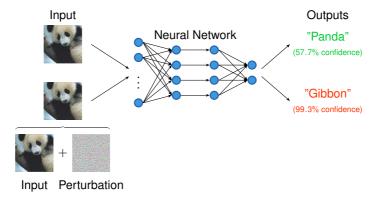
## **Training Robust Neural Networks**


Lukas Koller

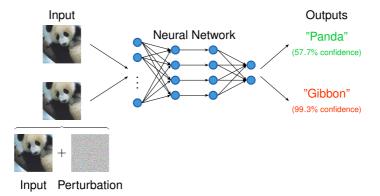
Prof. Dr.-Ing. Matthias Althoff Cyber-Physical Systems Group Technische Universität München

February 4, 2024

## Neural Networks and Adversarial Attacks

*Adversarial Attack:* Small carefully chosen input perturbation that leads to a misclassification.




#### Neural networks are vulnerable to adversarial attacks!<sup>1</sup>

<sup>1</sup>Goodfellow et al., "Explaining and Harnessing Adversarial Examples"

**CPS Seminar** 

## Neural Networks and Adversarial Attacks

*Adversarial Attack:* Small carefully chosen input perturbation that leads to a misclassification.



#### Neural networks are vulnerable to adversarial attacks!<sup>1</sup>

<sup>1</sup>Goodfellow et al., "Explaining and Harnessing Adversarial Examples"

# **Training Robust Neural Networks**

There are many different methods to train adversarially robust neural networks, e.g. <sup>2</sup>, <sup>3</sup>, <sup>4</sup>, <sup>5</sup>.

**Your tasks:** Review and compare different approaches to train and evaluate robust neural networks.

#### Interested? Contact me!

Lukas Koller lukas.koller@tum.de

<sup>&</sup>lt;sup>2</sup>Madry et al., "Towards Deep Learning Models Resistant to Adversarial Attacks"
<sup>3</sup>Gowal et al., "Scalable Verified Training for Provably Robust Image Classification"
<sup>4</sup>Mirman et al., "Differentiable Abstract Interpretation for Provably Robust Neural Networks"
<sup>5</sup>Zhang et al., "Theoretically Principled Trade-off between Robustness and Accuracy"