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Abstract

In recent years, research and development in Internet of Things, pervasive computing
and machine-to-machine communication have been trending in the computer science
field alongside the evolution of wireless sensor networks and single board comput-
ers. This has motivated researchers and developers to harness the power of combining
intelligent agents capable of acting on their own with small computer devices, in or-
der to enhance the life quality of human beings, preserve the environment, improve
the manufacturing process and provide better health care. As a result, the usage of
networking concepts such as Information-Centric, Delay-Tolerant architectures and
publish-subscribe messaging systems has nurtured in order to provide efficient ma-
chine communication mechanisms to smart devices. Despite the increase of pervasive
use cases, there is still a lack of frameworks that facilitate the distribution and har-
monization of pervasive use cases. A framework that would assist in designing and
deploying different use cases to edge devices in a network and allows communica-
tion and data sharing between them. Therefore, we propose a software framework
for distributing flows which are representations of computations describing use cases
to smart devices in a network. The framework also takes care of the flows depen-
dencies, resources, data communication, service discovery, delivering computations
and data to challenged networks. It relies on the concepts of pervasive computing,
information-centric and delay-tolerant networking. The framework also allows having
inter-relationships between flows either locally on the same device or globally across
different devices. The framework can help researches, industries and individuals to
design and distribute computations to smart devices using flow-based programming
with minimal amount of code.
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1. Introduction

The concept of Pervasive or Ubiquitous computing, in which devices are integrated
with intelligent agents and expected to support human needs anytime and anywhere
without their interference, existed long ago since 1991 in Mark Weiser’s paper "The
Computer for the 21st Century" [Wei91]. Even though pervasive computing was there
for a long time, research and development in this area have recently flourished again
following the prosperity of wireless sensor networks, single board computers and em-
bedded micro-processors in our daily objects. Today, pervasive devices are expected
to act on their own, be context-aware and include intelligent agents to support human
beings and increase their life quality while being indistinguishable from everyday ob-
jects. In 1999 the term Internet of Things (IoT) appeared and since then it has been
used to refer to networks of smart things and ideas around establishing smart cities,
homes and factories. Smart devices used in these contexts are heterogeneous and ex-
pected to communicate and share knowledge with either each other or the cloud.

Despite the various applications for pervasive agents and IoT networks, there is still
a lack of frameworks that could harmonize and orchestrate the deployment of dif-
ferent use cases to these networks. There are many reasons for this absence, first is
the heterogeneity of devices, they differ in their computing capabilities. Second is
the varying availability of gadgets including sensors and actuators attached to the
smart devices in the network. Third, the different nature of use cases and their de-
pendencies develops an obstacle towards using a unified framework for most use
cases. Fourth, providing a communication mechanism to the framework that works
seamlessly and discovers other peer smart devices remains a challenge. Last but not
least, the existence of challenged networks makes it rather hard to reach devices with-
out an end-to-end path. Advances in research specifically pervasive computing, IoT,
Delay-Tolerant and Information-Centric networking in addition to current available
platforms, have given us insights in order to pursue creating a framework for perva-
sive computing.

The main goal of our work is to propose a framework architecture that can distribute
pervasive use case computations with their dependencies to all smart devices in a
network with respect to their resources. Also, the framework allows peer discovery
and communication for smart devices without host names which makes it even more
dynamic. The framework also allows computations to be self-contained and have
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1. Introduction

inter-relationships between each other in addition to providing the proper execution
environment. Further, we extended the framework architecture to deliver the compu-
tations to smart devices even in challenged networks.

Our framework architecture suggests a stack that is installed on each smart device and
composed of a delay-tolerant, information-centric and publish subscribe messaging
system. It handles the communication between all smart devices and implements
service discovery at the stack bottom. Above the messaging system, a middleware
exists that harmonizes and orchestrates computation dependencies, resources and
deployment. This is done by ensuring that each computation has its dependencies
attached, and verifies that the smart device has the required resources from hardware
requirement, sensors and actuators. Then the middleware decides whether to deploy
the computation or not. Finally on top of the stack, an execution environment that acts
as a host for all computations deployed from the middleware and as a user interface
to design and compose different use case computations.

1.1. Scope and Goals

The scope of this thesis is to present the design and architecture of a pervasive frame-
work for distributing, composing and executing computations which implement var-
ious use cases. The design is based on the concepts of delay-tolerant, information-
centric networking, pervasive computing and executing computations on the network
edge. Requirements for the framework design are extracted from real life use cases.
We base our design on these requirements and also present a proof-of-concept imple-
mentation to show that the design is feasible and can be realized. Then, the imple-
mentation and design are evaluated by running several experiments each targeting a
specific set of requirements.

The framework will enable smart devices to communicate together through a publish-
subscribe scheme even without an end-to-end path, thus sending and receiving data
and computations. It will also provide the user an interface to design flows which
are required to implement use cases as well as to publish flows either to all the smart
devices in a network, a set or a specific device. In addition, it will allow the user to
adjust the resources and attach dependencies to flows in order to compensate for the
heterogeneous devices in the network and make sure flows will be executed success-
fully.

More specifically, the goal of this thesis is to provide a framework that enables the
user to: i) develop a flow that portrays a pervasive use case, ii) choose the flow hard-
ware requirements such as the computation power and the random access memory
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1. Introduction

that fits the use case, iii) choose the required sensors and actuators needed by the
flow, iv) attach necessary flow dependencies in order to ensure the computation will
run successfully, v) send the flow to all devices in a network, vi) ensures the flow is
received by all targeted devices, vii) handle the deployment and execution of the flow
if it satisfies the needed requirements and resources, viii) allow data communication
between the framework devices using information-centric architecture, ix) compose
flows by matching their the input and output, x) reach isolated devices in separate
networks using delay-tolerant architecture.

1.2. Thesis Structure

This thesis is constructed in the following way; in the first chapter we present the
problem along with a brief introduction to the proposed solution. The second chapter
consists of the background information that represent the underlying concepts of this
thesis in addition to the platforms used to implement the proposed framework. In
the third chapter we define the theoretical terms, key concepts and possible solutions
to the framework’s main challenges. Afterwards in Chapter 4, we explain some of the
real life use cases, requirements elicitation and the approach we took to design our
framework architecture. Chapter 5 describes the implementation details of the main
contribution of this work besides the use cases implementation used in the evalua-
tion chapter. Then, we evaluate the framework implementation and architecture in
Chapter 6 by running several experimental use cases each satisfying a different set of
requirements. Finally we conclude our work, summarize the results and also explain
the room for improvement and future work in Chapter 7.
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2. Background

This chapter describes the concepts and background information that this thesis uses
and relies on. It gives a brief introduction to the Internet of Things and other concepts
such as pervasive and fog computing in addition to explaining Delay-Tolerant and
Information-Centric Networking as they play an important role in this thesis. Further,
we explain the software platforms and hardware used to implement the proposed
framework.

2.1. Internet of Things

In general terms, IoT refers to a highly dynamic and scalable distributed network
of connected devices equipped with context-aware gadgets that enables them to see,
hear and think [Xia+12]. Then, transform these senses to a stream of information
allowing devices to digest the data and act intelligently through actuators if needed.
They are also allowed to communicate and share knowledge, which make them smart,
powerful and capable of acting independently. Smart devices in an IoT network are
heterogeneous in terms of computation capabilities, also each device is energy opti-
mized and able to communicate. Additionally, to qualify for being smart, devices
must have a unique global identifier, name, address and can sense the environment.
However, the IoT network may also contain devices that are not "smart" which act
upon receiving orders triggered through certain circumstances in the network, for ex-
ample, a lamp post that is set on and off according to network signals.

Since smart devices have unique identifiers and are context-aware, they can be tracked
and localized, which is very helpful when performing geospatial computations [Mio+12].
The huge demand on IoT has triggered the development of small-scale, high-performance,
low-cost single board computers such as Raspberry Pi [Ras] and Banana Pi [Ban], in
addition, sensors and actuators are getting cheaper, smaller and more powerful which
in turn increased the interest even more.

The IoT concept can be viewed from different perspectives it is very elastic and pro-
vides a large scale of opportunities in many areas. Currently the number of connected
smart devices are estimated in billions [Gar], they aim to automate everything around
us and are mainly targeted to increase life quality. The broad range of IoT applications
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2. Background

include:

• Smart homes which tend to use sensors and actuators to monitor and optimize
home resource consumption and control home devices in a way that increases
humans satisfaction. Further, expenses generated from resource usage such as
gas, power, water and telecommunications can be sent directly to related author-
ities without any human intervention [Cha+08].

• Smart factories also known as "Industry 4.0" the fourth industrial revolution
which are optimized machines that communicate together in order to improve
the manufacturing process and gather data to analyze factories logistics, pipeline
and product availability. It also creates intelligent products that can be located
and identified at all times in the process [Gil16].

• Smart cities is one of the most adopted applications in the IoT field, it com-
prises smart parking, traffic congestion monitoring and control, real time noise
analysis, waste management and others. All these applications need enhanced
communication and data infrastructure. It aims at increasing quality of living
for individuals [Zan+14].

• There are also applications in health care, environmental monitoring, security
and surveillance [LXZ15].

IoT is very diverse, one way of applying it is to gather data from the smart devices,
then process data in the cloud via Cloud Computing. Afterwards, results could be sent
back to smart devices in order to act somehow. Nevertheless, there are approaches for
pushing computations to the smart devices "Edges" such as Edge Computing, Pervasive
Computing and Fog Computing.

2.2. Pervasive Computing

Pervasive computing, also known as Ubiquitous Computing, is a concept in which soft-
ware devices and agents are expected to support and act upon human needs anytime
and anywhere without their interference [CFJ03]. It is usually integrated with intel-
ligent agents and smart devices which keep learning from human actions and the
decisions taken previously to be even more helpful every time. Also, pervasive soft-
ware agents are context-aware in most of the cases, in which they know what changes
are happening around them at a specific point in time and hold a history of what has
happened in the environment. They also communicate seamlessly in order to share
knowledge and help each other take better decisions. Moreover, pervasive devices
can be relocated from one place to another, thus changing the network and possibly
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2. Background

the environment. Therefore, devices can not be addressed with their respective net-
worked addresses because they might eventually change.

In 1991 Mark Wieser said in the paper describing his vision of ubiquitous computing
“The most profound technologies are those that disappear. They weave themselves
into the fabric of everyday life until they are indistinguishable from it” [Wei91]. Since
then, computing has evolved from using only desktop personal computers to the cur-
rent phase of wireless sensor networks, small computational devices and distributed
systems. Imagine the large scale of applications that could incorporate the computa-
tional power, artificial intelligence, machine learning and context-awareness to serve
human beings without them even noticing that it exists. In the same paper Wieser also
concluded “Most important, ubiquitous computers will help overcome the problem
of information overload. There is more information available at our fingertips during
a walk in the woods than in any computer system, yet people find a walk among
trees relaxing and computers frustrating. Machines that fit the human environment,
instead of forcing humans to enter theirs, will make using a computer as refreshing
as taking a walk in the woods”.

Figure 2.1 shows the architecture of a pervasive environment, in which devices are
connected together through a pervasive network which should be lenient to relocating.
In addition, each pervasive device has several applications that depend on environ-
ment and context. The pervasive middleware is an abstraction of the core software to
the end-user applications.
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Figure 2.1.: Pervasive Computing environment architecture. Adopted from [SM03].

The road to pervasiveness is not paved with gold, there are many challenges that faces
the design and implementation of pervasive applications. Some of these challenges
are [SHB10]:

1. Devices have become more heterogeneous and the middleware must be able to
execute on each of them, therefore, the use of self-contained software environ-
ments is advised.

2. Communication reliability is often questioned, in addition, environments are
highly dynamic, thus devices are only known at run time. Therefore, service
discovery is a must, either peer-based in which all nodes take part in the discov-
ery or mediator-bases in which some special devices are promoted to perform
service discovery.

3. Sensor availability on smart devices, readings uncertainty of sensors and contin-
uous update of user requirements.

4. Communication and cooperation between devices requires interoperability. There
are three different ways that allows them to cooperate:

• Fixed standardized protocol, in which we set some technologies, protocols
and data formats in order to be used across the system.

• Dynamically negotiated, in which devices are allowed to negotiate on which
protocols and data formats to use at run time.
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• Using interaction bridges that map between different approaches and pro-
tocols.

2.2.1. Fog Computing

The fog is an extension of cloud computing to the edge of the network. It provides
computation, storage, networking and application services to end-users. Fog and
cloud are independent, in fact, cloud can be used to manage the fog. They are also
mutually beneficial, some use cases are better deployed in the fog and vice versa.
Research is yet to determine which applications should go where. The fog is charac-
terized by having lower latency than the cloud, thus it is better suited for time critical
applications. Also, fog devices have location awareness with a better geographical
distribution than the centralized cloud approach. It can distribute the computations
and storage between the cloud, itself and idling devices on the network edge [CZ16].
However, it remains a challenge to deal with all the heterogeneous devices in the fog.
Connecting various components with different nature ensuring quality of service is
not easy. Moreover, a unified programming model should be used in all fog devices
in order to help programmers make use of the fog model. Other issues are also being
researched such as security and privacy of the fog network [YLL15].

2.3. Messaging Protocols

With the rise of IoT and the need for interoperability and seamless communication be-
tween smart devices, researchers and professionals have been working on developing
messaging protocols that aim to enable Machine-To-Machine (M2M) communication
without any human interaction. The M2M messaging approaches can be divided into
two main categories; broker and broker-less.

The broker architecture means that there is a server in the middle of all communica-
tion acting as a centralized intermediary. Every machine in this architecture is con-
nected to this broker and every message whether a publish or subscribe goes through
it. The advantages of this model is that; machines do not need service discovery for
peers, the only thing they need to know is the broker’s address. Further, if one ma-
chine published a message to the broker and died, it can still reach a receiver (even if
not yet online) through the broker, it can also provide a delivery guarantee. However
it has some disadvantages, there is an extensive network communication that goes
through the broker, thus it becomes a bottleneck, though there is a possibility to have
multiple brokers in a single network. Also, in a dynamic environment the broker or
brokers addresses might not be known beforehand therefore it becomes very hard to
set up broker architecture in this environment. MQTT [MQT] and AMQP [AMQ] are
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examples of this approach.

The broker-less architecture means that machines communicate directly with each
other or through multiple hops, thus it relies heavily on peer discovery. It tackles
the bottleneck of broker network communication, since messages only have to go
from publishing peers to interested ones. Furthermore, since machines are not always
available, the architecture needs to deal with unavailable machines that may not have
started yet. In addition, it has to handle message delivery to machines with no end-to-
end path or direct connectivity. ZeroMQ [Zer] is one implementation of broker-less
architectures.

There is yet another approach which is endpoint centric such as RESTful services, web
sockets and protocols like Constrained Application Protocol CoAP [Z S14] that uses
the REST architectural style and is built over UDP. It also supports service discovery,
multicast and asynchronous messaging exchange.

2.4. Networking

The following is a brief introduction of the main networking grounds that are used in
this thesis. Since the proposed software framework focuses on exchanging data and
computation between devices even without an end-to-end path, it is imperative that
we shed light on Information-Centric Networking which proposes replacing current
host-centric Internet architecture with a content-centric one. Additionally, having no
end-to-end paths between some of our devices, guides us to leverage the concept of
Delay-Tolerant Networking that can store messages and carry it forward even without
a connection through mobile devices.

2.4.1. Information Centric Networking

Information-Centric Networking (ICN) is an architecture that focuses on WHAT infor-
mation is being exchanged rather than WHO are exchanging it. ICN was described
by Dirk Trossen et al. as a networking architecture that aims to replace the current In-
ternet inter-networking layer using publish-subscribe model as an underlying service
[TSS10]. Trossen introduced four main challenges that faces the architecture which
are namely information-centrism of applications, supporting and exposing tussles,
increasing accountability, and addressing attention scarcity.
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Figure 2.2.: ICN architecture by Dirk Trossen et al. Adopted from [TSS10].

The architecture design has three main functions:

• Rendezvous: which are used to match publishers and subscribers of information,
each of them is identified by a globally unique identifier called Rendezvous
Identifier (RI). The information items required to perform this matching exists
in the Rendezvous Points (RP).

• Forwarding Topology: which is created once there is a match between publica-
tions and subscriptions in cooperation with the inter-domain topology forma-
tion (ITF). It depends on the publishers and subscribers location on the level of
Autonomous Systems (AS).

• Topology manager: which resides in each AS and is used as a transfer link between
ASes. Also, it is used to guide Forwarding Nodes (FN) to create a route between
local publishers and subscribers.

ICN is content-centric in contrast to current network approaches which are host-
centric, wherein communication takes place between hosts such as servers, personal
computers, etc. ICN was brought to light as a result of the increasing demand on
content sharing in highly scalable, distributed and efficient fashion. It comprises net-
work caching, replication across entities and resilience to failure. The content types
includes web-pages, videos, images, documents, streaming and others which are ti-
tled Named Data Objects (NDOs). The NDO is only concerned by its name and data.
As long as the name identity is preserved, it does not matter where the NDO is going
to be persisted, what is the storage method or which type of transport procedure is
used. Therefore, copies of NDO are equivalent and can be supplied from any location
or replica across an ICN network. However, since the name represents its identity,
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ICN requires unique naming for individual NDOs.

ICN also provides an Application Programming interface (API) that is responsible for
sending and receiving NDOs. The two main roles in this API are the producer who
produces content to a specific name and the consumer who asks if an NDO is avail-
able by its name. There is also the publish-subscribe approach in which a consumer
registers for a subscription to a certain name and gets notified whenever new content
is available. This caters for decoupling between producers and consumers.

To ensure that an NDO goes from one entity to another, a consumer request must go
through two different routing phases. The first is to find a node that holds a copy
of the NDO and deliver the request to that node. The second is to find a routing
path back from the receiving node to requester carrying the required NDO. This can
be achieved in two different ways: i) name-resolution in which a resolution service
is queried in order to find a way to locate a source node, ii) name-based routing in
which the request is forwarded to another entity on the network based on routing
algorithms, policies and cached information.

ICN caches are available on all nodes, requests to an NDO can be served from any
node having a copy in the cache. An NDO can be cached on-path from sender to re-
ceiver or off-path through routing protocols or by registering it into a name-resolution
service [Ahl+12].

2.4.1.1. Content Centric Networking

Content-centric networking (CCN) was first introduced by Van Jacobson et al., in
order to tackle current network architecture issues such as availability, security and
location independence. The main communication model relies on two main CCN
packets namely interest and data packets. It works as follows, a consumer broad-
casts its interest of information to all connected nodes. If a node posses the desired
data and received an interest packet, it responds with a data packet [Jac+09].

CCN is based on the ICN concept, namespace in CCN is hierarchal, for instance,
/tum.de/connected-mobility/iot matches the Figure 2.3. Names do not have to be
meaningful or readable, they can include hashes, timestamps, ids, etc. A request
matches an NDO if its name is a prefix of any named object, for example, a re-
quest with the name /tum.de/connected-mobility/iot matches an NDO with the
name /tum.de/connected-mobility/iot/pervasive-computing. CCN natively sup-
ports on-path caching with name-based routing, however, off-path can also be sup-
ported [Xyl+14].
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Figure 2.3.: Hierarchal namespace example for CCN.

Each node in the network contains a Content Router (CR) which includes three data
structures [Xyl+14][Ahl+12]:

• Pending Interest Table (PIT): which stores the subscriptions and interests of NDOs.
The subscription does not have to originate from the node itself, rather can be
forwarded from another node. Once an interest reaches a content source and
the data is retrieved, the PIT entries serves as a trail to the original subscriber
and is removed afterwards.

• Forwarding Information base (FIB): stores a mapping that indicates which node
should the request be forwarded to. The FIB uses longest common prefix in
order to determine the next hop. Multiple entries are allowed and can be queried
in parallel.

• Content Store (CS): which is basically the cache that stores the NDOs and uses
least recently used (LRU) eviction strategy. Caches with high hierarchy in the
network posses a larger storage to be able to store popular NDOs which might
get evicted due to lower storage down in the hierarchy.
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Figure 2.4.: Content centric networking architecture and flow. Adopted from [Xyl+14].

Figure 2.4 describes the flow and state of PIT, FIB and CS of network nodes when
receiving the interest message and after acquiring the data. Notice that, all the PIT
entries have been erased after acquiring the data and CSs have been updated.

2.4.1.2. Networking of Information

Network of Information (NetInf) is an architecture based on the ICN concept. Unlike
CCN, routing in NetInf is a hybrid of name-based and the name-resolution scheme,
also, NDO names are not human readable. Namespace is not hierarchal but rather
flat, however, there is one common naming format for all NDOs across all nodes.
Moreover, it supports on-path and off-path caching [Dan+13].
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Figure 2.5.: NetInf routing flow example. Adopted from [Dan+13].

In Figure 2.5, there are two requests namely A and B. NetInf used name-resolution
service (NRS) to get the source location of B. Alternatively, it used name-based routing
(NBR) in combination with NRS to find the request source of A.

2.4.2. Delay Tolerant Networking

Delay-Tolerant Networking (DTN) is an overlay architecture proposed to overcome
unreliable connections between devices through asynchronous message forwarding.
In some challenged networks, there might not exist an end-to-end path between de-
vices either wired or not. Further, valid connections might exhibit extensive delays
which might not be acceptable and thus cause the message transfer to drop. By an
overlay architecture it is meant that DTN functions resides above the existing protocol
stacks thus achieving interoperability and providing the store-carry-forward function-
ality [Fal03].

The DTN Research Group (DTNRG) has proposed an architecture which was pub-
lished as Request For Comments (RFC) to the Internet Engineering Task Force (IETF).
The architecture defines an end-to-end message-oriented overlay called the bundle
layer which is located between application layer and transport layer. The bundle layer
encompasses a persistent storage, basic security model and store-and-forward routing
to overcome disconnected and disrupted communications. Devices implementing the
bundle layer are called DTN nodes and are bound to the Bundle Protocol [SB07]. Data
units exchanged between these layers are named bundles, which are messages contain-
ing a header, user application’s data and control information such as how to handle,
store and dispose of user data. Bundles can also be divided into fragments to increase
delivery performance which are assembled again at the destination. Fragments are
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also bundles themselves, two or more of them can be re-assembled anywhere in the
network to create a bundle. Bundles contain identifiers which distinguish the original
sender and final destination. DTN nodes can store and persist bundles over longer
time periods until a connection is regained. Persistence allows DTN nodes to recover
from system restarts [Fal+07].

There are different implementations of the DTN architecture. DTN2 [Dem05] is a
reference implementation by the DTNRG to demonstrate the basic functionalities thus
the performance is not optimized. There are also ION [Bur06] and DTNLite [PN03],
however, they do not allow the use of common programming languages. IBR-DTN
[Doe+08] is yet another implementation designed for embedded systems, it also has
discovery via broadcasting. Also, SCAMPI application platform [Kär+12] which will
be explained in details.

2.5. Used Platforms

Turning now to explain the platforms that we used in order to implement our frame-
work. The section includes a hardware component which is the Raspberry Pi and all
the other components are software oriented. This includes SCAMPI publish-subscribe
platform for message passing in delay tolerant networks, node-RED project for wiring
IoT applications and time-series databases.

2.5.1. SCAMPI

SCAMPI is a delay tolerant platform based on the DTNRG architecture that hides
networking from the application user [Kär+12]. It enables communication between
peers even without an end-to-end path. The store-carry-forward router implemented
by SCAMPI empower peer discovery via broadcast, mutlicast, TCP unicast and sub-
net scanning for known ports. In addition, it offers caching and multi-hop message
transfer. Unlike DTN2 and IBR-DTN which exchanges payloads as blobs of data,
SCAMPI supports structured data messages as map where arbitrary string keys map
to binary buffers, strings, numbers or file pointers. SCAMPI also provides the entity
SCAMPIMessage that maps to the Bundle Protocol in the DTN architecture. More-
over, the SCAMPIMessage entity can carry meta-data that describes the content.

SCAMPI is also based on the information-centric architecture in which it provides
an API (over TCP) that allows broker-less publish-subscribe service of messages us-
ing NDO names that can be human readable or hashes. Additionally, it supports
automatic framing of structured messages, searching for content based on message
meta-data and peer discovery of nearby nodes. The TCP API works as an interface
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that can be implemented by any application written in any programming language.
SCAMPI is Java based, therefore, the Java Virtual Machine (JVM) is the only require-
ment to have SCAMPI up and running. Furthermore, there is an Android application
that runs a persistent background process SCAMPI router, allowing Android phones
to route data through the native TCP API. Having SCAMPI running on the Android
phone allows it to carry messages from one endpoint to another without even having
neither wired connection or a wireless one between the sender and receiver, simply
the phone is used to carry the data from one network to another.

Extending DTN and ICN, we think that SCAMPI is the best platform to use for this
thesis. The are several reasons for that, firstly being a DTN, SCAMPI provides relia-
bility for delivering messages even when there is no end-to-end path or connection is
disrupted. Secondly, using peer discovery allow us to add or remove pervasive agents
at-will. Thirdly, as our approach is information-centric, it is handy that SCAMPI al-
lows the publish-subscribe messaging scheme on top of the DTN architecture.

2.5.2. Raspberry Pi

Raspberry Pi [Ras] is a very small, low-cost and single-board computer that was orig-
inally developed to promote computer science education in schools by the Raspberry
Pi Foundation. It has a rather low processing power and random access memory com-
pared to today’s computers and mobile devices. Nevertheless, its graphical processing
units equals that of today’s latest mobile devices, it can stream high definition videos
and run 3D games. Raspberry Pi also has 40 General Purpose Input/Output (GPIO)
pins that act like switches in order to send signals to devices such as LED lamps, sen-
sors and actuators which makes it suitable for the IoT applications. Further, there are
lightweight operating systems designed especially to cope with the edge devices and
the Raspberry Pi such as Ubuntu MATE, Windows 10 IoT Core and Raspbian which is
officially supported by the foundation.
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Figure 2.6.: Raspberry Pi 3 model B design. Adopted from [EFA].

In this thesis we use the Raspberry PI 3 model B as shown in Figure 2.6 with the
following specifications:

• 1.2 GHz processor designed by ARM and 1 GB of random access memory.

• Ethernet port, wireless LAN, Bluetooth 4.1 and Bluetooth low energy to enable
wide range of connectivity.

• Micro-SD card slot for storage and hosting the operating system.

• Audio jack, HDMI port and 4 USB ports.

• Camera, display interfaces and 40 GPIO pins.

There are other models of the Raspberry Pi such as Pi 2 Model B, Pi Zero, and Pi 1
Model B+ and A+, they differ in size and specification. However, they all share the
same concept of being low-cost and single board computers.

2.5.3. Node-RED

Node-RED [Nod] is a powerful, open-source and flow-based programming project
originally developed by IBM Emerging Technology Services and now a part of the JS
foundation designed for IoT. Flow-based programming describes an application as a
network of black-box nodes that exchange data together. Node-RED is widely used
as a visual tool for wiring IoT applications that can be deployed locally, on the cloud
or on edge devices such as (Raspberry Pi, Android, Arduino). Nodes are the building
blocks of node-RED, each has its own defined purpose and can be given a certain
input which in turn can give an output. Further, these nodes can be re-used and have
different visuals which makes them easy to use and more handy for a wider range of
users. The function of these nodes varies from digital, social or even physical events

20



2. Background

that include sensors. The network of nodes is called a flow, flows can be serialized into
JSON objects and thus simplifying importing, exporting and sharing process. Since
node-RED is an open-source project which is very well adopted. Therefore, the com-
munity creates new flows and extends current ones for their own use cases and make
them available to the public, they also report potential problems and bugs to the con-
tributers. This results in a very fast development, fixes, new features and releases.

Node-RED user interface is available through the browser via localhost:1880 where
1880 is the default port, however, there is an API to import and export flows through
node-RED engine without using the user interface. Figure 2.7 shows the browser
window with node-RED UI. On the left side exists the nodes which represent the
building blocks of the flow, they can be dragged and dropped inside the empty can-
vas. Afterwards, nodes can be wired together and deployed. In the figure, a simple
flow including a time-stamp triggered every five seconds and debug node are wired
together and deployed. On the right side of the figure, printed time-stamps can be
seen in the debug pane as a result of wiring the debug element into the flow and
connecting it to the configured time-stamp element. The Info tab on the right side,
explains each node once it is selected, shows its documentation and how to use it.

Figure 2.7.: Node-Red user interface to create and deploy flows for IoT applications.

Node-RED also allows global context, meaning, we can set custom variables that
live across all nodes. This is really helpful when an application should keep a cer-
tain shared state. The main programming language of node-RED is JavaScript, it is
also possible to write a custom node which executes code or script of any language
through the execute node and the result can be wired inside the flow. Moreover, node-
RED has a built-in node to control GPIO pins of a Raspberry Pi, that can send low or
high signals whenever desired to a certain pin. This is powerful because it hides the
abstraction behind controlling the Raspberry Pi pins.
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Given its features and specifications, our proposed framework uses node-RED as an
environment for deploying computations, in other words, each smart device in our
architecture must have a node-RED instance. Hence, we could use flows and wired
nodes to express computations and serialize it via the export feature. Thereafter, we
could send serialized computations along with their dependencies, meta-data to other
nodes running node-RED instances and deploy the computation on them.

2.5.4. Time-series Databases

Time-series databases are optimized for storing and fetching data which is collected
in a timely based manner, in other words, data which is timestamped. They are
intended to handle huge volume of data especially for monitoring, real-time analyt-
ics and continuous measurement of IoT sensor data. Manipulating time-series data
like aggregating, creating subsets and re-sampling can be a tricky task [Lei+15]. Time-
series databases can be based on either SQL or NoSQL, moreover, some NoSQL based
time-series databases offer SQL-like query language in order to simplify fetching the
data. Multiple implementations of time-series databases exist such as InfluxDB [Inf],
CrateDB [Cra], OpenTSDB [Ope]. Some general purpose NoSQL databases are used
as time-series like MongoDB [Mon] and Elasticsearch [Ela].

Since time-series databases are mostly used to ask questions related to time, therefore
precision is of key importance, some time-series databases can support time-stamps
up to nanosecond precision. Further, query languages are developed and optimized
to facilitate grouping by time intervals and selecting ranges. Efficiency and perfor-
mance are a must when querying months of data over millisecond or nanosecond
interval as it requires huge amount of processing. Also, time-series databases are
required to have high write performance in order to cope with the continuous collec-
tions of measurements and sensor data.

In this thesis we use a time-series database to demonstrate that our framework be-
haves as expected with the traditional use of IoT applications through gathering sen-
sors data and storing them in a time-series database in order to get insights over this
data.

2.6. Summary

In this chapter we explained the fundamental concepts that we rely on in this work.
We started by explaining Internet of Things and Pervasive computing, we also gave a
brief about Fog computing which is yet another model of executing computation on
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the network edge. Then, we elaborated networking concepts such as Information-
Centric architectures which are content-centric in contrast to current network ap-
proaches which are host-centric and gave two example architectures based on this
models. Later, we explained Delay-Tolerant networking architectures which are used
to overcome unreliable connections and challenged networks. Eventually, we ex-
plained all the platforms and applications used to implement our framework includ-
ing SCAMPI, node-RED and time-series databases in addition to explaining Rasp-
berry Pi the low cost single board computer.
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In this chapter we explain the framework model in theory, the key concepts behind
it, challenges facing the design and their possible solutions. We first discuss the core
element of this framework, then we go through the computational and data model.

3.1. Foundation

The fundamental core element of this framework is the computational unit derived
from the use case. One possible abstraction of the computational unit is the flow,
which is a purposeful unit of computation that contains groups of sequential instruc-
tions elements whose input/output are connected together. These elements could have
a significant meaning on their own such as snapping a photo or making simple data
transformation as shown in figure 3.1. Also, a flow can not only be a standalone self-
contained computation, but can interact with other flows in which they collaborate
for data gathering, sharing and processing.

Figure 3.1.: A node-red flow is an example of the computational unit.

After having defined flows, the next step is to execute them. To begin with, we must
address the challenge that flows are distributed in the sense that each flow could re-
side on a different device. As previously mentioned, since flows may interact, they
need a way to communicate. Moreover, since devices might be disconnected, the com-
munication mechanism must not require end-to-end paths and should handle sending
the computations themselves from one device to another, at the end we are designing
a pervasive framework that should manage sending computations everywhere.

Another challenge that faces the execution of flows, is the dependencies and resources
needed to carry out the execution. By dependencies we mean the custom libraries and
perhaps scripts that are needed by the flow to ensure a successful run. Further, the
resources can be either hardware in the form of computational capabilities by the host
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devices or sensors and actuators needed by the flow for a specific use case. Depen-
dencies and resources vary from one use case to another, thus need to be orchestrated
across the heterogeneous devices by ensuring the delivery of relevant dependencies
along with their respective computations and deploying the computation only to de-
vices which fulfill the resource requirements.

Now assuming that we can send flows to the devices, make them communicate and
satisfy their dependencies and provide their resources, one aspect remains, which is
triggering the execution of flows. There are multiple ways to start an execution, one
simple example is a time interval trigger. Other ways include starting the execution
when new data has been received or other events have been triggered for example via
physical sensors.

A flow should be modular having a specific functionality with defined interfaces that
reduce the complexity allowing re-use and re-assembly. Moreover, since flows should
be composable, they need to interact and exchange data. Think of composability as
LEGO parts that need to be assembled in their correct positions in order to create a
figure, however in contrast to individual LEGO parts which do not have a meaning
on their own, individual flow elements could serve a specific purpose besides their
global one.

To establish flow composability in our context, we need to be able to match the output
data of one flow to the input data of another, no matter whether the flows are on the
same device or distributed; connected or disconnected. For instance in general terms,
if we have a flow f1 that takes A as input and gives B as an output

f1 : A → B

and another flow f2 that takes B as an input and gives a new output C

f2 : B → C

we should be able to compose a new flow by passing f1’s output and f2’s input,
resulting in flow f3 which is a composite of both:

f3 : A → C = f2 ◦ f1.

Composability ensures that regardless of the use case, logic or implementation of
a flow, it still can be composable if it matched the input/output of another flow.
Composability should be valid in both local and distributed environments. Thus, in
the case of local flow composability, there should be a way to connect the output of a
flow to the input of another locally as shown in Figure 3.2. In the case of distributed
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composability, the messaging system should connect the flows and serve as a broker
to deliver the data as shown in Figure 3.3.

Figure 3.2.: A device containing two composable flows.

Figure 3.3.: Two separate devices having distributed composability.

To sum up, flows are distributed and modular units of computation derived from a
use case which require dependencies and resources. They communicate with each
other and can be composed both locally and in a distributed manner. By achiev-
ing modularity and composability, flows can be assembled in different combinations
hence allowing re-use and extensibility.
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3.2. Computational Model

This section explains the computational model as an abstraction for the framework
design. it explains the components, challenges and the possible solutions that could
be implemented to overcome these challenges.

3.2.1. Distributed Devices & Flows

In order to start with the framework explanation we must understand the idea be-
hind pervasiveness. Pervasive computing relies on the idea of pushing flows to the
edges "devices" and thus it is fundamentally distributed. A system is distributed if its
components are on networked computers which communicate only by sending and
receiving of messages [CDK01] which is the case here. Now in our model, each de-
vice should be capable of executing flows and producing results as long as it has the
required dependencies and resources. Moreover, to ensure that flows are composable,
devices should be able to communicate seamlessly even though they might be discon-
nected.

Turning to flows, distributing them across devices is a challenge because the distri-
bution could have different approaches depending on the use case. Let us explain
this with Figure 3.4, to start with, lets take the set of all devices in the system and
call it S(t) which is a function of time since devices can be removed or added to the
system dynamically at any instant of time. Then comes the candidate set SC(t), which
consists of devices that satisfy the required dependencies and resources of a certain
computation. Take into account that devices inside any of these sets might not have
an end-to-end path. Given SC(t), the flows could be either sent to a random set of
devices or to a specific set. This provides flexibility in applying the use case without
wasting resources. In addition, it magnifies the effect of locational context, meaning
that if we want to compute a certain computation or measurement in a specific loca-
tion and we know the general identifiers of the devices residing in this location, we
can send a flow to this exact set of devices with our desired computation. Continuing
to explain flows approaches with figure 3.4, a flow could be distributed across devices
of the candidate set SC(t) in multiple ways explained as follows: (i) flows are sent to
all devices in SC(t), (ii) flows are sent to a set of n devices where n > 1, whether they
are selected as case C #2 in the figure or picked at random, (iii) choosing only one
device to execute a specific flow as C #1. Consequently, the communication model
is one of the most crucial parts to guarantee a distributed system, it should have
the flexibility to provide these approaches and overcome the hurdle of disconnected
devices.
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Figure 3.4.: Distributing flows approaches.

Another main challenge is to actually find the connected devices. Distributed and
pervasive environments are dynamic, their components are not known to be alive or
dead at compile-time. Thus the framework should be able to run service discovery at
run-time in order to find the connected devices or it should be able to broadcast its
message to all the other devices and receive them as well. Otherwise, the approach
would not qualify to be a distributed system.

There are possible ways to achieve that, one could set up a static DNS server to
resolve the domain name of a device, however, this requires having static IP’s for
all the devices. Another solution is to use Dynamic Domain Name System (DDNS)
[BR97] or multicast Domain Name System (mDNS) [CK13] to update the domain
name whenever an IP address changes dynamically.

3.2.2. Software Dependencies

Dependencies are one of the main requirements of computation execution, missing
one or more dependencies would stop the execution from proceeding. Thus, we need
to deal with them and make sure that all dependencies are satisfied. There are two
types of dependencies; the static software frameworks that the whole design relies
on and must exist on each device, and the dynamic dependencies that are specific to
each computation.
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First, the static dependencies which are mainly the common libraries and software
that most of the computations would require. That is why these dependencies are
installed to each device in our design, examples of these dependencies include the
operating system, data store and any other standard or custom libraries that are used
by most computations. In addition to, the messaging system which implements the
communication model thus allowing interaction between devices.

Second, the dynamic dependencies that are specific to each computation such as ad-
ditional scripts, configuration files or libraries. In this case, they cannot be installed
at device initialization since we can not know what are the custom dependencies any
computation would need beforehand. Therefore, the computational model design
should allow a way to configure additional dependencies. Moreover, the communi-
cation mechanism should support this configuration and grant a way to carry the
configured dependencies forward to other devices.

Static dependencies create ambiguity. Suppose that we want to upgrade the versions
of current libraries installed on the devices. This introduces a versioning problem,
imagine that there is a computation on the device that uses an older version of the
same library while the maintainer is upgrading to a newer version of the same library
that is not backward compatible.

Nevertheless, there are multiple possible solutions to clarify the ambiguity and make
version upgrading more controlled; one solution would be to give the dependencies
different names according to their versions before shipping them, hence any different
version would not replace the existing ones. Another solution would be to design a
system that links each running computation on the device to its dependencies and
once a collision appears, the new computation renames its dependency and uses the
renamed one.

3.2.3. Resources

Resources are physical dependencies such as sensors, actuators and devices capabili-
ties that are necessary for computations to run. However, they might differ or not exist
at all on each device. If one of the needed resources is missing then the computation
could be either dismissed or queued depending on the type of resource. Moreover, the
maintainers cannot make any assumptions about the resources, meaning, an assump-
tion stating that each device has a camera is not necessarily true. Since the resources
are not standardized across all devices, each computation must provide meta-data
expressing the resources it is going to require, also the device must realize its avail-
able resources. Then a device can check against its capabilities and decide whether
it could carry out the execution or not. Further, the meta-data can be exposed to the
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routing layer, thus helping the router take an informed decision whether a specific
route contains devices with the required resources or not. This could also provide an
insight for developing better routing algorithms.

Considering that each computation model has meta-data describing its resource con-
sumption, then it is possible to know if it is going to be deployed on a specific de-
vice or not. Additionally, if it is not going to be deployed then it should be decided
whether the computation is going to be queued or dismissed according to the possibil-
ity of acquiring the resource, which can be high if it is free random access memory or
CPU usage. The idea of queuing computations however develops a scheduling prob-
lem. Since we have a queue of computations inside each device, the queued flows
will compete together to be deployed according to available resources. Furthermore,
since some computations might be dismissed, a rather bigger scheduling problem will
come up when we try to fit the all computations across devices in the whole system
framework.

There are two types of resources; sensors and actuators which are used throughout a
computation, and the hardware resources which influences the performance require-
ments of a specific computation.

3.2.3.1. Sensors and Actuators

Sensors and actuators are resources attached to a device such as cameras, temperature
and gas sensors. Executing a computation missing this type of resource on a device
should have a lower possibility of being queued, since its highly unlikely that this
resource would be attached soon. However sensors and actuators can be added or
removed on demand, therefore, having them in a specification file as a static depen-
dency which is only set at initialization time will be troublesome. Of course, we can
always edit the specification file once we change the state of these resources, but this
solution is not very efficient nor scalable, as it increases the manual work. It would be
much easier if the device could run resource discovery to find its attached resources
each time it receives a computation.

Moving on to consider computations acquiring the same resource at the same time,
for instance, two computations that want to snap a photo at the same time. This is
problematic and can be looked at as a scheduling problem because only one flow can
access the same resource at one time and whichever computation acquires a lock on
the camera first will succeed while the other will wait or fail. Therefore as a resolution,
we could use resource decoupling; instead of having the computation ask a specific
resource directly for information, the data will be pushed into a database. Afterwards,
the different computations could query the data from a database.
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3.2.3.2. Hardware Resources

The second type of resources is related to the device performance, its power and
memory capabilities, it is heavily biased by the device processor and its random ac-
cess memory type and size. Computations vary in terms of resource consumption
and hence a heavy computation should not be deployed to a device which is already
loaded.

Since we do not know what is the type or function of the computation being deployed,
we must be careful of deploying computations which might result in abnormal CPU
usage and memory leaks. Consequently, the framework should keep an eye on the
running computations, monitor the CPU usage and memory for strange behavior
specially that the framework knows exactly the computation requirements and meta-
data. It could also have CPU and memory usage quotas to control the hosting device
resources.

Queuing this type of dependencies should have a higher probability because it is
highly possible that one of the computations will finish soon, thus decreasing the
CPU usage and freeing more memory.

3.2.4. Pub-Sub Messaging Queues

The communication model is an essential part of this framework, it solves some of the
biggest challenges, which are in a nutshell, service discovery, carrying dependencies,
sending and receiving of data or computations whether devices have end-to-end paths
or not. Moreover, given our distributed approach and the need for service discovery,
the communications model cannot be end-point centric since in the general case we
are unable to target the actual devices with their host names as endpoints. The reason
for that is, we do not know their respective addresses or either they are connected or
not. Rather our communication model is data-centric or information-centric meaning
it assumes that there are some parties interested in sending data and others willing to
receive the same data given a certain context and regardless their network location.

A possible solution to the framework demands and challenges is to use publish-
subscribe message queues. The pub-sub pattern is a data centric messaging archi-
tecture in which senders also known as publishers do not send messages directly to
receivers, but rather send to specific topics. Then, subscribers receive messages which
are relevant to them by subscribing to these topics.

Commonly the pub-sub message queues contains a centralized bus broker which han-
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dles publishing, subscribing, notifying and persistence. When the bus receives a mes-
sage published on a specific topic, the data is stored on a local storage for persistence
and failure recovery. Parties can subscribe to the data topics on the bus hence notified
when a new message is published. Figure 3.5 shows publishers publishing data to
topic t1 on the bus, subscribers subscribing to t1 and notified when a new message is
on the bus.

Figure 3.5.: Common message queues.

However having a pub-sub message queue with a centralized bus can not be used in
our case. Since we do not assume that we have a connection to any centralized entity.
In addition to not knowing machines addresses or host names at compile time thus
connecting to a centralized message queue is not possible. Therefore, each party or
device would have its own message bus and local storage that are then synchronized
together whenever there is a connection.

Figure 3.6.: De-centralized message queues.

Now addressing the mentioned challenges:

• First off, devices service discovery, messaging queues are able to discover and
synchronize messages across all the devices connected to the messaging system
through any kind of network. They are also dynamic in the sense that they are
sensitive to the addition or removal of new devices to or from the system.
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• Having solved the problem of service discovery, devices can now send and re-
ceive messages. But since we also care to send computations as well, we must
differentiate between data and computations messages. Thus, a possible so-
lution is to reserve a unique topic only for exchanging computations between
devices.

• For sending data or computation messages to a random set of n devices, a rout-
ing algorithm can be used to ensure that no more than n devices will receive the
message. Further, if we exposed the meta-data of the computation, the routing
algorithm can make sure that receiving devices will have a higher probability of
being able to execute the flow.

• Sending data or computation messages to specific device or set of devices can
be done by reserving a unique topic for each. Therefore, to target any device,
the message should be published once to each unique topic. For example, if we
use the general identifier as a unique topic and want to publish a message to
device 1, then, we can create unique topic "N #1 " and send the messages over
this topic.

• Pub-sub messaging queues allow carrying arbitrary kinds of data inside the mes-
sage body. Therefore, computation dependencies can be added to the message
body of their respective computations. Thus solving the obstacle of carrying
dependencies mentioned earlier and creating self-contained computations that
are ready to execute anywhere.

• Last but not least, in order to send data or computation messages to discon-
nected devices, either because there exists no end-to-end path or the devices
are experiencing network connectivity issues. The pub-sub messaging system
should be delay-tolerant and implements the store-carry-forward routing tech-
nique, this will allow the messaging system to store messages until connectivity
is back or keep the message hopping from one device to another until it finds
its end destination.

Having found a solution for our communication model challenges assists us to focus
on the framework design and implementation. Knowing that the underlying network
model will not fail us to connect the devices even without an end-to-end path. In
addition, we can directly send and receive messages to the devices on data topics
without the framework being aware of their host names or network addresses.

3.3. Data Model

In this section we describe the data model which includes the structure of the data
sent between devices through the messaging system, how the data travels from one
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device to another and the input/output specification used to combine and compose
different flows.

3.3.1. Data Types

A computational flow can generate different types of data depending on the use case.
This data could be intermediate processing data or a computational result. Also,
the framework should not attempt to restrict the data types that are communicated
between the devices in order to make sure the framework is as dynamic as possible.
In other words, the flow developer can have a weakly typed input and output data,
which will result in more possibilities and flexibility when designing the use case. Yet,
he/she might prefer to enforce strongly typed input and output data to make the flow
behavior more explicit. The challenge is to be able to represent these data types in a
composable way. Therefore, if a developer wants to create a composable flow he/she
should define an IO specification explained later. However, the good thing is that
the developer dictates how the input or output data are structured while developing
the computational flow. Hence, he/she is in complete control and can structure the
data in any way as long as it can be used afterwards. Different data types include: i)
structured data that could be stored either in a relational or non-relational data base,
ii) unstructured data, iii) data streams.

3.3.2. Moving Data

Moving data is the idea to send/receive raw or processed data to any flow. We should
be able to use data from different remote or local sources in any computation. Some
use cases for moving data are:

• Composing flows is one of the main use cases, we would like to have inter-
relationships between devices and request input data for a computation from
the output of another.

• Sending data to be processed by a computational flow on any device and then
obtain the outcome. For instance, sending an image to a device containing com-
putational flow with image recognition algorithm, then the image gets processed
and the results are sent back the original sender.

• A device can be used for monitoring in which it subscribes to all outputs of a
certain computation running on several devices.

As mentioned in Section 3.2.4, our approach and communication model is data-centric.
Therefore, flows could subscribe/publish to a certain data topic in the distributed
pub-sub messaging queue. Thus, data should reach any device which contains a flow
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subscribed to a certain topic. This allows us to move data freely and at will, we just
need to express how a flow receives or publishes data.

3.3.3. IO Specification

Turning now to consider the input and output specification, the IO spec. explains how
the output of a flow in one device can be linked to the input of another flow either on
the same device or on a remote one. There are multiple ways to specify how the IO
data communicates which are explained below:

• The first way allows data communication between computations of the same de-
vice through a database. One computation writes interesting data into a specific
table with locally unique name in a database. Then, any other local computation
which wants to use this data is allowed to fetch it from this table. Unique names
are suggested to decrease the possibility of database inconsistencies if someone
is using a table with the same name.

Flows can be used to describe the database configuration from inside the com-
putation flow, thus the maintainer should make sure when developing locally
composable flows that the database configuration and table names match. An
example in Figure 3.7 shows that the first flow takes an image and then store it
in the database with a unique table name. While the second flow, pulls the data
from the database upon receiving a request on a specific URL.

Figure 3.7.: Two separate computational flows describing the local IO composability
through a database.

• Another way is to use publish-subscribe messaging pattern to communicate
through different devices. The device which generates the data publishes its
resulting data to a generally unique topic, therefore any device interested in the
data could simply subscribe to that topic and process the data accordingly. Fig-
ure 3.8 shows two flows as an example of this method, the first flow generates
data and publishes it to the messaging system. Then, on any device, the data
could be received via subscribing to the same topic.
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Figure 3.8.: Two composable flows exchanging data via the messaging system.

• Streaming data is also possible, one device can have a computation serving as
a streaming server while other devices have computations which act as clients.
However, the global reference of the streaming server must be known to clients
or to make it more dynamic, a service discovery mechanism could be imple-
mented in order to help clients find streaming servers.

3.4. Summary

To conclude this chapter, we explained the key concepts and foundations behind this
framework including the definition of a flow and how they can be composed. We also
described the computational model as an abstraction the framework design, and illus-
trated the challenges that face this model which included dealing with dependencies,
resources and having a distributed system model in addition to their possible solu-
tions. We also elaborated the communication model and how it solves some of the
challenges in our design. Moreover, we have shown how data inside the computation
can be structured, and how IO data of different devices could be connected together.
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In this chapter we explain the use cases and requirements to design a context-aware
pervasive software framework. Then, we illustrate the proposed architecture and de-
sign following from the concepts introduced in the background chapter and taking
into account the challenges and possible solutions shown in the foundation chap-
ter. To recap, our aim is to design a context-aware pervasive software framework to
manage and distribute computations while considering resources, dependencies and
networking even with an end-to-end path.

4.1. Use Cases

This section provides real life scenarios targeted by our proposed framework. Re-
quirements are then elicited from the use cases and then the framework implemen-
tation and design are evaluated against these requirements. Keep in mind that the
framework idea is not just to implement these use cases, but to provide the ability to
distribute, compose and execute various use cases for context-aware pervasive com-
puting. The use cases are mainly targeted to help human beings, increasing their life
quality and preserve the environment.

4.1.1. Smart Cities

One of the most researched areas in the field of IoT is making our cities more ad-
vanced, connected and helpful to human beings and the environment. Researchers
and professionals have had many ideas to make use of the context-aware sensor net-
works that can communicate and act independently whenever the situation needs
intervention. We take some examples of the smart cities applications and show how
they can be implemented using our software framework.

4.1.1.1. Smart lighting

Smart lighting is a use case for automatic control of outdoor lamp posts hence optimiz-
ing costs for the governments and enterprises in addition to helping the environment
by saving energy [Zan+14]. The outdoor lighting can be automatically started or
closed according to certain circumstances. For example, by lighting up when motion
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is detected around it and turning off when there is no further motion, or by detecting
natural light and weather circumstances. Moreover, the lamp posts can be monitored
in order to see when a lamp needs replacement. Further, lamp posts can detect what
is the best lighting percentage in a certain situation according to a machine learning
algorithm based on the history of decisions taken and feedback provided by users.

In order to implement this use case in our proposed software framework, we must be
able to distribute a computational flow to all lamp posts using a messaging system.
Also, the flow should be able to access sensors and be capable of adjusting the light
according to the input gathered from several sources including motion, light and hu-
midity sensors. The decisions taken should be stored into a database so that the flow
can access previous decisions in order to asses the current situation. In addition, a
flow with an endpoint that allows users to send feedback on the lighting system can
be locally composed to enhance the learning algorithm. Having sent the computa-
tional flow to all the lamp posts, the framework should ensure that it does not get
deployed on lamp posts without the required resources, sensors and actuators.

4.1.1.2. Smart Parking

Automatically detecting empty parking spots in crowded streets is the main idea be-
hind smart parking [LYG08]. Since the number of vehicles on the streets are in tremen-
dous increase [For], the urge for finding a parking spot in city centers and crowded
places has also increased. Having a smart parking mechanism helps in wasting less
time, decreasing energy consumption and maintaining a clean environment by reduc-
ing emissions. Different information sources can be used to detect empty parking
spots, for instance, image and video footage of street cameras, crowd sourcing of
information and APIs for parking services. Implementing this use case has almost
similar requirements to smart lighting, however, it adds having a camera integrated
with smart devices which might produce the need for streaming the footage in real-
time to other devices.

4.1.2. Mining Applications

In underground mines it is necessary to always monitor gas and temperature levels
in order to prevent miners suffocation [Osu13]. At the same time, it is very hard to
maintain a connection between sensors in the inside and monitoring systems outside
[Gin+10]. Therefore, the devices incorporated with sensors inside the fields are ex-
pected to be pervasive and warn miners from unexpected increase of gas levels on
their own. In addition to delivering the data to the outside world, the system must be
able to gather data about the situation inside. This requires miners to act as middle-
men who store delay-tolerant data into their mobile devices and carry it forward to
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the outside world. Of course the miners cannot do this process manually, therefore,
there should be a messaging system on their mobile devices that carry the data and
handle the synchronization with other device. Also, carrying the data in and out is
not the only issue, importing and visualizing data in the monitoring system should
be also done automatically.

The mining use case is a delay-tolerant application because there is a big chance there
are no wiring going in and out of the mine where new tunnels are constructed thus a
delay-tolerant messaging system should be used. But also, it is an information-centric
application because data should be sent from devices in the mine to be imported
in the monitoring system without knowing their host names. Having smart devices
installed in the mine means it is very hard to target them as endpoints without a valid
connection, even if there was one, knowing the host names of these devices might still
be an issue. Same applies to the monitoring system outside, data cannot be sent to a
specific host name, rather sent to whoever is interested in these data.

4.1.3. Privacy and Security

The surveillance systems used at the moment uses closed-circuit television cameras
to send tapes, images and footage of people using public transportation to storage
systems [Ash17] . The police could acquire these tapes in case of incidents to observe,
monitor and apply facial recognition algorithms in order to detect faces of wanted
criminals to prevent crimes and anti-social behavior [Lon]. Despite this being of sig-
nificant importance to the national security, this puts everyone’s privacy in jeopardy.
Therefore, we thought of replacing this model by a pervasive one, where the facial
detection algorithm and faces of wanted criminals are pushed to the smart devices in
public transportation means and whenever a match is found the national security is
notified. This could also be triggered only whenever there is an incident using com-
puter vision, which helps greatly in increasing privacy, decreasing latency between
the footage and detection in addition to minimizing network bandwidth since the
streaming footage will not be uploaded to the cloud unless there is a match. Simi-
lar approaches were introduced in [FS08] and [WR10] where the footage is analyzed
on spot to protect privacy. Nevertheless, this is not trivial, facial recognition algo-
rithms are complex and depends on other libraries and detection models. Therefore,
the computation which includes the recognition algorithm must be able to carry de-
pendencies otherwise the computation will not run. Moreover, the national security
should be able to update the list of criminal faces thus messages sent to the smart
devices should allow also attachments and dependencies as well.
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4.2. Requirements

What follows is a listing of the requirements extracted from the real life use cases
mentioned in the previous section. We then evaluate the design and implementation
of the framework according to the derived requirements which are classified in the
following points:

1. Service discovery: since we do not know the host names of the smart devices
nor their addresses, the framework should have service discovery mechanism
encapsulated in the messaging system as explained in Section 3.2.4 to discover
peers and allow any interaction between smart devices.

2. Send and deploy computations: whatever the use case may be, one of the main
requirements of this work, is to be able to send computations to smart devices.
This includes sending to one, a set or all smart devices connected together in a
network. However, to deploy a computation, the receiving side must have the
required hardware resources, sensors and actuators to be qualified for deploying
the computation.

3. Computation dependencies: complex computations which cannot be executed us-
ing the basic operating system and common libraries installed on the smart
devices, should carry their own custom dependencies in order to guarantee a
successful run on the receiving smart devices.

4. Disconnected devices: since the framework is also designed to be used in chal-
lenged networks, isolated devices in separate networks should also send and
receive data or computations using the delay-tolerant architecture.

5. Communication: smart devices should be able to communicate, send and receive
data in an information-centric and a publish-subscribe manner.

6. Global identifier: each smart device must have its own unique global identifier
which can be used to send data and computations to this device only.

7. Composability: the framework should allow composition of multiple computa-
tions either locally through a database or globally by allowing data exchange
via the publish-subscribe messaging system.

8. Pervasiveness: each computation should be able to act on its own, trigger actua-
tors, persist data and access resources such as cameras and sensors if required
by the use case.
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4.3. Framework Stack

This section explains the software framework stack designed for pervasive environ-
ments and challenged networks to distribute and manage computations with their
respective resources and dependencies. The main idea behind this design is to har-
ness the features of node-RED to create, deploy and share computations of any kind.
In addition to having SCAMPI as an information-centric, publish-subscribe and delay
tolerant messaging system that gives the framework the ability to deliver messages
even without an end-to-end path. However, node-RED and SCAMPI are two differ-
ent environments that cannot manage computations, resources and dependencies on
their own. They need a middleware to orchestrate the communication between them.

In general the software stack on each device looks like Figure 4.1. With SCAMPI at
the stack bottom relying only on the JVM. Then on top of SCAMPI is its Java API
to communicate with the TCP API of SCAMPI. Afterwards, comes the middleware
which acts as a mediator between node-RED and SCAMPI to handle the deployment
logic and harmonize the communication between them. Finally, at the very top exits
node-RED to run computations and interact with the user if needed. However, if
SCAMPI is used on an Android device, there might be no need to run neither the
middleware nor node-RED since the phone will be merely used to transport data
from one device to another having no end-to-end path. Below we explain how each
layer of the stack works.

Figure 4.1.: The framework architecture stack.

4.3.1. SCAMPI

As mentioned in Section 2.5.1 SCAMPI is an information-centric, publish-subscribe
and delay-tolerant messaging system. In this framework we use SCAMPI to send and
receive messages that include computations and data. SCAMPI is also broker-less
meaning we do not have to set up a server as broker which is one of the main reasons
we chose SCAMPI so that we do not have to connect to a centralized broker which
allows SCAMPI to run as a standalone service without any dependencies to other
hosts. Another main reason is to reach devices which do not have direct connectivity
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to the publishing device or do not have end-to-end path.

Being a delay-tolerant networking architecture, SCAMPI can use its store-carry-forward
routing to deliver messages in challenged environments. In figure 4.2, we show how
SCAMPI uses mobile phones to connect devices that do not have a route or direct
connection and want to exchange messages. In the figure, there are three Raspberry
Pi devices running our proposed stack. The first two have network connection and
therefore they can exchange messages between themselves. However, the third one is
isolated, nevertheless it can be connected to a Wi-Fi network or run as an access point.
In this case, an Android device passing between network N1 and N2 can carry the
message bundles from one network and forward it to the other by connecting to both
networks alternatingly. Thus, reaching out to challenged environments that cannot be
reached using wired or wireless connections.

Figure 4.2.: SCAMPI synchronization even without an end-to-end path.

Being information-centric, data-centric with publish-subscribe pattern and having
peer discovery helps us in achieving our dynamic framework without knowing any
host names. It also supports adding and removing devices at will without any addi-
tional configuration. We can also use the general identifiers of the devices as topics in
order to target each of them independently. As stated, SCAMPI does not have any de-
pendencies other than the JVM so we just run it on each device and we are good to go.

The SCAMPI Java API allows the use of services provided by a local SCAMPI instance
granting us to publish or subscribe for any topic from the Java environment. The API
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also allows the client to get information about SCAMPI status changes for instance if
it is disconnected, stopped or most importantly when a new message is received.
Furthermore, there is a model called SCAMPIMessage used to create messages, it
assists in assigning attributes to the message whether strings, integers or even binaries.
Also, one can assign meta-data and lifetime to the message.

4.3.2. Node-RED

Node-RED is a tool used for wiring IoT applications, its flows describe the intended
computations. It has exporting and importing endpoints for flows via REST which
makes it possible to deploy flows without human interaction. Flows can be also con-
figured to access certain tables or collections in a local database instance and this
configuration can be serialized with the flow.

In this framework whenever a flow wants to send a message to another flow on the
same node-RED instance or on other instances, it either uses the REST API that the
middleware provides to publish and subscribe to data topics or the same database
configuration in both flows to be able to communicate data through the database.
This allows node-RED to send or receive data and allow composability both locally
and globally.

Node-RED is rich with predefined nodes that can be used to run flows on time inter-
vals, connect to emails, twitter accounts or even access a GPIO pins on Raspberry Pi.
Node-RED usage is intuitive since it is based on flow-programming, it does not need
a developer to create a flow.

4.3.3. Maestro

Maestro is this framework’s middleware and the main contribution of this work. It is
deployed along with node-RED and SCAMPI on each instance in this architecture. It
runs a jar file containing a web application server that allows other entities to fetch
and post data to Maestro via an API. It has several duties in orchestrating SCAMPI
messages to node-RED instances.

• It reads the machine specifications to initialize the machine’s resources, sensors
and actuators.

• It includes the SCAMPI Java API and provides a REST API which allows any
other script from any other language (including node-RED) to use the publish-
subscribe feature of SCAMPI.

• Maestro subscribes by default to the computation topic in order to send and
receive computations.
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• Maestro subscribes to the unique global identifier of SCAMPI at the framework
initialization to act as an identifier for the whole stack.

• It analyzes flows by checking the meta-data attached to the message thus if Mae-
stro finds out that a device does not have the necessary hardware requirements,
sensors or actuators, it will not deploy the flow.

• It is responsible for attaching dependencies of node-RED flows when one is
published, also for putting them into the correct directory when receiving them.

• It provides a message caching mechanism in order to make sure messages are
not handled more than once.

• it provides a mapping between the topics and node-RED flows meaning if one
or more flows are interested in the same topic, all of them should get the data
exchanged on this topic.

4.4. Framework Architecture

What follows is an explanation of the framework design and architecture and how it
can be used to achieve the goals of this thesis. We describe a step by step guide to
design and distribute a flow that portrays a pervasive use case.

4.4.1. Physical Components

Before we get into the software components and how we can use the framework stack
to implement a pervasive use case, we first describe the physical components that are
used by our framework. There are three main devices used in this architecture:

• Raspberry Pi: we use the Pi as a low-cost single board computer that contains
GPIO pins which can be connected to arbitrary sensors and actuators. However,
the Pi can be replaced by any single board computer that runs an operating sys-
tem supporting the JVM and can host node-RED as an execution environment.
An example Raspberry Pi in this framework has our stack installed in addition
to a camera, an RGB LED, a temperature and a motion sensor as shown in Fig-
ure 4.3, we stick with this example because it will be used in the framework
evaluation. All the Raspberry Pis in our design have the sensors connected to
the same GPIO pins, for instance, all the temperature sensors are connected to
GPIO pin 11 on each Raspberry Pi. This is important because when we send
the computation script for sensing temperatures to all the Raspberry Pis, the
script will be accessing the same pin to get a hold of the sensor data. A more
advanced solution can be used by creating a name resolution service in Maestro
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that resolves a sensor name to a specific pin, but this is outside the scope of this
thesis.

Figure 4.3.: An example Raspberry Pi in our design connected to sensors and running
our stack.

Now recalling the issue described in Section 3.2.3.1, which explained that mul-
tiple flows might attempt to access a resource at the same time (temperature
sensor for example). If we sent another computation which also tries to access
the same resource, it will fail with a high probability. Since a resource can only
be accessed by one computation at a time. Therefore, we have only flow that
access the resource and stores data into a database and then other computations
can query the data from the database.

• Intel NUC: we use the NUC as a computer with high performance capabilities
compared to the Raspberry Pi. NUC devices in the architecture also run our
stack and are used to prove that we can delegate the computations requiring
high performance from the Raspberry Pis to high performing devices. It is not
connected to any sensors or actuators. The NUC can be replaced as well with
any high computing device with an operating system supporting the JVM and
capable of hosting node-RED.

• Android Phone: Smartphones in general are typical devices for accessing services
and can serve as data carriers. Thus to confirm that we can deliver computations
and data to challenged networks, we used an Android phone running SCAMPI
so that we can carry data from one network to another. The phone runs only
SCAMPI and not whole stack, however, node-RED supports Android devices
while Maestro also only relies on the JVM therefore we can deploy the whole
stack if we have a use case for executing computations on Android phones.
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Figure 4.4.: Physical components of the architecture.

Figure 4.4 shows one possibility to connect the devices in our architecture where we
have two Raspberry Pi’s connected together with an Intel NUC in a network, and
another Raspberry Pi in a separate one that communicates with the other devices
using the Android device switches between both networks.

4.4.2. Designing a Flow

The first step to distribute a pervasive use case and send the computational flow to
all devices in a network is to design the computation which implements the use case.
Since we use node-RED to design and execute flows, therefore the first step is to use
node-RED to create a flow by wiring and connecting nodes. Each existing node in
node-RED has a different functionality, also additional nodes developed by other con-
tributers can be installed into the local instance. If a specific functionality can not be
found in the existing nodes or the ones available from the contributors, the function-
ality can be implemented using any programming language and then the exec node
available in node-RED can be used to access the scripts in node-RED directory and
run it. Moreover, the existing function node can be used to implement the function-
ality using JavaScript.

Triggering flows is very important as explained in Section 3.1, there are multiple op-
tions to trigger flows. The first one is using the inject node which allows triggering
the flows in multiple ways such as every time interval, once a flow is deployed, be-
tween time intervals or at specific time. The second way to trigger computations is via
receiving a request using a http request node on a specific endpoint that is wired to
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the flow just as Maestro does to deliver data to node-RED flows. There are also other
ways that could be devised according to the desired use case.

Accessing sensors and actuators can be done in several ways using node-RED. The
first way is to use the existing GPIO nodes which can access the Raspberry Pi pins
to read and give digital signals to the sensors and actuators. However, we found out
that the existing GPIO nodes are not stable, therefore, we used the second option
to access sensors and actuators using python scripts that are executed using the exec
nodes. The python scripts are then transferred with the computation as dependencies.

There are also different database nodes that can be installed on the local node-RED
instance, for example, InfluxDB the time-series database and MongoDB. Each supports
writing and querying data from the local database instance. When a flow is config-
ured to have a database configuration, the user can specify whether it should live
across all node-RED flows or can only be used by a specific flow. Yet when we chose
to have the database configuration across all node-RED flows, the configuration was
not serialized along with each flow. Thus, it is advised to configure the flows in a way
that each has its own configuration so that it can be serialized along with the flow and
can reach other devices in the network.

4.4.3. Sending the Flow to Heterogeneous Devices

Having designed a flow representing a use case, we can send the flow along with its
dependencies to devices in the network while accounting for their available sensors,
actuators and hardware resources. To achieve this, we developed a node-RED flow
with a user interface that can be used by the framework to send other flows to the
devices running our stack. Once we have designed a flow and have the flow identifier,
we can adjust the computation power and the required free random access memory
for each specific flow through the HTML page demonstrated in Figure 4.5. We can
also select the required sensors and actuators to cater for the heterogeneous devices
and their sensors availability. Further, the scripts used by the exec nodes inside the
flow can be selected in the HTML page as dependencies. Once we set everything
regarding the flow meta-data and we click on the push button, a request is sent to
Maestro in order to handle sending the computations and meta-data to SCAMPI and
other devices.

47



4. System Design

Figure 4.5.: The HTML page used to publish computations.

When Maestro receives the computational flow together with the meta-data and de-
pendencies names from node-RED. It creates a new SCAMPIMessage with a global
unique identifier, then it attaches the flow’s dependencies as binary data in the mes-
sage. Finally, it publishes the message to a specific topic to SCAMPI and returns a
success response to node-RED. After SCAMPI receives the message from Maestro, it
publishes the message to all discovered peers. It also keeps a copy in the cache in case
it discovers new devices.

4.4.4. Receiving the Flow

Since Maestro subscribes by default to the topic of exchanging computational flows,
whenever SCAMPI on the receiving devices gets a new message it is forwarded to
Maestro. Afterwards, Maestro checks the hardware resources, sensors and actuators
of the incoming computation and compares it with the machine specification. Then
Maestro puts the dependencies carried by the SCAMPI message to node-RED direc-
tory before deploying the computation to node-RED.
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Figure 4.6.: Deploying computations to heterogeneous devices.

As described in Section 3.2.1, S(t) is a set that contains all devices in a system. From
this set, we can have a subset Sc(t) which is the candidate set that satisfies the re-
quirements for a certain computation. Applying this to our design and as shown in
Figure 4.6, if we publish a computation that needs low computing power, motion and
temperature sensors to a network of devices. The flow should only be deployed by
the nodes that fulfill the requirements only. In the figure, neither the Intel NUC nor
the Raspberry Pi without the required sensors were able to deploy the computation.
Further, in the current Maestro implementation, if it receives a computation and the
requirements are not met, then the computations are discarded completely. There is
a possibility to queue the messages which failed the hardware requirements, such
as low random access memory or high CPU usage of the current device, in order to
be deployed again when the resources are freed. As explained in Section 3.2.3, this
introduces a scheduling problem, after the resources are freed, queued computations
will compete for the free resources.

4.5. Sending and Receiving Data

We explain how the stack can send and receive data using our framework architecture
in the following points:

• As discussed in Section 3.3.3, the flows should send and receive data using
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the messaging system described in Section 3.2.4 in order to achieve global com-
posability. By using our framework, we can communicate data on a any topic
except the computation topic. This is done by using a http request node that
uses Maestro REST API to publish and subscribe to data on a specific topic.

• Local composability, discussed in 3.3.3, can also be achieved by sending two
flows with the same database configuration which get serialized along with the
computational flows to other devices. Each one of them can read or write to the
same database instance. Moreover, since collections in time-series databases do
not need a schema we can insert data of any form immediately.

• On the sender side, when Maestro receives a new publish request, it creates
a new SCAMPIMessage with a unique global identifier and publishes it to
SCAMPI which handles delivering the message to other devices. Alternatively,
for each flow that subscribes to a specific data topic to Maestro, it adds an en-
try in the topic-endpoint mapping that maps between a topic and an endpoint
identifying the flow.

On the receiving side, when Maestro gets a message from SCAMPI because it
had subscribed for a specific topic, Maestro forwards the data to all endpoints
on node-RED that had previously subscribed to this topic, this enables the flexi-
bility of having multiple flows subscribing to the same data.

• When publishing a data message, the publisher can attach a parameter that in-
dicates whether the response of this message should be sent to the publisher
only, or sent to specific topic that might have multiple subscribers. This helps
publishers in sending data to be processed on other devices and then control
who should receive the processing results.

• Since Maestro subscribes to the global identifier of SCAMPI and thus the frame-
work, it is possible to publish flows or data to specific nodes or set of nodes
as discussed in 3.2.1 by publishing the message once for each device. However
if the set is too big, this might flood the network with the same message pub-
lished to different topics for various devices. More optimized solutions could be
achieved by exposing the information to the routing algorithm of SCAMPI thus
being able to publish the message only once as explained in 3.2.3.
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4.5.1. Architecture Summary

As a recap, the following Figure 4.7 summarizes how the framework works and shows
how flows are distributed and data is exchanged between the stack components.

Figure 4.7.: Software framework architecture design.

(A) Flows are developed using node-RED UI, they can include publishing and sub-
scribing REST calls to Maestro. If a flow subscribes to a certain topic, Maestro
creates a topic-endpoint mapping between the topic and an endpoint for this
flow specifically, then send a subscribe request to SCAMPI. If another flow on
the same instance wants to subscribe to the same topic, Maestro extends the
mapping to include it, hence, once a message is received it gets forwarded to all
subscribed flow endpoints.

(B) When Maestro receives a publish request from node-RED, it attaches the depen-
dencies and an indicator that states if the response should be received by the
sending device only. Then the message is forwarded to SCAMPI server.

(C) SCAMPI keeps synchronizing messages and discovering new peers continu-
ously as long as its running. Also, storing some message for the store-carry-
forward routing functionality.
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(D) When a SCAMPI instance receives a message it is forwarded to Maestro, which
then verifies the topic. If it was a computation message then Maestro checks
meta-data, resources, dependencies and then either deploy the computation to
node-RED or discard it. Otherwise, if the message was not a computation, Mae-
stro forwards it to the subscribing flows from the topic-endpoint mapping.

4.6. Summary

In this chapter we introduced real life use cases for our software framework that was
utilized to elicit the requirements used to evaluate the implementation and design
of this framework. Afterwards, we described the stack to implement this framework
starting by SCAMPI the delay-tolerant information-centric messaging system, going
through node-RED the platform used to implement, export and execute custom com-
putations serving different use cases, finally we explained Maestro which is the mid-
dleware that orchestrates the communication between SCAMPI and node-RED. Then
we explained how the whole framework is expected to operate fulfilling the thesis
goals.
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Building on the framework architecture explained in Chapter 4, we describe Maestro
the proof-of-concept (POC) implementation in details to show that the framework ar-
chitecture is sound. Moreover we describe the flows implementation used to create
the experimental use cases to validate elicited requirements in the evaluation chapter.

5.1. Maestro

Maestro is implemented as a Java project and web application that act as a middle-
man between node-RED and SCMAPI. It accepts publish and subscribe requests from
node-RED flows through REST API and uses SCAMPI Java API to propagate these
requests to SCAMPI server. Further, whenever it receives a message that it had sub-
scribed to from SCAMPI server, it forwards the message to node-RED flows who is-
sued the subscription requests. It is divided into several packages, we describe them
in alphabetical order:

• First, the package com.middleware.api which contains two classes, SCAMPApi.java
and MiddlewareApi.java. The class SCAMPIApi.java has a field of type APP_LIB
from SCAMPI Java API which contains the core methods of SCAMPI server to
connect, add status listeners, publish and subscribe to messages. As shown in
Figure 5.1, SCAMPIApi implements two classes via the APP_LIB for the SCAMPI
server which includes functions like OnDisconnected(), OnConnectFailed(),
OnStopped() and OnConnected(). It also implements messageReceived() which
handles the messages once they are received from SCAMPI. Further, It contains
a cache for messages and a field indicating the machine specification which is
read from a file on the device. Also, SCAMPIApi.java subscribes to the global
identifier of SCAMPI on service initialization which is used as a global identifier
for the whole framework.

The class MiddlewareApi.java contains REST API for Maestro’s web application
that runs on port 8080. It has two requests POST /publish and POST /subscribe
that reference the APPL_LIB in order to submit publish and subscribe requests to
SCAMPI server. The class MiddlewareAPI.java has a field for the topicMapping
which is the topic-endpoint mapping we explained in 4.5. Last but no least, it
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has a main method which in Java is used to run a class. In this case, it is used
to run the built jar file from Maven which means once the jar file runs via the
command java -jar interface-1.0-SNAPSHOT.jar, the main method is only
thing that runs and therein it starts a web application via Spring Boot.

Figure 5.1.: Class diagram for the api package.

• The second package is called com.middleware.constants and has one class
Constants.java which contains all the constant fields used in Maestro across all
other classes. This includes string keys for SCAMPI messages, some Linux com-
mands, URL for the local node-RED instance, path for user home directory on
the hosting machine and path for the JSON file that includes the machine spec-
ification. Furthermore, it contains the topic reserved for computations named
Main.

• The third package is the most important one com.middleware.domain which
contains most of the services that is handled by Maestro. There are two singleton
classes namely ToppicMapping.java and MessageCache.java, the first class is a
cache that maps between the subscribed topics and the node-RED endpoints
who issued a subscription request to them. The second is a cache that makes
sure a received message is not handled more than once. A singleton class means
there exist only one instance across the whole web application no matter how
long it runs and no other class can create a new instance of these types or re-
initialize the existing ones. That’s because both are types of caches which should
be consistent and global to any class which would need these caches.
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The classes CommandRunner.java and RESTHandler.java are helpers. The first is
used to run commands on the machine and has two methods run(String) and
getFreeRam() which is equivalent to calling run("free -m" ). The second class
is used as a REST client for sending requests to node-RED which are used to
deploy computations and send data to endpoints.

Next are the classes MessageHandler.java and Publisher.java which contain
the services for handling incoming messages from SCAMPI and publishing new
messages respectively. The MessageHandler.java is invoked from SCAMPIApi.java
method messageRecieved() and differentiates between two types of the mes-
sages; computation ones which are received on the topic Main and handles
them with the method handleMainTopic(SCAMPIMessage) that takes care of the
resources, machine specifications, puts dependencies on node-RED local direc-
tory then the RESTHandler.java class is used to deploy the computation to
node-RED, and data messages which are received on other topics and han-
dles them with the method handleSpecialTopic(ScampiMessage), it sends the
data to any subscribed endpoint in the toppicMapping cache using also the
RESTHandler.java.

The Pubisher is responsible for submitting publish requests to the APP_LIB. It
is invoked from the MiddlewareApi.java. It creates a unique identifier for each
new message, and adds the publisher global identifier to the SCAMPIMessage as
well. It has the same topic differentiation as MessageHandler.java. On the one
hand, if the publish topic is Main, it collects the dependencies and attach it to
the SCAMPIMessage before it sends the message to SCMAPI server. On the other
hand, if it is a data topic it checks the attachments and adjusts the response end-
point to whether it should be sent back to this device only, if this is the case, it
creates a mapping between the global identifier of the device and the endpoint
that sent the publish request then send it to SCAMPI server.
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Figure 5.2.: Class diagram for the domain package.

• The fourth package com.middleware.exception which contains the project’s cus-
tom exceptions. Currently it only has a RESTFailedException.java class which
handles node-RED deployments and data requests failures.

• The fifth and last package is com.middleware.model, it holds the models which
are classes used to hold data and encapsulate them. Remark up on that, the Java
classes do not contain any getters and setters or constructors. However, using
Lombok library they are generated in compile time and they can be picked up by
the Integrated Development Environment (IDE) as displayed in Figure 5.3.

Figure 5.3.: Class diagram for the model package.
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Maestro uses Maven as a software project dependency management which handles
Maestro’s build. Maven projects contain a Project Object Model (POM) file which de-
scribes the dependencies and libraries used by the project. In addition, it has build
configuration management that is used to build the project and create a runnable jar
file. Maestro can be compiled and packaged to a jar using the command mvn clean
package. The project contains dependencies for Lombok which is a library that gener-
ates getters, setters and constructors during compile time without the need to write
them in the Java classes, Gson dependency in order to be able to read and write in
JSON format, SCAMPI API which allows us to publish, subscribe and override func-
tions from SCAMPI and dependencies to create a web application via Spring Boot.

5.2. Flows

This section explains all the flows developed in this thesis. It shows how the flows can
be implemented to achieve different use cases. It also shows how we use node-RED
flows in order to send computations.

5.2.1. Send Computations

Figure 5.4.: A flow that publishes computations to Maestro and thus to SCAMPI.

In order to deliver flows which expresses computations for all devices or selected ones
according to available resources, sensors, actuators and also attach dependencies, we
developed a node-RED flow shown in Figure 5.4. The flow responds to the endpoint
GET localhost:1880/publish and returns the HTML page in Figure 4.5. Afterwards,
the user can adjust the computation power needed by the flow, necessary free Random
Access Memory (RAM), sensors and actuators. Then he/she must also write the flow
identifier, attach dependencies and eventually click on the button push which calls
another endpoint on the same flow localhost:1880/push with the form data. The
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endpoint receives the data, fetches the flow details and publish it to Maestro which
handles the rest.

5.2.2. Temperature Sensor Alert

Figure 5.5.: A flow that reads temperature, stores it and starts a red LED if the tem-
perature is above 30 degree Celsius.

This flow was developed to make sure that the framework works against the typical
IoT usage of sensors, actuators and time-series databases. As presented in Figure 5.5,
the flow runs once it is deployed to any device. Take into account that, it would not
have been deployed by Maestro without checking that it has the required resources
and dependencies. Once the flow is deployed, it starts a script for sensing temperature
which is sent as a dependency while sending the flow to other devices. It then checks
if the temperature is a valid number, then it gets stored in a database. Further, if
the temperature is above 30 degree Celsius it runs a script, which is also sent as a
dependency, to light up a red LED lamp. On top of that, the flow responds to the
endpoint localhost:1880/temp and returns all the collected temperature data in the
last two minutes.
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5.2.3. Detect Movement and Store Image Responses

Figure 5.6.: A flow that detects motion, takes an image then publishes a message and
stores incoming responses.

As part of the implementation evaluation, we developed this flow to take part in a
bigger use case. The flow is designed to detect movement through the infrared sensor
and then take a picture, which is then published on the topic NUC for image recogni-
tion. However, in the push payload along with the picture, there is a field stating that
the response should come back to this exact device, therefore, Maestro creates a map-
ping between the device global identifier and the endpoint before publishing. Also, as
demonstrated in Figure 5.6, the flow awaits messages on its endpoint and executes a
script which starts a red LED, it also stores the recognized image in a database along
with its accompanying data.

5.2.4. Show Recognized images

Figure 5.7.: A flow that creates an endpoint to retrieve stored database images.

Since composability is an important part to validate in our framework. We created
a simple flow to show local composable flows. It simply queries the database for
recognized images from the previous flow 5.2.3 when requested on the endpoint
GET localhost:1880/images. It has an HTML page response showing all the images
along with their image recognition confidence percentage data and time-stamp. The
flow is invoked once it is deployed by the receiving device.
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5.2.5. TensorFlow Water Bottle Recognition

Figure 5.8.: A flow that uses tensorflow to recognize a water bottle.

To prove that we can send flows to machines with heavy computation power and
lots of free RAM. We developed an image recognition flow using TensorFlow which is
an open-source software library for machine intelligence. TensorFlow needs a 54MB
image recognition model that recognizes 1000 object classes, one of them is a water
bottle. It also needs the code to run the recognition algorithm which is a Java jar
file of 29MB size. Therefore, the flow needs to carry all the mentioned dependencies.
As shown in Figure 5.8, the flow subscribes to the topic NUC once it is deployed.
Then, when Maestro instance that runs on the same machine receives a message on
the topic NUC carrying an image, Maestro sends it to the corresponding endpoint
from the topic-endpoint mapping, it also puts the dependencies (an image in this
case) in node-RED directory. Thereafter, the flow runs tensorflow jar that reads the
image from node-RED directory. If it results in a water bottle as a best match, the flow
responds to the sender with the result and a confidence percentage.

5.3. Starting the framework

The framework stack runs in the following order; SCAMPI, Maestro and then node-
RED. The script used for starting the stack is as follows:

#!/bin/bash
java -jar SCAMPI.jar default_settings.txt > scampi-log.txt 2>&1 & disown
sleep 10
java -jar interface-1.0-SNAPSHOT.jar > interface-log.txt 2>&1 & disown
sleep 5
node-red > node-red-log.txt 2>&1 & disown
echo "All Set Up"

There is a sleeping period between each command in order to make sure that the
previous one has started. The commands have to be executed in this order, however,
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if Maestro starts before SCAMPI it will not break and keep waiting for the server to
start. But, node-RED must wait for both of them to start, as there are flows that only
executes at the time of deployment, therefore the whole stack has to be running at
this point. Note also, that there are logs for each process that can be found in the
node-RED directory.

5.4. Summary

In this chapter we have described the software framework implementation following
from the specifications, requirements and architecture design explained in Chapter 4.
Specifically, Maestro’s implementation and extending the Java API of SCAMPI. More-
over, we described the implementation of each flow used as part of implementing the
use cases for the framework evaluation. At the end, a brief is given on how to start
the framework in the right order.
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The goal of this chapter is to validate the framework architecture design for context-
aware pervasive computing in challenged environments which was described in Sec-
tion 4.4. It also evaluates Maestro’s implementation which was explained in Chapter
5 according to the requirements mentioned in Section 4.2. Note that, the delays in
the experiments are not meant for performance evaluation, but rather to prove and
validate that the intended features of the framework work as expected.

To satisfy all the requirements and specifications for the software framework, we di-
vided the evaluation into several sections. Each section validates certain specifica-
tions via implementing a minimal use case scenario. We describe which requirements
where targeted at the beginning of each section. The devices used for the use cases
have different hardware capabilities. They might also have sensors and actuators ac-
cording to each use case. All the devices must be running our stack framework as
explained in 5.3 except for Android phones which have Liberouter, an implementation
for SCAMPI on Android phones. The devices we used in this evaluation are:

Name Count Stack Performance

Intel NUC 1 Our framework
CPU: Intel Core i5-6260U Processor

(4M Cache, up to 2.90 GHz)
RAM: 16GB

Raspberry Pi 3 model B 2 Our framework
CPU: 1.2GHz

RAM: 1GB

HTC One M9 1 Liberouter
CPU: Octa-core

4 x 2.0GHz + 4 x 1.5GHz
RAM: 3GB

Table 6.1.: Devices used for the implementation evaluation.

62



6. Evaluation

6.1. Typical IoT Usage

First, we wanted to evaluate that the software framework works with the typical IoT
use cases using high rate data sensors and storing them in time-series database. The
flow explained in Section 5.2.2 reads temperature on a regular time basis and stores it
into a database, it also has an endpoint that can query for data between specific time
intervals and if no time interval is specified, it will return temperature readings in the
last two minutes. The flow also alerts for high temperatures by igniting a red LED
lamp.

The use case is an example of pervasive computing that checks if the temperature is
above certain degree and then act by lighting the red LED. It also serves as an abstrac-
tion for other use cases with real life purposes. For example, we might have a goal to
start or close an air conditioning system in a building according to the temperature.
Thus, the flow can be adjusted to include an API for the air conditioning system in-
stead of lighting a red LED. The use case can also be extended to include a monitoring
system, that can show temperatures collected from different devices. Further, it can
include location information along with the temperature data thus knowing what are
the temperatures in different locations by syncing database instance on each device to
the cloud.

In this experiment we used a two Raspberry Pis running our proposed stack that are
connected along with a switch and router. Each Pi had a red LED and a temperature
sensor attached. The publishing PC is connected to the network through the router
via Wi-Fi as shown in 6.1. First, a PC sends the flow for temperature reading, data
storage and creating an endpoint to query the data. Then, once the flow is received
and deployed, the temperature sensors starts gathering temperatures and the data is
stored into a local database.

Figure 6.1.: Testbed setup for temperature sensing flow.
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The experiment was tested 8 times and each time we measured the delay between
publishing the flow from the PC tPC until it was received and deployed by node-
RED instances on the Raspberry Pis tPi, we also measured the delay between flow
deployment and the first database temperature insert query on each device’s instance
tdb.

tPi1 − tPC tdb − tPi1 tPi2 − tPC tdb2 − tPi2

t 2.870 1.723 2.437 1.717
σt 0.769 0.0376 1.003 0.013

Table 6.2.: Mean and standard deviation of temperature flow delays.

Given these delays, the average time the temperature flow takes to reach the Rasp-
berry Pi and gets deployed is 2.653 seconds which the mean of the two Raspberry
Pi delays. The average time from the flow deployment until the first temperature
measurement is inserted in the database is 1.720 seconds. Which means that in our
proof-of-concept implementation, it takes on average 4.373 seconds from the moment
the temperature flow is deployed until the first database insertion is done. Given
the testbed setup and that the flow does not have large size dependencies, the time
should have been less although we think that the Raspberry Pi low performance ca-
pabilities increases the delays and this can be seen in the next experiments. In this
experiment we have satisfied some of the requirements mentioned in Section 4.2: i)
service discovery, ii) send and deploy computations, iii) computation dependencies,
iv) pervasiveness.

6.2. Recognizing Water Bottles

Moving on to more complex scenarios, this use case is as follows: movements are
detected around low computation devices portrayed as the Raspberry Pis. Once they
detect movements around them, they take an image and send it to the topic NUC. A
high performance machine "an Intel NUC" should be waiting for input on the same
topic. As soon as the NUC receives an image, it runs an image recognition algorithm
which is a flow itself and responds back to the Raspberry Pi which sent the original
message only if the recognizer recognizes a water bottle. When a Raspberry Pi re-
ceives the recognition result on its endpoint, this means that the image was a water
bottle with a certain confidence, therefore, the Pi signals a red LED to light up and
stores the result in a database.

The flow implementation used to create this use case can be found in Sections 5.2.5
and 5.2.3. As part of this experiment when a flow requiring high amount of perfor-
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mance such as the image recognition flow is received by low performing devices they
will not get deployed and will log that requirements were not satisfied. The same
case applies when a flow requiring low amount of computing power is received by
a high performing device, of course, this could be optimized because clearly high
performance devices can execute flows which are not needy. The computational re-
quirements needed by each flow are decided before sending the flow over to other
devices using the HTML page implemented in the publishing flow explained in 5.2.1.

This scenario helps us validate several requirements for the framework evaluation:

1. Service discovery, through discovering all devices running SCAMPI.

2. Send and deploy flows, by sending them to all devices connected to a network
running our framework stack and controlling which devices can deploy the
flows by sending meta-data for the resources and computation power along
with flow. Therefore, being able to only send to some sets of nodes.

3. Global Identifier, by sending data to a specific device using its global identifier.

4. Computation Dependencies, through carrying tensorflow image recognition and
the motion flow dependencies in order to guarantee a successful run at the
receiving device.

5. Communication, by having publish-subscribe messages between the NUC and
the Raspberry Pis.

6. Pervasiveness, through lighting a red LED once an image bottle is successfully
recognized and a message is sent back to the Raspberry Pi.

As stated every device must have the framework stack running before we start our
use case. So after making sure its running we start publishing the flows. In this use
case, the testbed setup is shown in Figure 6.2, it consists of two Raspberry Pis, an Intel
NUC and a router connected via switch. The PC which will publish the computations
is connected through the router via Wi-Fi.
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Figure 6.2.: Testbed setup for recognizing water bottles.

We started by publishing the flow 5.2.5 for image recognition with all its dependen-
cies in total 83MB, then we published the motion detection flow 5.2.3 with the sensor
scripts. We measured the delay between publishing flows from the PC till it was re-
ceived and deployed by node-RED on each instance. The use case was tested 8 times,
we also measured the delay when a motion was detected by Raspberry Pi and an
image was sent to the NUC and the recognizer reply. This was also tested 8 times
for each Pi, a total of 16 tests. The sequence diagram displayed in 6.3, illustrates the
procedure in addition to the time initials for each part of the process.
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Figure 6.3.: Sequence diagram for recognizing water bottles.

At time t0 the image recognition flow was published, at times t1, t2 and t3 it was re-
ceived by the NUC, Pi1 and Pi2 respectively. The check mark shows that the flow was
deployed and the cross mark means deployment was refused because of insufficient
resources. Then at time t4 the motion sensing flow was published and at times t5, t6
and t7 it was received by the other devices as well. A times t8 and t12 the Pis detected
motion, took an image and then sent a message to the NUC. At times t9 and t13, NUC
received messages from the Pis and started processing, detected a water bottle and
then sent the results back to the senders at t10 and t14. The Pis received recognition
responses with the confidence percentage at t11 and t15. The tables 6.3, 6.4 and 6.5
show the mean and standard deviation of the delays.

t1 − t0 t2 − t0 t3 − t0

t 22.061 28.657 26.559
σt 1.440 s 8.830 s 8.851 s

Table 6.3.: Mean and standard deviation of the image recognition flow delays.
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t5 − t4 t6 − t4 t7 − t4

t 0.087 s 2.322 s 1.948 s
σt 0.012 s 0.053 s 0.491 s

Table 6.4.: Mean and standard deviation of the motion detection flow delays.

t9 − t8 t11 − t10 t13 − t12 t15 − t14 ttensor

t 0.282 s 0.700 s 0.273 s 0.6985 s 5.512 s
σt 0.061 s 0.067 s 0.048 s 0.0488 s 0.217 s

Table 6.5.: Mean and standard deviation for sending and receiving data delays.

t11 − t8 t15 − t12

t 6.566 s 6.592 s
σt 0.097 s 0.093 s

Table 6.6.: Mean and standard deviation for the whole data exchange period delays.

It is apparent that delays of the flow carrying image recognition dependencies took
long times compared to the motion flow and the data messages between the NUC
and Pis. That is mostly because the size of data in which the message is carrying.
The data messages included images with size that range between 50K to 90K and the
motion sensing flow had dependencies with sizes less than 2K. It is also clear that
when the receiving side are the Raspberry Pis, delays are usually larger than when
the receiving side is the NUC. This is evident in the motion sensing delays in Tables
6.4 and also in 6.5 despite that the message sent from the Raspberry Pis to the NUC
are heavier in terms of size than their replies, but the delays are much less. We can
also conclude that it takes almost 1 second to have a successful data communication
carrying dependencies between the Raspberry Pi and the NUC in our framework, by
deducting the time taken in the image recognition process which is on average 5.5
seconds shown in Table 6.5 from the total time taken to exchange data between the Pi
and the NUC displayed in Table 6.6.

6.3. Local Composability

In order to prove that we can compose flows locally using our framework, we cre-
ated a use case that builds on the previous experiment. Our goal is to use the same
database configuration in both flows, one to write into a database while the other
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reads. Therefore, being able to compose two flows in order to achieve a bigger use
case.

Figure 6.4.: Sequence diagram extension for getting recognized water bottles.

Continuing on the same testbed setup as Section 6.2 and the same scenario. After
the Raspberry Pis stored the recognized images of water bottles into their respective
databases, we sent a flow that retrieves these images from the database into a web
endpoint along with their confidence percentages as explained in 5.2.4. We retrieved
some of the images displayed in Figure 6.5 from the Raspberry Pi endpoint to prove
that the local composability flow works as expected. By doing this, we make sure
that flows can be locally composed using the same database configuration. We also
measured the delay between sending the flow from the PC until it was deployed by
node-RED on other devices. The flow required low computational effort, therefore, it
was not deployed on the NUC device. The experiment was tested 8 times.

t17 − t16 t18 − t16 t19 − t16

t 0.105 0.801 0.834
σt 0.028 0.060 0.051

Table 6.7.: Mean and standard deviation for retrieving recognized images flow delays.
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Figure 6.5.: Images of the water bottles stored by the Pi after being recognized from
the NUC.

Closer inspection shows that delays in this use case are quite low because this flow
does not have any dependencies at all. Comparing the times in which the Raspberry
Pis have received and deployed flows, this one has quite the least delay. However, the
NUC in this flow seemed to have a bit higher delay average than the motion sensing
flow with not so much dependencies as well.

6.4. Challenged Networks

The section below shows our aim to evaluate that the framework works in challenged
networks with no end-to-end path between sender and receiver. We used the same
setup as 6.2 but with two major changes. The first change is that we disconnected
a Raspberry PI from the network switch, therefore, it is no longer connected to the
other devices or the publishing PC, we also set up the disconnected Pi as an access
point in which other devices can connect to using Wi-Fi. The second change is that we
introduced an Android phone that can connect to both the Raspberry Pi’s access point
and the router’s Wi-Fi connected to the switch. Additionally, the device exchanges
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its Wi-Fi connection between the access point and router Wi-Fi each 80 seconds. The
system setup is demonstrated in Figure 6.6.

Figure 6.6.: Testbed setup for challenged and delay tolerant networks.

The experiment was tested only one time for an extended amount of 50 minutes. First,
we used the PC to publish the image recognition flow and the motion sensing flow.
Second, we waited some time until we made sure that the flows have reached the
disconnected Pi. Afterwards, we passed hands over the infrared sensor of the dis-
connected Pi and put a water bottle in front of the camera. We repeated this action
multiple times.

This use case is evaluated differently, since in the current Maestro implementation,
we do not have a way to map requests sent with their respective responses. In the
experiment explained in Section 6.2, each request was only sent once hence we re-
ceived only one response thus mapping them together was trivial, however this is not
the case here. Since we sent more than one request at once and not all of them were
recognized as water bottles, therefore there was no response from the NUC for some
of these requests. That’s why we evaluate this use case on 3 different levels. First,
the delay between publishing flows from the PC and receiving them on all devices.
Second, the delay between sending the images from the disconnected Pi to the NUC.
Third, the delay between sending the results from NUC till they are deployed to the
disconnected Pi. Take into account that, the number of messages sent from the Pi to
the NUC and vice versa may not be equal due to the fact that some images were not
recognized as water bottles. In addition, we have no means to map a message which
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was sent as an image recognition request to another one sent as a response which
could be an enhancement to Maestro.

The following table shows the first evaluation phase, tNUC, tPi and tdisconnected−pi are
the delays between publishing the flows from the PC till it reaches each device.

tNUC tPi1 tdisconnected−pi

image recognition flow 39.414 53.719 312.072s
motion sensing flow 3.163 5.401 215.657

Table 6.8.: The delays for sending flows to the network devices including the discon-
nected Pi.

From the above table we can definitely see the delay added to the disconnected Pi.
This main reason for that is, beside not having a direct connection, the switching
window of the Android device. It can affect the transfer in different ways. If the
switching time is too big, the delay will most probably increase because after a flow
is uploaded to the phone, it will have to wait for some time until the window closes
before it switches back to the other network. But also, having it too small, flows with
large size of dependencies will not succeed to upload their data to the Android phone
in time.

Next we show the delays of some messages that were sent from the disconnected Pi
to the NUC carrying images with their average and standard deviation.

t

t 185.818
σt 54.966

Table 6.9.: Delay mean and standard deviation of 13 messages sent from the discon-
nected Raspberry Pi to the NUC.

Finally, we evaluated the response message returning back from the NUC to the dis-
connected Raspberry Pi having successfully recognized a water bottle.

t

t 90.467
σt 59.770

Table 6.10.: Delay mean and standard deviation of 10 messages sent from the NUC to
disconnected Raspberry Pi having successfully recognized water bottles.
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What stands out in the previous tables is that delays are much bigger, but the good
thing is that several devices were able to communicate despite not having any direct
connection between each other. We were also able to deploy computations to a device
which was not in our publishing network.

Figure 6.7.: Timeline for the Android device switching process.

When the messages are sent or the flows are published, we do not know whether
the Android device is connected to the sender at that point or not, that’s why we
evaluate the delay time according to the whole transfer window which is 160 seconds
as demonstrated in 6.7. We think that the average delay in Table 6.10 for delivering
responses which is 90.467 seconds is acceptable. Since it means that the transfer was
done in the first switching window. Further, The average times of the flows and
messages sent from the Pi to the NUC in Tables 6.8 and 6.9 are also acceptable. Being
from 160 to 320 seconds means that it had to wait for the second switching window
which makes sense because these messages were carrying images, scripts and libraries
as dependencies.

6.5. Summary

During this chapter, we have distributed our framework and middleware implemen-
tation evaluation on several parts each describing a different use case with various re-
quirements. We started by showing the typical IoT usage of sensor networks in which
we deployed a computation that monitors temperature on several devices. Then, we
went on with a more complex scenario where we ran image recognition algorithm on
high performing machines which received messages from devices with low computa-
tion capabilities. Afterwards, we showed how flows can be composed locally using
the same database configuration. Finally, we created a delay-tolerant network with a
disconnected device and showed that we can deploy computations and communicate
with the disconnected devices.
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This chapter concludes the work of this thesis, we first give a summary about the
proposed software framework, thesis flow and main contribution of this work. Then,
we demonstrate the results and outcome of this thesis. Finally, we discuss the future
work and enhancements for this work.

7.1. Summary

To sum up, we designed and presented a delay-tolerant and information-centric frame-
work architecture for pervasive computing that distributes, composes and executes
flows which are representations of computations describing pervasive use cases. The
framework uses service discovery, allows sending and receiving of flows while ac-
counting for their dependencies, required hardware resources, sensors and actuators
even without an end-to-end path between senders and receivers. Moreover, it pro-
vides the execution environment for the flows and a user interface for publishing and
designing flows. Further, the framework allows devices to communicate with each
other and exchange data in a publish-subscribe manner which enables them to com-
pose and have inter-relationships in addition to being able to locally exchange data
through databases hosted on the same device.

In this thesis, we first gave an introduction to the problem and our intent to design a
pervasive framework for computation distribution, composition and execution even in
challenged networks. Therefore in the background chapter, we researched the current
accomplishments in the fields of pervasive computing, delay-tolerant and information-
centric networking. After harnessing these concepts and architectures, we came up
with ideas and foundations which led us to design our framework architecture. How-
ever, we needed concrete real life use cases for requirements elicitation so that we can
evaluate our framework against these requirements which were discussed in the sys-
tem design chapter. We also explained the middleware implementation and used the
extracted requirements to devise experimental use cases to evaluate our framework.

The main contribution of this work is both the framework design and the implemen-
tation of Maestro which acts as a middleman between the messaging system and
the execution environment. It handles the flows necessities by attaching the depen-
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dencies, checks the flow meta-data in order to make sure the device meets desired
requirements and has the required resources. Once the flow passes all checks, it de-
ploys the flow to the execution environment.

The evaluation results of our proof-of-concept implementation and system design
showed the feasibility of our architecture. The use case experiments that we ran
satisfied the requirements which were devised from real life use cases. We have
proved the viability of distributing and executing flows with dependencies to smart
devices with different resources and gadgets. Further, we showed that devices can
exchange messages and compose different flows locally and globally. Beyond that,
we confirmed that messages are delivered to challenged networks that does not have
an end-to-end path. Finally, we provided the mean and standard deviation of the
delays taken between sending and deploying messages to the execution environment.

7.2. Future Work

The framework can be extended and enhanced on several aspects:

• Streaming: A possible extension to the framework is to allow live feed or footage
to be streamed from one device to another. Of course this could be done by
composing flows in which one device captures a video and sends the frames to
other devices. However, this might experience some delay; it would be more
efficient to have a streaming API in the messaging system which can be exposed
to both the middleware and execution environment.

• Request-Response Mapping: In the middleware implementation there is no way at
the moment to map a published message sent as a request with another sent as
a response. More specifically, in the challenged networks experiment, we could
not be sure which requests for image recognition sent from the Raspberry Pi
lead to the successful replies sent from the NUC back to the Raspberry Pi. This
is not the case with recognizing water bottles experiment because we sent one
request each run and waited for the response. Unlike the challenged networks
experiment, we sent a lot of requests and received less replies. This could pos-
sibly be done by forwarding the unique message identifier from the request to
the reply thus mapping between them.

• Security: This thesis does not focus on securing the communication between de-
vices and ensuring that requests and deployments to the execution environment
are authenticated. This could be enhanced by providing a layer of security in
the messaging and deployment process.
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• Resources Discovery: The current middleware implementation reads the resources
from a specification file on the smart devices. It would be more dynamic and
flexible if the middleware could discover the attached resources dynamically
and be sensitive to the addition or removal of gadgets.
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A. Use Cases Evaluation Results

A.1. Typical IoT Usage Flow

tPi1 − tPC tdb − tPi1 tPi2 − tPC tdb2 − tPi2

1 4.542 1.713 4.693 1.726
2 2.438 1.706 2.533 1.716
3 2.885 1.701 2.065 1.717
4 2.451 1.815 2.462 1.723
5 2.333 1.713 1.536 1.685
6 2.423 1.724 1.444 1.727
7 3.437 1.705 2.414 1.722
8 2.453 1.711 2.35 1.72

Table A.1.: Delays for the temperature flow.

A.2. Recognizing Water Bottles Experiment Delays

A.2.1. Image Recognition Flow

$ t1 − t0 t2 − t0 t3 − t0

1 23.245 28.226 20.826
2 20.699 49.666 19.051
3 22.330 21.756 29.425
4 21.387 22.265 32.680
5 22.549 27.662 22.627
6 24.095 27.222 15.922
7 19.597 25.561 43.311
8 22.586 26.898 28.627

Table A.2.: Delays for sending image recognition flow for all devices.
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A.2.2. Detect Movement and Store Image Responses Flow

$ t5 − t4 t6 − t4 t7 − t4

1 0.104 2.386 2.233
2 0.106 2.323 2.348
3 0.090 2.321 1.380
4 0.080 2.340 1.275
5 0.076 2.210 1.441
6 0.081 2.299 2.247
7 0.088 2.329 2.211
8 0.074 2.368 2.450

Table A.3.: Delays for sending the motion detection flow for all devices.

A.2.3. Images and Recognition Results

$ t9 − t8 t11 − t10 t13 − t12 t15 − t14 ttensor

1 0.266 0.659 0.276 0.686 5.582
2 0.296 0.674 0.323 0.79 5.640
3 0.186 0.728 0.313 0.676 5.573
4 0.342 0.807 0.222 0.661 4.940
5 0.227 0.752 0.219 0.722 5.603
6 0.262 0.713 0.322 0.742 5.599
7 0.306 0.684 0.212 0.663 5.575
8 0.374 0.582 0.293 0.648 5.581

Table A.4.: Delays for data sent between the Raspberry Pis and the NUC.
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$ t11 − t8 t15 − t12

1 6.484 6.591
2 6.64 6.768
3 6.507 6.57
4 6.737 6.476
5 6.584 6.563
6 6.582 6.684
7 6.423 6.572
8 6.57 6.513

Table A.5.: Delays for the whole data exchange period between the Raspberry Pis and
the NUC.

A.3. Get Recognized Images Experiment Delays

$ t17 − t16 t18 − t16 t19 − t16

1 0.102 0.761 0.838
2 0.163 0.799 0.799
3 0.125 0.927 0.923
4 0.091 0.752 0.868
5 0.070 0.814 0.778
6 0.095 0.824 0.861
7 0.094 0.736 0.835
8 0.098 0.798 0.769

Table A.6.: Delays for the flow which retrieves the recognized images for all devices.
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A.4. Challenged Networks

$ t

1 284.957
2 216.409
3 180.415
4 228.811
5 228.329
6 220.11
7 214.213
8 111.267
9 104.166

10 101.188
11 179.825
12 178.946
13 166.999

Table A.7.: Delays for messages sent from the disconnected Raspberry Pi to the NUC.

$ t

1 59.531
2 51.51
3 51.826
4 213.212
5 67.856
6 67.673
7 68.188
8 68.103
9 64.292

10 192.479

Table A.8.: Delays for messages sent from the NUC to disconnected Raspberry Pi hav-
ing successfully recognized water bottles.
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