Post-Quantum Signatures on RISC-V with Hardware Acceleration

Patrick Karl¹, Jonas Schupp¹, Tim Fritzmann^{1,2}, Georg Sigl^{1,3}

¹Technical University of Munich TUM School of Computation, Information and Technology Chair of Security in Information Technology

²Now at Infineon Technologies

³Fraunhofer Institute for Applied and Integrated Security

February 27, 2023

Introduction

- NIST process to standardize quantum-secure crypto portfolio
 - Key-Encapsulation Mechanisms (KEMs)
 - Digital Signatures
- A lot of research for efficient implementations
 - ► Hardware or software
 - ► High-performance or resource-constrained
- Major focus on KEMs, less on signatures

 $\rightarrow\,$ How would PQ-signatures benefit from accelerators proposed for KEMs?

Contribution

- Adapt accelerators to Dilithium and Falcon (verification only)
- Evaluation of accelerated RISC-V design
- Globalfoundries 22nm ASIC layout
- Exemplary usecase: TLS 1.3 handshake

TLS 1.3 in IoT scenario

- Handshake for mutual authentication
 - Requires signing and verification
 - $\rightarrow~$ Dilithium as generic scheme
- Certificate verification
 - Requires verification only
 - $\rightarrow~$ Falcon with small signatures
- Platform for Dilithium support with Falcon acceleration "for free"

Overview

Introduction

Preliminaries

Design

Results

CRYSTALS-Dilithium and Falcon

- Lattice-based schemes
 - Both selected by NIST for standardization
 - Both allow for fast polynomial arithmetic
- Dilithium overall efficient scheme
 - ▶ $|pk| + |\sigma| = 1,312B + 2,420B$ (NIST-2)
- Falcon small signatures, fast verification
 - Floating-point during signing
 - ► $|pk| + |\sigma| = 897B + 666B$ (NIST-1)

- Frequent operations:
 - Hashing and Random Number Generation using shake256
 - Polynomial multiplication using Number Theoretic Transform (NTT)

CRYSTALS-Dilithium and Falcon

- shake256 from SHA3 standard
- NTT based polynomial arithmetic
- $\rightarrow\,$ Integrate HW acceleration for both operations

Algorithm Dilithium Verify

Require: Public Key pk, message M, signature $\sigma = (\tilde{c}, \boldsymbol{z}, \boldsymbol{h})$ **Ensure:** Accept or reject

1:
$$A \leftarrow \text{ExpandA}(\rho)$$

2: $\mu \leftarrow H(H(\rho \parallel t_1) \parallel M)$
3: $c \leftarrow \text{SampleInBall}(\tilde{c})$
4: $w'_1 \leftarrow \text{UseHint}(h, Az - ct_1 \cdot 2^d)$
5: if $\|z\|_{\infty} < \gamma_1 - \beta$ AND $\tilde{c} = H(\mu \parallel w'_1)$ AND # of 1's in $h \le \omega$
then
6: return accept
7: else
8: return reject
9: end if

CRYSTALS-Dilithium and Falcon

- shake256 from SHA3 standard
- NTT based polynomial arithmetic
- $\rightarrow\,$ Integrate HW acceleration for both operations

Algorithm Falcon Verify

Require: public key *h*, message *M*, $\sigma = (r, s_2)$ **Ensure:** Accept or reject

1:
$$c \leftarrow \text{HashToPoint}(r \parallel M)$$

2: $s_1 \leftarrow c - s_2 h$
3: if $\parallel (s_1, s_2) \parallel^2 \leq \lfloor \beta^2 \rfloor$ then
4: $accept$
5: else
6: $reject$
7: end if

Overview

Introduction

Preliminaries

Design

Results

Design: SHAKE256

- 1. Loosely-coupled, connected to system-bus
 - Performant, easy integration
 - Data transfer might be bottleneck
- 2. Tightly-coupled, connected to registers
 - complex integration/register management
 - state can fully reside in registers using FPU

- \rightarrow Tightly-coupled approach from [FSS20]
- ightarrow Single Keccak round connected to GPR and FPR

Design: NTT-based Polynomial Arithmetic

- Generic, configurable NTT accelerator proposed in [Fri+21]
 - Support for different NTT flavors
 - Modulus up to 39-bit
- Optimize it for our use-case:
 - Only 24-bit modulus required
 - Remove configuration options
- \rightarrow Loosely-coupled NTT
- ightarrow Computational intensity compensates for transfer overhead

System Overview

- RISC-V based PULPino microcontroller¹
 - CV32e40p (RV32IMFC) [Gau+17]
 - ► keccak_f1600 single RISC-V instruction

	LUTs	FFs	BRAMs	DSPs	kGE
base	15, 137	9, 943	48	6	143
acc.	22, 356	13, 181	54	13	244
Keccak	4, 782	1,050	0	0	-
NTT [Fri+21]	2,475	1,940	9	7	_
NTT (This)	1,402	1,192	6	7	

Table: Area overhead (Xilinx UltraScale+, GF 22nm)

¹ https://github.com/pulp-platform/pulpino

Patrick Karl | Post-Quantum Signatures on RISC-V with Hardware Acceleration

Overview

Introduction

Preliminaries

Design

Results

Results: Cycle Counts

		Keygen	Sign	Verify
Dilithium-II	CVA6 SoC [Nan+21] base (this) acc. (this)	$\begin{array}{c} 1,592,325\\ 3,566,442\\ 593,403\end{array}$	5,884,266 11,242,911 1,905,872	$\begin{array}{c} 1,700,679\\ 3,854,303\\ 651,217\end{array}$
Falcon-512	base (this) acc. (this)	-		830, 597 314, 639

Table: Average cycle count for 100 iterations and a 59 B message.

- [Nan+21]: tightly-coupled NTT acceleration
- Frequency is not affected by acceleration (\approx 150 MHz)
 - Cycle reduction directly transfers to latency

ASIC: Results

- Globalfoundries 22nm
 - ▶ 1,25*mm* × 1,25*mm*
 - ► 800 MHz (25°C, 0.8V core voltage)
- Size dominated by memories
 - ► 1, 2, 3: core data/instruction memory
 - ► 4, 5: NTT memories
- Energy savings up to a factor of ×14 (Dilithium-V)

<日

< 日

< < 日

<

ASIC: Comparison with ASICs

Figure: Comparison with the TSMC 28nm design of [Zha+22] and the TSMC 40nm design of [BUC19]

ASIC: Comparison with ASICs

Figure: Comparison with the TSMC 28nm design of [Zha+22] and the TSMC 40nm design of [BUC19]

Comparison with TLS 1.3 evaluation in [Tas+21]

Design	Platform	Dilithium-II	Dilithium-V	
[Nan+21]	FPGA at 100 MHz	15.9 / 58.8 / 17.0	50.1 / 133 / 51.3	
This	ASIC at 180 MHz	3.30 / 10.6 / 3.62	9.92 / 24.2 / 10.3	
This	ASIC at 800 MHz	0.74 / 2.38 / 0.81	2.23 / 5.45 / 2.31	
[Zha+22]	ASIC at 540 MHz	0.08 / 0.32 / 0.17	0.18 / 0.58 / 0.30	
		2048 bit RSA	secp2561r1 ECDSA	
[Tas+21]	Cortex-M4 at 180 MHz	450 / 448 / 12.5	8.43 / 12.3 / 25.2	

Table: Latency comparison for Dilithium keygen/sign/verify in ms

- Falcon verification for NIST-1 / NIST-5:
 - 180MHz: 1.72ms / 3.41ms
 - 800MHz: 0.39ms / 0.77ms

Overview

Introduction

Preliminaries

Design

Results

- Unified ASIC design targeting TLS 1.3 in IoT:
 - Dilithium as generic scheme
 - "Free" acceleration of Falcon verification on top
- Performance gain while energy consumption decreases
- Investigation of memory efficient implementations for future work

<日</td>

Thank you for your attention!

E-mail: patrick.karl@tum.de

Paper: https://doi.org/10.1145/3579092

ТШ

References

- [BUC19] U. Banerjee, T. S. Ukyab, and A. P. Chandrakasan. "Sapphire: A Configurable Crypto-Processor for Post-Quantum Lattice-based Protocols". In: IACR Transactions on Cryptographic Hardware and Embedded Systems (2019), pp. 17–61.
- [Fri+21] T. Fritzmann et al. "Masked Accelerators and Instruction Set Extensions for Post-Quantum Cryptography". In: IACR Transactions on Cryptographic Hardware and Embedded Systems (2021), pp. 414–460.
- [FSS20] T. Fritzmann, G. Sigl, and J. Sepúlveda. "RISQ-V: Tightly Coupled RISC-V Accelerators for Post-Quantum Cryptography". en. In: IACR Transactions on Cryptographic Hardware and Embedded Systems Volume 2020 (2020), Issue 4.
- [Gau+17] M. Gautschi et al. "Near-Threshold RISC-V Core With DSP Extensions for Scalable IoT Endpoint Devices". In: *IEEE Transactions on Very Large Scale Integration (VLSI) Systems* 25.10 (2017), pp. 2700–2713.
- [Nan+21] P. Nannipieri et al. "A RISC-V Post Quantum Cryptography Instruction Set Extension for Number Theoretic Transform to Speed-Up CRYSTALS Algorithms". In: *IEEE Access* 9 (2021), pp. 150798–150808.
- [Tas+21] G. Tasopoulos et al. *Performance Evaluation of Post-Quantum TLS 1.3 on Resource-Constrained Embedded Systems.* Cryptology ePrint Archive, Paper 2021/1553. https://eprint.iacr.org/2021/1553. 2021.
- [Zha+22] Y. Zhao et al. "A High-Performance Domain-Specific Processor With Matrix Extension of RISC-V for Module-LWE Applications". In: *IEEE Transactions on Circuits and Systems I: Regular Papers* 69.7 (2022), pp. 2871–2884.