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ELECTRO-MOBILITY CONTEXT
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Electric vehicle acceptance level among customers

Impediments [1,2]:
• range anxiety 
• inconvenient charging 
• higher price

Ease:
• reliable range assistant
• specific route planning
• proactive driving support

reliable energy demand prediction model“Why electric vehicles make 
drivers 
anxious?”, 27.06.2019

“Here’s Why Car Shoppers Are Still 
Avoiding Evs”, 19.09.2019 

“E-mobilität: Deutsche haben 
Angst vor 
zu wenig Reichweite”, 31.11.2019

[1] Yan, Q.; Qin, G.; Zhang, M.; Xiao, B. Research on Real Purchasing Behavior Analysis of Electric Cars in Beijing Based on Structural Equation Modeling and Multinomial Logit Model. Sustainability 2019, 11, 5870. 
[2] Hübner, Y.; Blythe, P.T.; Higgins, C.A.; Hill, G.A.; Neaimeh, M., Eds. Use of its to overcome barriers to the introduction of electric vehicles in the North East of England, 2012.
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DRIVING PROFILE
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PROBLEM STATEMENT & 
OBJECTIVES
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PROBLEM STATEMENT

       time interval 1 of 30 min

fleet data set 
at time 𝑡𝑛
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PROBLEM STATEMENT

       time interval 1 of 30 min

fleet data set 
at time 

…06:00 06:30 07:00 23:30 00:0023:00

fleet data time interval 2 of 30 min

…06:00 06:30 07:00 23:30 00:0023:00

no fleet data or 
lost connection 

Problem scenarios:

• Missing sensory data for spatio-temporal buckets
• Lost connection to the backend            

𝑡𝑛
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PROBLEM STATEMENT
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fleet data
Input

▪ fleet data 

every 30 min

50 m 50 m 50 m

all weekdays
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PROBLEM STATEMENT
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Input

▪ fleet data 

Output

▪ 5 DPMADs

▪ a natural number n of a cluster 
representative (e.g. cluster #2)

 
every 30 min

50 m 50 m 50 m

all weekdays

fleet data

%

𝐼𝑆𝑉𝑟𝑒𝑐
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Input

?
Output

▪ 5 DPMADs

▪ a natural number n of a cluster 
representative (e.g. cluster #2)

 
every 30 min

50 m 50 m 50 m

all weekdays

fleet data /
connection
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SOLUTION APPROACH
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Input

Map features:

▪ slope
▪ curvature
▪ functional road class
▪ speed limit

Output

▪ 5 DPMADs

▪ a natural number n of a cluster 
representative (e.g. cluster #2)

 

every 30 min

50 m 50 m 50 m

all weekdays

fleet data /
connection

supervised 
Machine Learning 
(ML) methods:

- Regression
- Classification

data imputation

%

𝐼𝑆𝑉𝑟𝑒𝑐
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EXPERIMENTAL SETUP

feature extraction
- slope, curvature: {min, max, average}

outlier detection

- Inter Quartile Range (IQR) method
- Q1 - 1.5·IQR < filtered output < Q3 + 1.5·IQR 
- reconsider the structure of DPMADs

comparison based on problem and test scenarios

clustering

- addressed in previous Master Thesis [3]
- robustness of the model: DPMADs based on 

3 or more measurements 

regression

- Linear Regression algorithm
- main parameters: 
        fit-intercept = true, normalise = false

classification

- Decision Tree algorithm
- main parameters: 
        max-depth = 10, splitter=“best”

Data Set Traces(km) Traces (count)

training 3.503.958 95% of Munich

test (Munich) 556.135 5% of Munich

test (Leipzig) 554.366 similar to Munich

[3] Martin Kiener, Master Thesis: Clustering of Fleet Data for Energy Prediction, May 2019

Leipzig
area

Munich
area



EVALUATION SCENARIOS
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Lost Backend Connection Missing Data 

Leipzig area

 

regression                 classification

Munich area regression                  classification

                        

regression                classification

problem 
scenariotest 

scenario
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4
RESULTS
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MACHINE LEARNING PERSPECTIVE

recuperation propulsion recuperation propulsion

Integral Acceleration (IA) Clsf (-1.5%) Clsf (-2.3%) similar (0.0%) Clsf (-2.1%)
Integral Squared Velocity (ISV) Clsf (-3.2%) Regr (-10.7%) Clsf (-1.3%) Regr (-12.4%)
Average Velocity (AV) Regr (-27.2%) Regr (-28.9%)

Evaluation region                                 Munich area                            Leipzig area    

• Classification model: perform better in most cases
• Regression model: bigger performance advantages need problem-specific interpretability}
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ENERGETIC PERSPECTIVE

   training region              Munich area                                Munich area                                 Munich area

   testing region               Leipzig area                                 Munich area                                 Munich area

   data imputed                     100%                                           100%                                             30%

Problem scenarios

• Lost connection:
− the regression model better for both
cross validation and application testing 
sets

− no relevant overfitting

• Missing data: 
− closest to real world situation

− regression model outcomes within the 
values in literature (4-8%) [4,5]

[4] Masikos, M.; Demestichas, K.; Adamopoulou, E.; Theologou, M. Mesoscopic forecasting of vehicular consumption using neural networks. Soft Computing 2015, 19, 145–156.
[5] Sarrafan,K.;Muttaqi,K.M.;Sutanto,D.;Town,G.E. AReal-Time Range Indicator for Evs Using Web-Based Environmental Data and Sensorless Estimation of Regenerative Braking Power. IEEE Transactions on Vehicular Technology 2018, 67, 
4743–4756.
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5 CONCLUSIONS & OUTLOOK

System Parameter Outlook
input features - include further available map features

- real time features, e.g weather, traffic

feature engineering - cross correlations 
- higher polynomial degree

machine learning algorithms - more sophisticated algorithms, e.g Neural Networks, Support Vector Machines
- further parametric optimization 

• regression model can be deployed in the vehicle given the achieved performances:
✓ lost connection scenario (worst case): 12.6% error
✓ missing data scenario: 7.2% error comparable to related works

• reliable and precise energy prediction

• raise BEVs acceptance level

Conclusions
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