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Introduction
• NIST process to standardize quantum-secure crypto portfolio

▶ Key-Encapsulation Mechanisms (KEMs)
▶ Digital Signatures

• A lot of research for efficient implementations
▶ Hardware or software
▶ High-performance or resource-constrained

• Major focus on KEMs, less on signatures

→ How would PQ-signatures benefit from accelerators proposed for KEMs?
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Contribution
• Adapt accelerators to Dilithium and Falcon (verification only)

• Evaluation of accelerated RISC-V design

• Globalfoundries 22nm ASIC layout

• Exemplary usecase: TLS 1.3 handshake
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TLS 1.3 in IoT scenario
• Handshake for mutual authentication

▶ Requires signing and verification
→ Dilithium as generic scheme

• Certificate verification
▶ Requires verification only
→ Falcon with small signatures

• Platform for Dilithium support with Falcon acceleration “for free”
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CRYSTALS-Dilithium and Falcon

• Lattice-based schemes
▶ Both selected by NIST for standardization
▶ Both allow for fast polynomial arithmetic

• Dilithium overall efficient scheme
▶ |pk |+ |σ| = 1, 312B + 2, 420B (NIST-2)

• Falcon small signatures, fast verification
▶ Floating-point during signing
▶ |pk |+ |σ| = 897B + 666B (NIST-1)

• Frequent operations:
▶ Hashing and Random Number Generation

using shake256
▶ Polynomial multiplication using Number

Theoretic Transform (NTT)
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CRYSTALS-Dilithium and Falcon

• shake256 from SHA3 standard

• NTT based polynomial arithmetic

→ Integrate HW acceleration for both
operations

Algorithm Dilithium Verify
Require: Public Key pk , message M, signature σ = (c̃, z,h)
Ensure: Accept or reject

1: A← ExpandA(ρ)
2: µ← H( H(ρ ∥ t1) ∥ M)
3: c ← SampleInBall(c̃)
4: w ′

1 ← UseHint(h,Az − ct1 · 2d )
5: if ∥z∥∞ < γ1 − β AND c̃ = H(µ ∥ w ′

1) AND # of 1’s in h ≤ ω
then

6: return accept
7: else
8: return reject
9: end if
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CRYSTALS-Dilithium and Falcon

• shake256 from SHA3 standard

• NTT based polynomial arithmetic

→ Integrate HW acceleration for both
operations

Algorithm Falcon Verify
Require: public key h, message M, σ = (r , s2)
Ensure: Accept or reject

1: c ← HashToPoint(r ∥ M)
2: s1 ← c − s2h
3: if ∥ (s1, s2) ∥2 ≤ ⌊β2⌋ then
4: accept
5: else
6: reject
7: end if
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Design: SHAKE256

1. Loosely-coupled, connected to system-bus
▶ Performant, easy integration
▶ Data transfer might be bottleneck

2. Tightly-coupled, connected to registers
▶ complex integration/register management
▶ state can fully reside in registers using FPU
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→ Tightly-coupled approach from [FSS20]
→ Single Keccak round connected to GPR and FPR
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Design: NTT-based Polynomial Arithmetic

• Generic, configurable NTT accelerator
proposed in [Fri+21]
▶ Support for different NTT flavors
▶ Modulus up to 39-bit

• Optimize it for our use-case:
▶ Only 24-bit modulus required
▶ Remove configuration options
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→ Loosely-coupled NTT
→ Computational intensity compensates for transfer overhead
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System Overview

• RISC-V based PULPino microcontroller1

▶ CV32e40p (RV32IMFC) [Gau+17]
▶ keccak_f1600 single RISC-V instruction

LUTs FFs BRAMs DSPs kGE

base 15, 137 9, 943 48 6 143
acc. 22, 356 13, 181 54 13 244

Keccak 4, 782 1, 050 0 0 –

NTT [Fri+21] 2, 475 1, 940 9 7 –
NTT (This) 1, 402 1, 192 6 7 –

Table: Area overhead (Xilinx UltraScale+, GF 22nm)
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1https://github.com/pulp-platform/pulpino

Patrick Karl | Post-Quantum Signatures on RISC-V with Hardware Acceleration 9 / 14



Overview

Introduction

Preliminaries

Design

Results

Conclusion



Results: Cycle Counts

Keygen Sign Verify

Dilithium-II
CVA6 SoC [Nan+21] 1, 592, 325 5, 884, 266 1, 700, 679
base (this) 3, 566, 442 11, 242, 911 3, 854, 303
acc. (this) 593, 403 1, 905, 872 651, 217

Falcon-512 base (this) – – 830, 597
acc. (this) – – 314, 639

Table: Average cycle count for 100 iterations and a 59 B message.

• [Nan+21]: tightly-coupled NTT acceleration

• Frequency is not affected by acceleration (≈ 150 MHz)
▶ Cycle reduction directly transfers to latency
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ASIC: Results

• Globalfoundries 22nm
▶ 1, 25mm × 1, 25mm
▶ 800 MHz (25◦C, 0.8V core voltage)

• Size dominated by memories
▶ 1, 2, 3: core data/instruction memory
▶ 4, 5: NTT memories

• Energy savings up to a factor of ×14
(Dilithium-V)
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ASIC: Comparison with ASICs
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Figure: Comparison with the TSMC 28nm design of [Zha+22] and the TSMC 40nm design of [BUC19]
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ASIC: Comparison with ASICs

(a) Power
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Figure: Comparison with the TSMC 28nm design of [Zha+22] and the TSMC 40nm design of [BUC19]

Patrick Karl | Post-Quantum Signatures on RISC-V with Hardware Acceleration 12 / 14



Comparison with TLS 1.3 evaluation in [Tas+21]

Design Platform Dilithium-II Dilithium-V

[Nan+21] FPGA at 100 MHz 15.9 / 58.8 / 17.0 50.1 / 133 / 51.3
This ASIC at 180 MHz 3.30 / 10.6 / 3.62 9.92 / 24.2 / 10.3
This ASIC at 800 MHz 0.74 / 2.38 / 0.81 2.23 / 5.45 / 2.31

[Zha+22] ASIC at 540 MHz 0.08 / 0.32 / 0.17 0.18 / 0.58 / 0.30

2048 bit RSA secp2561r1 ECDSA

[Tas+21] Cortex-M4 at 180 MHz 450 / 448 / 12.5 8.43 / 12.3 / 25.2

Table: Latency comparison for Dilithium keygen/sign/verify in ms

• Falcon verification for NIST-1 / NIST-5:
▶ 180MHz: 1.72ms / 3.41ms
▶ 800MHz: 0.39ms / 0.77ms
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Conclusion
• Unified ASIC design targeting TLS 1.3 in IoT:

▶ Dilithium as generic scheme
▶ “Free” acceleration of Falcon verification on top

• Performance gain while energy consumption decreases

• Investigation of memory efficient implementations for future work
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Thank you for your attention!
E-mail: patrick.karl@tum.de

Paper: https://doi.org/10.1145/3579092
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