

ENERGETIC MAP DATA IMPUTATION: A MACHINE LEARNING APPROACH

Master Thesis - Final Presentation Mandy Nagy

Technical University of Munich Department of Informatics Chair of Connected Mobility

Supervisors: Leonardo Tonetto (Chair of Connected Mobility, TUM) Tobias Straub, Maxim Sidorov (BMW Group)

Garching, 14.01.2020

CONTENT

Motivation

Problem Statement & Objectives

Methodology

Results

Conclusions & Outlook

Master Thesis | Energetic Map Data Imputation: A Machine Learning Approach | EG-631-DE-301 | 14.01.2020

1 MOTIVATION

ELECTRO-MOBILITY CONTEXT

Electric vehicle acceptance level among customers

DRIVING PROFILE

2 PROBLEM STATEMENT & OBJECTIVES

Problem scenarios:

- Missing sensory data for spatio-temporal buckets
- Lost connection to the backend

SOLUTION APPROACH

3 METHODOLOGY

EXPERIMENTAL SETUP

EVALUATION SCENARIOS

problem test scenario scenario	Lost Backend Connection		Missing Data		
Leipzig area	regression -	→ classification			
Munich area	regression -	→ classification	regression	 classification 	

4 RESULTS

MACHINE LEARNING PERSPECTIVE

Evaluation region	Munich area		Leipzig area	
	recuperation	propulsion	recuperation	propulsion
Integral Acceleration (IA)	Clsf (-1.5%)	Clsf (-2.3%)	similar (0.0%)	Clsf (-2.1%)
Integral Squared Velocity (ISV)	Clsf (-3.2%)	Regr (-10.7%)	Clsf (-1.3%)	Regr (-12.4%)
Average Velocity (AV)	Regr (-27.2%)		Regr (-28.9%)	

- Classification model: perform better in most cases
 - Regression model: bigger performance advantages } need problem-specific

need problem-specific interpretability

Master Thesis | Energetic Map Data Imputation: A Machine Learning Approach | EG-631-DE-301 | 14.01.2020

ENERGETIC PERSPECTIVE

Problem scenarios

Lost connection:

٠

 the regression model better for both cross validation and application testing sets

- no relevant overfitting

Missing data: - closest to real world situation

regression model outcomes within the values in literature (4-8%) [4,5]

[4] Masikos, M.; Demestichas, K.; Adamopoulou, E.; Theologou, M. Mesoscopic forecasting of vehicular consumption using neural networks. Soft Computing 2015, 19, 145–156.

[5] Sarrafan,K.;Muttaqi,K.M.;Sutanto,D.;Town,G.E. AReal-Time Range Indicator for Evs Using Web-Based Environmental Data and Sensorless Estimation of Regenerative Braking Power. IEEE Transactions on Vehicular Technology 2018, 67, 4743–4756.

5 CONCLUSIONS & OUTLOOK

5 CONCLUSIONS & OUTLOOK

System Parameter	Outlook
input features	 include further available map features real time features, e.g weather, traffic
feature engineering	cross correlationshigher polynomial degree
machine learning algorithms	 more sophisticated algorithms, e.g Neural Networks, Support Vector Machines further parametric optimization

Conclusions

- regression model can be deployed in the vehicle given the achieved performances:
 - ✓ lost connection scenario (worst case): 12.6% error
 - ✓ missing data scenario: 7.2% error comparable to related works
- reliable and precise energy prediction
- raise BEVs acceptance level

THANK YOU FOR YOUR ATTENTION!