The prefix function pre is
defined recursively with the sets X and Y as:

pre(z) := {x(pre(y))} ∪ {x} |z = xy, x ∈ X, y ∈ Y (11)

In the Sequence Diagrams, these atomic Mashups are represented
by an enclosing strict combined fragment (Equation 3) and two
parallel merge fragments par (Equation 13) that contain the receiving
and sending interactions. Thus, one can show:

strict(par(r), par(s)) = par(r)par(s)

= rs
(12)

par(x) := (x1

∃

par(x2, ..., xv))

= x
(13)

where x ∈ Xv, r ∈ Rn, s ∈ Sm, n number of receiving interactions,
m number of sending interactions and the shuffling operator

∃

is
defined according to [18] as:

(ax

∃

by) := a(x

∃

by) ∪ b(ax

∃

y)

x ∈ X, y ∈ Y, a ∈ A, b ∈ B
(14)

⇒ x

∃

y = {xy} ∪ {yx} |x ∈ X, y ∈ Y (15)

One can use Equation 15 since every parameter of the shuffle function
is only one word. In the equations, A,B,X and Y are defined as
sets. The information to send interactions on the first data push
reception is represented by adding the break fragment brk to the
parallel merge fragment that contains the receiving interactions. Thus,
with the previous definitions we can define the resulting execution
order of the entire Atomic Mashup for this case as:

brk(par(r), par(s)) = strict(pre(par(r)), par(s))

= pre(r)s
(16)

where r ∈ Rn, s ∈ Sm, n number of receiving interactions, m
number of sending interactions and the break fragment:

brk(x, y) = strict(pre(x), y) |x ∈ X
v
, y ∈ Y

w
(17)

In the SD, the property breakOnDataPushed defines whether to
send on the first or last receive of asynchronously pushed data. The
receiving and sending interactions are defined as JSON Arrays and
with context "@container":"set" specifying them as unordered.

4) Equivalence Reasoning: By considering that Sequence Dia-
grams and SDs are generally equally structured and can contain the
same elements in the same order (Section III-D2), together with the
equality in representing all of these elements (Section III-D3), one can
conclude their equality. Thus, if M is defined as the set of possible
Mashups, every m ∈ M can be represented with an SD or Sequence
Diagram:

SystemDescription(m) ⇔ SequenceDiagram(m) � (18)

This concludes our proof that the WoT Sequence Diagram and
the WoT System Description can represent Mashups equally, which
ensures that their conversion into each other does not cause a loss of
information.

Algorithm 1 An algorithm to convert a System Description to a

Sequence Diagram by retrieving the application logic.

1: procedure PARSESEQUENCEDIAGRAM

2: clean inputPlantUmlNotation;

3: for diagram ∈ inputPlantUmlNotation do

4: for line ∈ diagram do

5: mashupLogic ← uml to internal(line);

6: procedure GENERATESYSTEMDESCRIPTION

7: SystemDescription ← generate SD Template();

8: for logicArray ∈ mashupLogic do

9: for element ∈ logicArray do

10: if element[form] not in AddedForms then

11: SystemDescription ← element[form]
12: AddedForms ← element[form]

13: SystemDescription ← add SD Path Element(element)



Algorithm 2 Code generation algorithm that generates two code

instances, one implementing a Mashup’s application logic and another

one to include required protocol bindings.

1: procedure GENERATEINDEX

2: for protocol ∈ (confExposeProtocol ∨ SdInteractionForms) do

3: index ← include WoT API protocol binding(protocol);

4: mashupLogic ← parse System Description(inputSD);

5: code ← add variables handlers and classConstructor(inputSD);

6: procedure GENERATEMASHUPCODE

7: while mashupLogic ! = null do

8: code ← generate code for logic(mashupLogic[0])
9: if mashupLogic[0] has logicContent then

10: generateMashupCode(logicContent)

11: mashupLogic.removeIndex(0)

E. Algorithms

Based on the proof of equality presented in Section III-D, we
present algorithms to convert the representations into each other and
generate code from an SD.

We choose the SD as input for the code generation, because it is
a valid TD describing the network-facing interfaces of the Mashup,
which is required for creating a new Exposed Thing following the
Scripting API standard. The Mashup that would be consumed by
other Things would not require the SD logic and also the other
Things might be more resource constrained. Thus, when exposing
the Mashup’s TD, the algorithm removes SD-specific vocabulary.

1) Representation conversions: The algorithms we present to
convert the representations into each other are shown as an example
in Algorithm 1, as they are both similarly structured.

The algorithm first parses the Sequence Diagram input (line 1),
by calling a function that retrieves an internal representation of
the Mashup logic, for every included diagram line-wise (lines 3–
4). Based on the retrieved Mashup application logic and a Mashup
template (line 7), it generates the SD by adding the SD equivalents
(line 13) and required forms (lines 10–12) for every application logic
element in every application logic sequence (lines 8–9).

2) Automatic code generation: The automatic code generation
presented in Algorithm 2 integrates all bindings for protocols required
to interact with a Thing involved in the Mashup or configured to
expose the Mashup’s interfaces (lines 1–3). Furthermore, it generates
executable code for every application logic element, represented by
an internal tree-like structure, of the Mashup with the recursive
executable procedure GenerateMashupCode (lines 6–11).

3) Implementation: All algorithms we present can be implemented
in any Turing-complete programming language, but our publicly
available7 implementation is based on Node.js, JavaScript, TypeScript
and the WoT Scripting API standard reference implementation.

F. Discussion

From the listed Mashup equations in Section III-D, we reason that
one can define the representations we propose, to be equal (Equation
18) for the context of representing systems of IoT devices. With the
proposal of the representations and algorithms for WoT Mashups, we
achieve to provide automatic code generation in combination with
Mashup insights for the WoT. We also provide simple creation of
Interaction Affordances for Mashups, as they are automatically gen-
erated. In addition, the SD representation simplifies the transmission
and storage of Mashups and the Sequence Diagram representation
simplifies the documentation and manual creation of Mashups.

IV. RELATED WORK

We are mentioning the WoT Scripting API standard as enabler for
simpler development by providing an abstraction on an interaction
layer. However, it is important to mention that there have been
comparable approaches before, e.g., the Mozilla Web Thing API8

or the Philips Hue API, but no open standard.

7The implementation is part of our repository.
8https://iot.mozilla.org/wot/
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Figure 5. Top view of industrial scenario’s setup: Robot arm (a), conveyor
belts (b) with objects on them, infrared sensors (c), color sensors (d).

An approach for using MDE to represent the consumedThing
interface, referring to the WoT Scripting API standard, of a single
Thing is presented in [19]. The authors present a multi-layered model
built in the Eclipse Modeling Framework [5], which allows automatic
code generation for the described network-facing interfaces but comes
with the disadvantage of tool-specificity.

The WoT-based Asset Description concept, which also uses a
JSON-LD instance to represent a WoT Mashup, presented in [20] is
partly similar to our SD proposal, but it is focused on automatic dis-
covery and composition of simple systems. Therefore, a mechanism
to discover and update available Things together with a graphical
user interface for system composition is presented, but the created
systems are restricted in their functionality. The Mashups described
can only contain actions of Things or events triggered based on one
condition, or automatically calculated property values. The systems
cannot include application logic, i.e., loops and also cannot contain
sequences of interactions.

In [21] the WoTify platform for sharing WoT-conform implemen-
tations and TDs of IoT devices is presented and in [22] a similar
platform, called WoT Store, for sharing WoT Mashups is proposed.
For both approaches, our contributions would add value, where one
can share Mashups represented with an SD and enable user insights
with Sequence Diagrams. The code generation algorithm we proposed
in Section III-E2 could generate code using an implementation fitting
the user requirements not only for the WoT Scripting API reference
implementation in Node.js, but also for example for implementations
in other programming languages such as for Python with [23].

V. EVALUATION

In order to evaluate our contribution and since there exists no state-
of-the-art approach which we could use for a meaningful comparison,
we present three case studies with different characteristics.

Common Device Setup: All Mashups consist of physical Things,
which can be implemented with the information in our repository and
are connected over a local network. The Mashup controller is hosted
on a conventional laptop that is in the same local network.

Evaluation Procedure: We evaluate whether the Mashup can be
represented with the proposed representations and the conversion
algorithms work as expected. The steps we follow each scenario are:

• Manually creating a Sequence Diagram representation.
• Automatically converting the Sequence Diagram into an SD.
• Automatically converting the resulting SD back to a diagram.
• Comparing the initial Sequence Diagram to the automatically

generated one in the previous step.

Furthermore, we evaluate the automatic code generation algorithm
by creating code from the generated SD and executing it on a
Mashup controller. During the execution we check whether the
physical interactions observable on the Things, which are triggered
via requests of the Mashup controller, follow the application logic
described in the Sequence Diagram.

The case studies we use to evaluate our approach are characterized
by the following scenarios and requirements:



Case

Study

Number of

devices

Generated

lines of code

Application

logic
Consumer

1 2 154 8 no

2 4 156 2 yes

3 7 365 33 no

Table II
METRICS CHARACTERIZING THE EVALUATION RESULTS OF THE

DIFFERENT CASE STUDY SCENARIOS.

• Case Study 1: Simple Scenario
A Mashup involving an LED-strip and a push button, where the
LEDs should be turned on for ten seconds on every push of the
button. Here, the Mashup does not require a Consumer.

• Case Study 2: W3C Reference Smart Home Scenario
A smart home scenario as introduced in the Second W3C
workshop on the WoT9. The setup involves an LED-strip and
three ZigBee lamps with a ZigBee gateway attached to the local
network. The Mashup controller exposes the two actions, named
coming home and leaving, that hierarchically turn all lights on or
off. In this scenario, the Consumer of the Mashup is a Mozilla
WebThings Gateway10, which is connected to the same local
network and could integrate services such as voice assistants.

• Case Study 3: Industrial Scenario
An industrial environment scenario involving two conveyor
belts, a robot arm on an actuated slider that is able to pick objects
from both conveyor belts, two infrared sensors mounted on the
belts and two color sensors. The hardware setup is illustrated in
Figure 5 and the application logic can be explained as:

1) Both conveyor belts are started.
2) On detection of an object by one of the infrared sensors, the

corresponding belt is stopped.
3) The robot arm grabs the object of the stopped belt and presents

it to the color sensor.
4) The robot arm moves and drops the object to a position

depending on the color value read by the color sensor.
5) The conveyor is started again. If the other conveyor belt’s

sensor had detected an object during the steps 2–5, it is
stopped immediately and the steps 3–5 are executed again.

6) The application logic continues with step 2.

In this case study, the Mashup does not require a Consumer.

Evaluation Results: We evaluated the approach with the afore-
mentioned setup and procedure for each of the three case studies and
listed the resulting scenario metrics in Table II. The application logic
column in the table lists the number of application logic elements,
e.g., loop, Atomic Mashup or pause command. We found that it
is possible to represent the Mashup of each case study with both
representations and convert them into each other, which shows that
the Equation 18 holds. More specifically, the conversion algorithms
generate PlantUML notations that are equal to the input with the
exception of design choices inside the notation such as spaces, empty
lines or the order of unordered contents.

Furthermore, the code generation algorithm produces working
Mashup logic implementations and no manual adaptions are neces-
sary to achieve the expected Thing interaction behavior. Nevertheless,
the generated code is still readable and could be changed by humans.
All resources of the evaluation can be accessed11 by the reader, to
enable him/her to inspect, retrace or reproduce our evaluation results.

VI. CONCLUSION

We have proposed two representations, namely WoT Sequence
Diagram and WoT System Description, for Mashups in the Web of
Things that both have unique advantages, especially giving an insight

9https://github.com/w3c/wot/tree/master/workshop/ws2/Demos
10https://iot.mozilla.org/gateway/
11Our repository includes the evaluation inputs, i.e., manually written

Sequence Diagrams and the results, i.e., automatically generated SDs and
code, since putting them in the paper would require more pages.

into a system’s application logic and a machine-understandable open
format for saving and transmitting representations. By providing
code generation and conversion algorithms, we have demonstrated
in three case studies that the representations and the management of
Mashups in the WoT are improved. Our contribution thus establishes
a groundwork for further improvements in managing WoT Mashups
in a systematic way.
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