
DEPARTMENT OF INFORMATICS
TECHNISCHE UNIVERSITÄT MÜNCHEN

Master’s Thesis in Informatics

Flexible Visualization for Data Analytics
on the Virtual Mobility World (ViM)

Experimentation Platform

Syed Hassaan Tauqeer

DEPARTMENT OF INFORMATICS
TECHNISCHE UNIVERSITÄT MÜNCHEN

Master’s Thesis in Informatics

Flexible Visualization for Data Analytics
on the Virtual Mobility World (ViM)

Experimentation Platform

Flexible Visualisierung für Datenanalyse in
der Virtuellen Mobilitätswelt (ViM)

Experimentierplattform

Author: Syed Hassaan Tauqeer
Supervisor: Prof. Dr.-Ing. Jörg Ott
Advisor: Dr. Ljubica Pajevic Kärkkäinen
Submission Date: 15.04.2020

I confirm that this master’s thesis in informatics is my own work and I have documented
all sources and material used.

Munich, 15.04.2020 Syed Hassaan Tauqeer

Acknowledgments

I would like to express my deepest gratitude to my advisor, Dr. Ljubica Pajevic
Kärkkäinen, for her consistent guidance and mentoring throughout the project and
thesis, specially during the meticulous review of the drafts of this document.

I would also like to thank Dr. Ilias Gerostathopoulos, for taking time out of his busy
schedule to provide guidance and help with the CrowdNav platform.

Dedication

To my parents, Munazza Syeda and Tauqeer Abid, without whom none of my achieve-
ments would ever be possible.

Abstract

In a bid to enhance user productivity, this thesis aims to augment the analytics part of an
existing experimentation platform, in order to make its workings more understandable
and add avenues of customization. The experimentation platform currently deals
with, and can perform statistical tests and run optimization processes on, a stand-
alone, independent traffic simulation system to assess the performance of vehicle trips,
customer complaints, and fuel consumption among other measurable and optimizable
metrics. Modeling the experimentation platform’s analytics module’s core functions
in an environment that is familiar to the users, we provide them with the ability to
create experiments and view their results. We also provide users with the flexibility
to add modules (specifically custom visualization plug-ins) to this project, if they find
the need or if future iterations of the experimentation platform provide support for
newer features. We do this by keeping this project modular and independent of the
experimentation platform that it works in tandem with. By choosing the development
environment that we built this project in, we have also achieved a more compute-
resource friendly tool than the analytics part that was built within the experimentation
platform.

iv

Contents

Acknowledgments iii

Abstract iv

1 Introduction 1
1.1 Problem and Motivation . 2
1.2 Goal . 2
1.3 Overview of Approach and Contributions 3
1.4 Road-map of the Thesis . 4

2 Background and Related Work 5
2.1 Project Background . 5
2.2 Related Work . 6

2.2.1 Tempe . 6
2.2.2 Netflix XP . 7

3 Exploring ViM 11
3.1 Virtual Mobility World (ViM) Experimentation Platform 11

3.1.1 Elasticsearch . 16
3.2 CrowdNav . 16

3.2.1 Simulation of Urban Mobility (SUMO) 16

4 System Design 19
4.1 Functional Requirements . 19
4.2 Non-Functional Requirements . 20
4.3 Architecture . 20

4.3.1 Design Decisions . 21
4.3.2 Building Blocks . 22
4.3.3 Features . 32

5 Evaluation 34
5.1 Features . 34

5.1.1 Creating Target Systems . 35

v

Contents

5.1.2 Creating Experiments . 40
5.1.3 Retrieving Results . 43
5.1.4 Run-time Analysis . 47

6 Conclusion 53
6.1 Future Possibilities . 54

7 Appendix 56
7.1 Jupyter Notebook . 56
7.2 Three-Hump Camel Function . 57

List of Figures 58

List of Tables 60

Bibliography 61

vi

1 Introduction

Data and its significance have recently taken the world by storm. The Economist went
as far as calling data a new lucrative commodity [5]. However, hoarding a heap of
data and storing it in a database, thinking it will bring more profit is as useless as not
having it in the first place. What brings value to that data is the process of converting it
into intelligible and actionable information.

As [7] notes, technologically-enabled companies are 26% more profitable than their
competitors. They also state that despite having data and a large number of data
scientists, the number of companies successfully transforming data to effective insights
is low. One reason for this is, data scientists and analysts spending more time extracting
data and then porting it over to tools that they generally practice with, creating a rift
between engineering and analysis and also unproductively spending valuable time.

With the advent of the Internet of Things (IoT) and connected devices, the amount
of data generated has been exponentially increasing. To keep up with the pace of
extracting, processing and inferring value worthy information from raw data, the
tools that aid field-specific analysts have to be tailor-made to their specifications and
according to their strengths [4]. This ensures that these data scientists and analysts
spend more time contributing to plug-ins that they can write and implement within
their comfort zone and on analysis rather than spending time in equipping themselves
with other technologies to provide their expertise to the overall development and
analysis ecosystem.

Porting these tools to environments that data scientists are comfortable with helps
to make their work more focused and increases the output productivity of these
individuals. They no longer have to focus on stressful installations and environment
setups, nor do they need to go through huge chunks of full-stack code to determine
how certain functions are written and operating. Another benefit of this, is the ability
of analysts to run multiple experiments on these tools with slight variations to their
parameters to see a possible effect on the results which might give them an idea on
how their hypotheses tally in differing scenarios.

1

1 Introduction

1.1 Problem and Motivation

This thesis is designed around, and is a continuation of, an on-going project that
deals with experimentation performed on black-box software systems connected to the
Virtual Mobility World (ViM) experimentation platform [2]. ViM is a web-based tool
capable of handling automated experimentation and running optimization processes.
The main application-related focus of this tool is the experimentation with simulations
(and possibly real-world data) of traffic scenarios, which include routing, customer-
satisfaction, overhead of trips that are running late and so on. The ultimate vision for
this framework is to monitor and enable the decision-making processes for efficient
traffic management, accident-avoidance and the management of ride-sharing, eventually
resulting in smart connected vehicles acting as transportation fleets.

The platform is capable of running statistical significance tests like "Factorial Analysis
of Variance (ANOVA)" and independent "T-test" on streams of data coming in via user-
defined data connectors. It treats the test environment as a complete black-box model.
However, the structure of how the black-box model will ingest experiment, settings and
how it will output resulting data values, is controlled via defined instructions by the
initiator of the experiment.

While the ViM platform checks most boxes on the smooth-sailing full-stack solution
list, it shows a slight hint of uneasiness at being a flexible analysis tool. Its frontend can
handle well developed and precise experiment orders but it is not made for an ad-hoc
A/B comparison, where one just wants to change one slight parameter and compare
the outcome with a previous result. Retrieving other results is also a step that requires
navigating back to all experiments and then choosing the required one. Moving back
and forth between tests makes a quick result comparison quite frustrating. Furthermore,
the frontend is designed and developed in "TypeScript"[18], a language that is probably
quite well known within the web-development community but not so much in the data
science community. This creates the possibility of delays when a data scientist/analyst
needs to add in custom visualization options to represent the experiment results in
a newer form. Not to mention the arduous process of installing the frontend (while
managing all its dependencies) and the toll it takes on the computing resources every
time it is run.

1.2 Goal

The goal of this thesis is to make the analytics part of the experimentation platform
more accessible to data scientists by re-designing and re-implementing it in a more

2

1 Introduction

familiar setting to said, scientists. This would then enable them to run experiments on
the simulation environment and aid in analyzing data from the simulation/real-world
environment.

Concisely, that would entail:

1. Familiarizing with the ViM platform prototype.

2. Performing background research of open-source and proprietary tools and frame-
works for experimentation analytics.

3. Conceptualizing the process of run-time and post-experiment interaction with
the platform, as well as the functionalities for analyzing experiment results

4. Designing the frontend data analytics module.

5. Implementing the devised solution and evaluating it via use-case scenarios.

1.3 Overview of Approach and Contributions

Since the existing code base of the project was extremely large, and understanding
the core functionality by solely reviewing the code was not a feasible option, the only
solution available was to analyze the communication of the front and back ends of the
platform to figure out the structure of instructions passed to and fro.

After the instruction templates for defining "Target Systems" and "Experiments" were
saved, forms for querying user input were created and linked to the instruction tem-
plates. Instructions could then be sent directly to the backend for either creating a new
target system or experiment (on a selected target system). Since target system creation
is the most basic step, there is no prerequisite for it, apart from the fact that the target
system (black-box simulation environment) should be running in the background (so
when the backend sends a configuration, there is a system listening to it) before it is
defined using this solution. For experiment creation, the prerequisite is the selection of
an already defined and running target system (so that the experiment instructions are
sent to a simulation that is listening to the backend).

Although all three modules, target system creation, experiment creation and result
retrieval work independently, the functionality of the result retrieval is kept separate
from the other two. That is because one could always choose to analyze previously

3

1 Introduction

run experiments without creating any newer ones. The prerequisite for result retrieval
does not require any black-box system running in the background (since successful
experiment results are saved in a database). However, it does require selecting an
already completed experiment. The key contributions of this thesis, in essence then,

are as follows:

1. Implementing the ViM frontend of the tool in a Jupyter Notebook environment.

2. Functionality for creating "Target Systems" (the structure which defines how the
ViM backend will communicate with the black-box simulation environment).

3. Functionality for creating new experiments that run on target systems defined in
the same session or at an earlier stage (the experiments are also defined in a set
structure that is understandable by the black-box simulation environment).

4. Functionality for retrieving and displaying experiment results from the platform
via queries to the backend (current iteration supports the results for experiments
that are already done running).

1.4 Road-map of the Thesis

So far, this thesis has tried to cover the ground for its need. The chapter following this
one, Background and Related Work, gives the background of the project, including
the ViM platform. In addition, it will give a brief overview of work, done by the
community, that is relevant to this project and from which the project draws inspiration.
The chapter Exploring ViM will then give a detailed view of the ViM platform and
the CrowdNav simulation platform. Afterward, the chapter on System Design shall
describe how this project came together, including its design and architectural aspects.
In Evaluation, the study of the use-cases of the project shall show the workings of the
newly developed prototype and benchmark their performance while the final chapter
will mark the conclusion and the closure of this thesis.

4

2 Background and Related Work

2.1 Project Background

The Virtual Mobility World (ViM) Experimentation Platform is a web-based application
that acts specifically as a statistical significance testing and optimization tool. The
tool, itself, has no data generation sources, nor does it have the capabilities of running
simulations in and of itself [10]. It merely acts as a platform that can stage experiments
on simulations that are running independently of the tool.

One could think of ViM as an abstract control deck for setting up and monitoring
various simulations and experiments on multiple simulation environments, each having
an array of different control mechanisms. ViM accomplishes this generalization of
interaction by treating each simulation environment as a black-box [10].

The current iteration of ViM supports a traffic management simulator, called CrowdNav.
Users can set up statistical significance experiments to monitor various factors of
interest (in case of ride-hailing services) such as trip overheads, fuel consumption,
customer satisfaction, etc. and then optimize the parameters to minimize the negative
aspects and maximize the positive ones.

The ViM client is extremely robust. However, it lacks the option of being customizable
and is not very compute-resource friendly. The current technology that it was developed
on (Angular and TypeScript) requires building the solution every time it has to be run.
Not only does it occupy memory resources, but it also requires special expertise in the
web-development domain to add custom visualization plug-ins to the tool. A regular
user of the tool, a data scientist, is probably not the sort of person best equipped to
handle making changes to ViM.

Greg Wilson, mentions in [25] that most scientists are not very adept at industry
practices of software engineering, which makes them very likely to spend a lot of time
debugging software systems to get them running. This, in turn, consumes a lot of
time that they could have spent on studying the data and drawing out results and
conclusions, which is something that they excel at. Therefore, it is important to bring
the functionality of the ViM client to a more compute-resource friendly platform which

5

2 Background and Related Work

also provides a familiar setup to the user of the tool and allows them to be as involved
with its customization as they need, to be more productive. In the next section of this
chapter, we look towards some industry leaders in order to obtain inspiration for the
best industrial practices, which might help us achieve this goal.

2.2 Related Work

This thesis is inspired by the idea of enhancing productivity and bringing a feeling
of inclusivity to widely diverse teams so that the sum of the team’s achievements is
effectively increased by each individual’s contributions, and that is what we aim to look
for in the work done by industry leaders. It is important to mention that there is not
much related work in the area of enhancing the productivity of data scientists because
incorporating data scientists in the folds of production-ready applications is a relatively
nascent process and many companies are still trying to figure it out. However, we will
investigate a couple of existing solutions, in this section.

2.2.1 Tempe

Tempe is a web-based, large-scale exploratory data analysis (EDA) tool, for temporal
data [8]. It was designed by Microsoft to increase the productivity of their data scientists
in addition to allowing them to collaborate on projects by easily sharing their work
through project page Uniform Resource Locators (URLs).

Tempe actively computes analyses which means that it fetches query results and starts
showing them instantly instead of waiting for the whole result to finish compiling.
This makes it extremely responsive with large data sets. This feature also allows it to
achieve its aim of eliminating the Read-Eval-Print-Loop by showing a user the result
of their change instantly without having them to first print the output then make the
change and print the output again to evaluate if their required function was operating.

This then, is the perfect EDA tool (just like ViM, in our case, is a great experimentation
platform), except that it shows the same limitation that ViM does. The frontend client
is implemented in JavaScript (a web-based language) and to add more functionality to
the visualizations, an analyst would have to know JavaScript or spend time learning it.

6

2 Background and Related Work

Figure 2.1: Tempe showing an analysis notebook (Figure from [8])

2.2.2 Netflix XP

Netflix XP is Netflix’s experimentation platform. In [4], the research team describes
the idea of re-designing the platform around the convenience of Netflix’s data scientists
to give them the freedom to work with the tools that they are familiar with. It is a tool
that tries to bring production and ad-hoc analyses in the same environment to avoid
the use of two different environments for two different analysis types. The benefit of
this approach is the feature to push successful analyses to production work-flows and
similarly move production setups to the drawing board, if there is a need to change
them.

7

2 Background and Related Work

Figure 2.2: Netflix XP Experiment Analysis Flow (Figure from [4])

Figure 2.2 shows the experimental analysis flow for Netflix XP which has three main
parts of design; "Data Collection", "Statistical Analysis" and "Visualization". The data is
first collected, filtered and aggregated after which it passes on to the analysis module.
Here, statistical tests are performed on the data and the results are then passed to the
visualization module. This part can be run as a Jupyter Notebook for an ad-hoc analysis
or the results can pass through the platform API to be displayed in the production
dashboard.

8

2 Background and Related Work

Figure 2.3: Examples of Analysis Flows in Netflix XP (Figure from [4])

The end result of this tool, is a very customizable experimentation platform. It gives
the user the ability to mix and match data sources, statistical tests that are run on these
sources and visualizations used to view those test results, Figure 2.3 shows this. Partly,
this design for experimentation flow is the inspiration for updating ViM through the
project that this thesis describes.

Netflix, being a leading online media service providing company, is one of the most
vocal advocates for the need to enhance productivity through complementing various
technical roles in order to obtain the most value out of them. Every day, Netflix sees 1
trillion events written to its streaming ingestion pipeline [19], upon which 150 thousand
jobs are run. To gain the most insights from the treasure trove of data that they store,
the data team at Netflix have brought together data engineers (responsible for extracting
and transforming data), data scientists (responsible for performing statistical tests and
machine learning tasks on data) and data analysts (responsible for interpreting the

9

2 Background and Related Work

results through visualizations) through a common medium; Jupyter Notebooks (see
Jupyter Notebook in Appendix). At its core, Netflix has developed an ecosystem around
Jupyter Notebooks. Tools developed for services can be run through scripts running on
these notebooks. Interactive forms can query user input and run experiments over and
over again through notebooks and instantly display meaningful visualizations. Data
and tasks flow seamlessly through data pipelines in a well-synchronized dance all the
while being shareable and having the ability to be applied in production once they have
passed the requisite testing.

Figure 2.4: Notebook Ecosystem at Netflix [19]

10

3 Exploring ViM

The ViM platform is a newer iteration of "Online Experiment Driven Adaptation"
(OEDA) [10], with essentially similar characteristics. This section will delve deeper into
the project that this thesis is hoping to augment along with the technologies it uses.

For all intents and purposes ViM considers simulation environments as black-boxes.
The simulation environment that we discuss here and the one that ViM currently
supports is CrowdNav, a traffic management simulator.

3.1 Virtual Mobility World (ViM) Experimentation Platform

The black-box (simulation environment) parts visible to the ViM tool are only its data
providers. The settings for simulations are also sent via the same data provider. This
abstraction makes ViM a very robust experimentation tool. The component diagram
(see Fig 3.1) for ViM shows how the tool is designed and structured.

The frontend "client" consists of two parts. The first part, is a collection of forms
and parameter defining web-pages that are designed statically with HTML, while
their functionality is written completely in Typescript. The second part is, the result
visualization functionality, also written in Typescript.

11

3 Exploring ViM

Figure 3.1: Component Diagram for ViM (Figure from [9] [21])

12

3 Exploring ViM

Figure 3.2: ViM Target Systems List

Figure 3.3: ViM Result Scatter Plot for an Experiment

13

3 Exploring ViM

Figure 3.4: ViM Result Histogram for an Experiment

The client communicates with the backend server via a Representational State Transfer
(REST) Application Programming Interface (API). REST communication is useful owing
to the statelessness of the protocol. The server does not need to store client state
between requests and that means it can focus on providing results requested by the
client.

The server is ViM’s brain and is written in Python. Having received the client’s
request, the server analyses what tests the client has requested and on which simulation
environment. It then arranges for them to be set up on the platform. Once the tests
have been set up (Fig 3.5), the server then constantly communicates with the simulation
environment that was chosen for the tests and starts obtaining the results of the running
simulation in real-time. Alongside, the server starts running the chosen test on the
in-coming simulation data and starts gathering the result for each step (iteration) of
the test. At this point, it is also streaming those results back to the client, which is
continuously pinging the server via REST calls, Figure 3.6 shows this. The client then
displays the results, by plotting them with interactive and meaningful visualizations,
as can be seen in Figures 3.3 and 3.4.

14

3 Exploring ViM

Figure 3.5: ViM Backend Experiment Settings

Figure 3.6: ViM Backend Result

15

3 Exploring ViM

3.1.1 Elasticsearch

Elasticsearch is a distributed, highly scalable open-source search and analytics engine
used for storing, searching and analyzing large amounts of data, including textual,
numerical, structured and unstructured information [6].

Data is stored as JavaScript Object Notation (JSON) documents. While storing, data
is normalized and indexed so that even when it is stored in a distributed storage
set up, Elacticsearch’s ability to run quick text searches enable data fetching to be
extremely fast and responsive. In addition to being fast, Elasticsearch is also resilient.
The distributed data shards are duplicated (for redundancy) in order to provide fault
tolerance in case of hardware failure.

In the ViM project, the server is connected to an Elasticsearch database that keeps
track of, and stores all target system (black-box) configurations that have been defined
within the ViM platform. This database also contains experiment configurations for
experiments that have successfully finished along with their results.

3.2 CrowdNav

CrowdNav is a traffic routing and navigation system built on top of, Simulation of
Urban Mobility (SUMO) using Traffic Control Interface (TraCI).

3.2.1 Simulation of Urban Mobility (SUMO)

Simulation of Urban Mobility (SUMO) is a free and open-source traffic simulation
environment [12] [14], developed by German Aerospace Center - DLR. SUMO supports
the creation and modeling of virtual world maps (road networks, signals, etc.) along
with multimodal traffic including vehicles, public transport and even pedestrians.
Vehicle routing within the simulation [15] follows Dijkstra’s algorithm [22] by default
where map intersections represent nodes and roads represent edges between those
nodes. Routing also supports the A-star (A*) search algorithm [23]. Traffic lights can
be interacted with using timing schedules that can be generated or imported from
pre-existing configuration files. They control which vehicles are allowed to move at
intersections.

16

3 Exploring ViM

Figure 3.7: SUMO by DLR (Figure from [16])

Traffic Control Interface (TraCI)

Traffic Control Interface (TraCI) [17] is a tool that allows interaction with SUMO by
allowing the interacting program to set and retrieve positional data of the simulated
world and its objects. TraCI uses a Transfer Control Protocol (TCP) based architecture
to access SUMO and can engage multiple clients.

Apache Kafka

Kafka, licensed under Apache, is an open-source distributed messaging system that
acts as a streaming platform [13] [1]. It has two main actors; producers and consumers,
and is run as a cluster on one or more servers. Clusters store records under topics.
Producers can publish streams of records to one or more topics, while consumers can
subscribe to one or more topics to read the published records. Kafka can reliably be
used to create real-time data streaming pipelines. In CrowdNav, trip, performance and

17

3 Exploring ViM

routing data is published to Kafka under their respective topics ("CrowdNav-Trips",
"CrowdNav-Performance" and "CrowdNav-Routing") and when a ViM experiment
is running, it opens a consumer to read the data stream from whichever topic was
specified in the experiment analysis.

Figure 3.8: Apache Kafka Structure (Figure from [3])

18

4 System Design

So far, we have gone through the motivation and inspiration behind building this project.
We shall now look into the important decisions that have gone into the architecture of
the system and see how the design molds around the functional and non-functional
requirements.

4.1 Functional Requirements

All functional requirements are recorded from a data scientist’s/analyst’s perspective,
who shall be operating the system.

1. Automatic credential handling: The ViM platform has credential checks in place
in order to authorize a user and issue a token for the working session. Therefore,
the system should handle auto login for the user so that they can focus on their
work.

2. Creating target system: The ViM platform recognizes simulation environments as
target systems within its platform. The user should, therefore, be able to specify
important inputs such as the data providers, variables involved and general
settings of the black-box that ViM is to interact with.

3. Creating experiments: The user should be able to select what type of experiment
they want to run (Factorial ANOVA or T-test). They should also be able to specify
experiment details such as which variables to run the test on, which data provider
to perform the aggregation on, the values for each variable that the experiment is
to be run on and how many samples for each input variable combination are to
be observed.

a) Selecting target system: Each experiment is tied to a target system. The
user should be able to select the target system upon which they would like
to run the experiment, from a list of all defined target systems.

4. Retrieving experiment results: The user should be able to observe the results of
an experiment after selecting it from a list of successful experiments.

19

4 System Design

4.2 Non-Functional Requirements

The non-functional requirements for the project are as follows:

1. Since the system aims to make life easier for the users instead of complicating it,
it should also go a step further and not add any overheads in the installation of
separate packages and supporting software that would hog computer resources.

2. The system shall be robust to enable using it as a stand-alone solution not tied to
the entire project resources (except the ViM server)

3. The system shall hide all complexities from the user and provide a clean, simple
and intuitive interface.

4.3 Architecture

The project is a Jupyter Notebook tool that is developed to act as ViM’s frontend, but
only for important specific functions mentioned in the functional and non-functional
requirements of this chapter. We shall, for the rest of this thesis, refer to the project as
"JupyViM" in order to save time and to establish a clear relationship between the two.
Being written entirely in Python, JupyViM brings homogeneity in the ViM ecosystem,
as the ViM server is also written in Python. Figure 4.1 shows the component diagram
describing how JupyVim integrates in the ViM environment. The REST interface in
JupyViM seamlessly communicates with the REST controller in the ViM server just as
the ViM client does.

20

4 System Design

Figure 4.1: JupyViM Component Diagram

4.3.1 Design Decisions

The two main external libraries used in this project were Ipython Widgets1 and Plotly
Express 2. Having established the work environment for the project to be Jupyter

1https://ipywidgets.readthedocs.io/en/latest/
2https://plotly.com/python/plotly-express/

21

https://ipywidgets.readthedocs.io/en/latest/
https://plotly.com/python/plotly-express/

4 System Design

Notebook, the only library that offered widget creation and event trigger support was
Ipython Widgets. The library enables a low-level interaction approach, where users can
define, style and create their own widgets based on a handful of starting widgets and
containers. Ipython Widgets also enables users to define and tie event handlers to most
of its basic widgets like buttons, drop-down menus, radio buttons, etc. and the fact
that the library is written mostly in Python and JavaScript, gives users the freedom to
interact with the backend Jupyter JavaScript functions and HTML page design using
Python syntax which is natively more familiar to them.

While there were many choices for plotting and visualization in JupyViM, the most
elegant solution was presented by Plotly Express. Plotly provides interactive visu-
alizations where a user can comb through individual data points to find their exact
coordinate values. Providing data to the plotting functions is extremely easy as it
accepts DataFrames (collection of records in a table structure), while styling is also
quite straight forward where the user has to bundle up all styling commands in a
dictionary and pass it as an argument. Many other data visualization libraries were
either too basic in function or were too complicated and verbose when it came to
defining plot structures.

4.3.2 Building Blocks

JupyViM consists of several parts that come together to act as a model-view-controller
(MVC) application. Figure 4.2 shows what constitutes an MVC application. The
user interacts with the controller, using the controls provided in the application. The
controller, relays user input to the model. The model is responsible for updating the
view in the application to show the user the result of their input. This entire cycle
continues if the user interacts with the application again.

22

4 System Design

Figure 4.2: Model-View-Controller (MVC) Diagram

Forms

Forms are the backbone for requesting user input. Each form has to be designed sepa-
rately and then joined with the main form container (basically an empty placeholder).
Depending on their functionality and the option that the user selects, these forms need
to be switched. Figure 4.3 shows a sample form for creating a 3HCF (See Three-Hump
Camel Function in Appendix) target system. An important point to note here is that
once the form is filled and is about to be sent to the server, the field names of each
text-box are used to pull the information entered in them. Essentially, all elements in
a form are independent elements that visually make up a single entity. Forms could
be considered as the controller structure from the MVC framework that hides the
complexities of the entire application and provides a clean interface.

Class Structures

Classes act as templates to avoid cluttering and to maximize the re-usability of code.
Forms are viewed as objects of classes. Before sending the contents of an active form
to the ViM server, the form content is pulled and plugged into the class structure that
the form is an object member of. Classes in JupyViM can be thought of, purely, as
advanced data structures, in that they just hold the data passed into them and not really
perform any specific operations on that data. One very helpful function that these class
structures provide is that, in Python, each class object can be cast into a dictionary
object. This is very fortunate since data communication between JupyViM and the ViM
server is through JSON packets (essentially dictionary structures). Figure 4.4 and Figure

23

4 System Design

Figure 4.3: JupyViM Sample Target Form

4.5 show the class diagrams for supported black-box structure target systems, while
Figure 4.6 and Figure 4.7 show the class diagrams for supported black-box experiment
structures.

24

4 System Design

Figure 4.4: Class-Diagram For HTTP 3HCF Target System In JupyViM

25

4 System Design

Figure 4.5: Class-Diagram For CrowdNav Target System In JupyViM

26

4 System Design

Figure 4.6: Class-Diagram For HTTP 3HCF Experiments In JupyViM

27

4 System Design

Figure 4.7: Class-Diagram For CrowdNav Experiments In JupyViM

28

4 System Design

REST API

The REST API is a communication layer that joins JupyViM and the ViM server together
by allowing them to communicate back and forth. It contains all the essential call
sequences that initiate server responses from ViM including the default user login (as
ViM implements a user-token based session, it is imperative to first register the user
to obtain the token before any further operations take place). Depending on whether
the current initiated operation expects a list or result of some sort or whether a form
submission is to be made, JupyVim sends GET or POST requests, respectively. Figure
4.8 shows a sequence diagram that explains how the calls from the REST API are
forwarded to the server and the responses that it returns.

29

4 System Design

Figure 4.8: JupyViM Sequence-Diagram

30

4 System Design

Application

The application is where it all comes together. Since the view is dynamic, the forms are
joined to their placeholder containers on-the-fly depending on user input. Once they are
filled and the submission event has been triggered, the details in the forms are mapped
to the objects of their respective classes. Object dictionaries are then cast into JSON
packets and sent to the server via REST calls (according to user input —depending on
target system or experiment creation). The application also has a result viewing option,
where it first queries the server for all experiments that have successfully ended. As
soon as the user selects an experiment, the plotting functions with-in the application
un-pack the data packets received from the server and proceed to plot them. The model
and view parts of the MVC are collected and managed by the application component.
The sequence diagram in Figure 4.8 shows this, while Figures 4.9 and Figure 4.10 show
the project file structure and how they are linked with each other.

Figure 4.9: JupyViM Project Structure

31

4 System Design

Figure 4.10: JupyViM Deployment Diagram

4.3.3 Features

The features implemented in JupyViM are as follows:

1. Automatic credential handling: Since the ViM platform works on a token-session
approach, it was imperative to bypass the entire step in order to not hinder the
analyst from carrying out their experiments. The way this works is by checking if
a default user (pre-defined within JupyViM) is already in the system bypassing
their credentials to the ViM server. If the server does not return a token, that
would mean the default user is not registered with ViM. Therefore, the default
user would have to be registered and then the log-in process would have to be
repeated. If, however, a token is returned the first time around, then the JupyViM
notebook loads up the application. This functionality is neatly wrapped up in a
single function call that runs every time a new instance of JupyViM is instantiated

2. Target System Creation: If a user selects the option to create a target system,
they are presented with a drop-down list of pre-existing target system templates.
Selecting a template, loads its respective target system form. The user would
then need to fill out the information as they see fit. Once they submit the form
using the "Send Target System" button, all inserted information is mapped to
class structures relevant to the target system type that they selected from the
drop-down initially. This information is then mapped into a JSON packet that is
sent over to the ViM server. If all configuration specifications are met, the target
system is created.

32

4 System Design

3. Experiment Creation: The experiment tab initially only shows a "Refresh Target
Systems" button and an empty drop-down list. Once the user presses the button,
a REST call will fetch all available target systems. Upon selecting any target
system, the user will find an experiment form associated with that target system
appear. The user would then need to fill out the missing information and choose
to either edit the information already present or leave it as is. When the user
presses the "Send Experiment" button, the information in the forms is pulled
from their fields and used to create an experiment object. The experiment object
is then cast into a JSON packet and sent to the ViM server. If all configuration
specifications are met, the experiment is created.

4. Retrieve Experiment Results: The results tab contains a "Refresh Experiments"
button which, once pressed, will populate the experiment drop-down list. The
user will then have to select an experiment and its results will be displayed right
underneath the cell.

For features 2, 3 and 4, the user may choose to keep on carrying the function
out without refreshing anything. They may also choose to momentarily perform
another function and then come back to the current operation. Either way it will
work as expected because of asynchronous calls to the server.

In this chapter, we have seen, in detail, the architecture of the devised solution
(JupyViM), based on the functional and non-functional requirements of the project. We
have seen how the project starts from its basic building blocks, like forms and classes,
and proceeds to obtain user input to assemble a payload packet for the ViM server. We
have also discussed how the communication, between JupyViM and the ViM server,
takes place and how JupyViM eventually receives experiment results and plots them in
the notebook application. In the next chapter, we shall go over the evaluation process
of the use-cases of JupyViM along with a benchmarking of the communication delays
between JupyViM and the ViM server to assess JupyViM’s performance.

33

5 Evaluation

This chapter shall focus on the operation and evaluation of the JupyViM project through
its use-cases. Figure 5.1 shows the use-case diagram for the project. The user can
create target systems, set up experiments and retrieve results for experiments that have
successfully finished running.

Figure 5.1: JupyViM Use-Case Diagram

5.1 Features

Each use-case is implemented as a standalone feature in JupyViM with no interdepen-
dency among them.

34

5 Evaluation

5.1.1 Creating Target Systems

The creation of a target system is basically the definition of a black-box simulation
environment for ViM to recognize and communicate with. The "Target System" tab (Fig
5.2) in JupyVim, initially, contains a drop-down menu (Fig 5.3) with the two supported
simulation frameworks, the Three-Hump Camel Function (Black-Box Function —see
Three-Hump Camel Function in the Appendix) and CrowdNav. We will, however, only
discuss CrowdNav as it is the main simulation environment under investigation and is
a lot more interesting to observe.

35

5 Evaluation

Figure 5.2: JupyViM Target System Tab

36

5 Evaluation

Figure 5.3: JupyViM Target System Drop-Down Options

37

5 Evaluation

To see the target system forms, the user needs to select either of the supported
simulation environments which will display the respective target system definition
forms associated with that option. If the user selects CrowdNav, they will see a form
shown by Figures 5.4 and 5.5 and will need to go through the following steps:

• Once the form appears the user will have to give the target system a name in
the "cntargetName" field. This will help to uniquely identify the target system
when using it later on. The user may also choose to give a description in the
"crowdnavtargetDESCR" field.

• Most other text boxes should ideally be left to their default settings. However,
the most important text-box after the target system name is the "Kafka URI"
field. This needs to be changed based on what the default Kafka URI of the
system, JupyViM is running on, is. For example in Fig 5.4, this field is defined as
’localhost:9092’, and that is because Kafka is locally installed on the machine that
JupyViM is running on. If the user is using a Docker image for Kafka, this could
possibly well be ’kafka:9092’ or any other string that it was configured to run on.

• The next part that a user needs to define is the data provider section. The user
may choose a single data provider by checking the check-boxes next to the names
of the data providers (e.g. in Fig 5.4 only the "Trips" data provider is selected) or
they may choose a combination or all of them.

• After checking the required data provider check-boxes, the user will need to press
the orange "Generate Primary Data Providers" button. Directly below the button,
the user will then see the options that they selected from the previous step appear
in a selection-box. They would then need to click on one of the data providers in
order to declare that provider as the primary data provider. In Figure 5.4, "trips"
is the only data provider and is selected as the primary data provider by the user.

• The user then needs to finally select the variables that their target system would
contain. These variables affect how the simulation runs. Figure 5.5 shows that only
the "Route Randomization" and "Exploration Percentage" variables are selected
for the target system being defined.

• Once pressed, the "Send Target System Configuration" button will send the JSON
packet containing the target system details to create a new target system, through
a POST call in the REST API.

38

5 Evaluation

Figure 5.4: JupyViM CrowdNav Target System Creation-1

Figure 5.5: JupyViM CrowdNav Target System Creation-2

39

5 Evaluation

Figure 5.6: ViM Showing Newly Created Target Systems

Figure 5.6 shows the new target system creation verified by ViM.

5.1.2 Creating Experiments

The "Experiment" tab shows that the form initially only contains a "Refresh Target
System" button and a drop-down menu which is empty, as can be seen in Figure 5.7. In
order to populate the drop-down, the user needs to press the "Refresh Target System"
button. Doing so results in a populated target system list (see Fig 5.8).

40

5 Evaluation

Figure 5.7: JupyViM Experiment Tab

Figure 5.8: JupyViM Experiment Populated Target System List

The user would then need to select a target system from the drop-down list. If the
target system that the user selects is based on the CrowdNav simulation environment,

41

5 Evaluation

the user will see an experiment form structure similar to Figure 5.9. After the form
appears, the user will need to follow the following steps:

• The user will first need to assign the experiment a name in the "Experiment
Name" field. This will help to identify the experiment later on. The user can then
give a description of the experiment if they so wish, but this is not obligatory.

• The user can then select the type of test they wish to run. The current test options
supported are Factorial ANOVA and T-test. Figure 5.9 shows the Factorial test
option selected by the user

• Afterwards, the user needs to select an aggregation function that will be per-
formed on the primary data provider. The options include maximum, minimum,
average, sum, count and some percentile values. In case the primary data provider
is "Trips", there is a further selection that needs to be made on the three attributes
of this data provider. Figure 5.9 shows the aggregate function set to ’average’
and the ’overhead’ metric selected among the three trip metrics, since the target
system selected for this experiment had its primary data provider set to "Trips".

• Next, the user needs to provide testing values for the variables displayed for
the experiment. The variable options displayed might change depending on the
variables that the target system supports, which in this case are "Exploration
Percentage" and "Route Randomization" as can be seen in Figure 5.9

• The user then needs to set the sample size for the experiment in the "Iterations"
field and the ANOVA threshold in the "Threshold" field. Default options for both
these parameters are used if the user does not change them.

• Once pressed, the "Send Experiment" button will send the JSON packet containing
the experiment configuration to create and start a new experiment, using a POST
request from the REST API.

42

5 Evaluation

Figure 5.9: JupyViM CrowdNav Experiment Form

Figure 5.10: ViM Showing Newly Created Experiments

Figure 5.10 shows the new target system creation verified by ViM.

5.1.3 Retrieving Results

Results can be retrieved for experiments that have successfully finished running. When
the user first goes over to the results cell, they will see a form similar to Figure 5.11.

43

5 Evaluation

Figure 5.11: JupyViM Results Cell

The user will need to click the "Refresh Experiments" button to fetch the experiment
list. Once they do so, the drop-down menu will be populated with experiments that
successfully finished. This can be seen in Figure 5.12.

Figure 5.12: JupyViM Results —Drop-down Showing Updated Experiment List

Selecting any of the experiments from the drop-down will fetch the results of that
particular experiment and display them immediately, including plotting of the graphs
and figures. Figures 5.13 to 5.17 show the outputs for the experiment we created in the
"Create Experiments" sub-section of this chapter.

44

5 Evaluation

Figure 5.13: JupyViM CN Experiment Results —Stage Table

The scatter plot in Figure 5.14 shows the time-series of the "overhead" metric against
the time-stamp that it occurred on along with the 95th percentile threshold line drawn
over the plot.

Figure 5.14: JupyViM CN Experiment Results —Scatter Plot

45

5 Evaluation

Figure 5.15: JupyViM CN Experiment Results —Histogram

Figure 5.16: JupyViM CN Experiment Results —QQ-Plot

46

5 Evaluation

Figure 5.17: JupyViM CN Experiment Results —Box-Plot

5.1.4 Run-time Analysis

In order to assess the responsiveness of JupyViM and its communication with the ViM
server, the use-cases of JupyViM were timed and charted. The purpose of these timed
experiments was to find out if the sample size or the number of variables affected the
time it took for JupyViM to send out a request to the ViM server and receive a response.
All tests were carried out on the CrowdNav simulation platform and the primary data
provider was set to "Trips" in all test cases to act as a constant.

• Target System Creation: CrowdNav supports a total of 7 variables that influence
how the simulation is carried out. For this test, the number of variables defined
within the target system configuration was varied and timed to find out if they
caused any delays in the communication between JupyViM and the ViM server.
Table 5.1 and Figure 5.18 show the results. From the line chart, it is quite evident
that there is a slight anomaly at the 2 variable target system creation point which
takes about 50% more time than all the other target system combination’s average
response time. All other target systems fall in the range of about five-tenths of
a second. This means the communication delay between JupyViM and the ViM
server is not at all significant.

47

5 Evaluation

Table 5.1: Timed Target System Creation

No. of CrowdNav variables Round trip request time (seconds)

1 0.304778
2 0.855585
3 0.296169
4 0.209463
5 0.35548
6 0.162918
7 0.244335

Figure 5.18: Timed Target System Creation —Line Chart

• Experiment Creation: Experiment creation has been dealt with in two approaches.
The first approach is where the sample size of the experiment variables was kept
constant at 10 but the number of variables was varied. The second approach is
where the number of variables was kept constant at 2 and the sample size was
varied. It is also important to note that in all iterations of both the approaches, the

48

5 Evaluation

test used was Factorial ANOVA and all tests were run on target systems defined
in the previous (Target System Creation) step.

– Constant Sample Size and Varied Number of Variables: The first iteration starts
with 2 variables instead of 1 because Factorial ANOVA needs at least 2
variables to run. Figure 5.19 shows that the first point, experiment definition
with 2 variables, is anomalous to the trend. All other experiments fall within
the range of a tenth of a second of each other, which shows that varying the
number of variables used in the experiment definition does not necessarily
have any effect on the response time between JupyViM and the ViM server.

Table 5.2: Experiment Creation Fixed Sample Size

Experiment No. No. of Varying variables Round trip request time (seconds)

1 2 0.343014
2 3 0.13274
3 4 0.174219
4 5 0.156394
5 6 0.155563
6 7 0.231348

49

5 Evaluation

Figure 5.19: Experiment Creation Fixed Sample Size —Line Chart

– Constant Variable Size and Varied Sample Size: Figure 5.20 shows that all varied
sample sizes have response times between JupyViM and the ViM server that
fall within the range of roughly two-hundredths of a second. This means
varying the sample size number in the definition of an experiment has nearly
no lagging effect on JupyViM, making its communication with the ViM
server quite instantaneous.

Table 5.3: Experiment Creation Fixed Number of Variables

Experiment No. Sample size Round trip request time (seconds)

1 10 0.07733
2 20 0.066738
3 30 0.064242
4 40 0.075621
5 50 0.057078

50

5 Evaluation

Figure 5.20: Experiment Creation Fixed Number of Variables —Line Chart

All experiments were carried out on a Core-i5 machine clocked at 2.30 GHz,
with 8GB of RAM, running Ubuntu 18.04.3 LTS. It is also important to note
that the sample sizes were not extremely high because our aim is to measure
the communication between JupyViM and the ViM server, not to measure the
performance of the ViM server. Also the testing hardware is a fairly average
machine and CrowdNav and the ViM server are extremely resource-intensive so
to serve our purpose of analysis, the figures provided prove to be sufficient.

• Result Retrieval: The current prototype of JupyViM only supports retrieving
results for experiments that have successfully finished running. For this timing
experiment, the results for the experiments created in the "Constant Variable Size
and Varied Sample Size" section are fetched. Figure 5.21 shows that all the results
were returned by the ViM server within, the range of, roughly a hundredth of
a second. This means that no matter how large a successful experiment is, the
results are served to JupyViM almost instantaneously after querying for them
from the ViM server.

51

5 Evaluation

Table 5.4: Result Retrieval Fixed Number of Variables

Experiment No. Sample size Round trip request time (seconds)

1 10 0.02254
2 20 0.02648
3 30 0.02628
4 40 0.024727
5 50 0.032485

Figure 5.21: Result Retrieval Fixed Number of Variables —Line Chart

The analysis, of the results for the tests carried out to measure the idle time between
JupyViM’s request and the ViM server’s response, shows that their communication
is fairly instantaneous. Neither the number of configuration parameters nor the
size of the result payload cause any significant transmission delays between the two
communicating entities. This makes JupyViM a suitable alternative to the ViM client.

52

6 Conclusion

Throughout this thesis, we have investigated the idea of an augmentation to the ViM
experimentation platform’s client application. To that end, we have designed and
implemented JupyViM. We have seen ViM’s client being limiting in terms of providing
users with a familiar environment and we have seen JupyViM trying to address that
specific issue by leveraging technologies like Python and Jupyter Notebooks to provide
a more accessible environment to data scientists. Through this effort, JupyViM aims to
make the workings of the ViM client more open and approachable by its users in order
to make the process of experimentation and analysis smoother and more productive.

Contributions by JupyViM

• JupyViM is designed to carry out the core functions that the ViM client offers.
However, owing to demands of flexibility, JupyViM does so in an environment
that is familiar to data scientists; in a language that is also familiar to them,
creating avenues that were up until this point, locked.

• JupyViM tries to bridge the gap between fast prototyping and a decent use-able
tool. While accomplishing this task, it makes multi-tasking just as open as the ViM
client by keeping, the definition part of target systems, the creation of experiments
and the retrieval of results all de-coupled, to gain the benefit of the asynchronous
server that ViM provides.

• JupyViM also keeps the option of customization and future support open by
defining a structure of form creation and class support in its architecture that
makes all elements of the notebook project independent. This is possible because
JupyViM is independent of the ViM client and does not use any of its services
when communicating with the ViM server.

Being modular, fast and intuitive, JupyViM focuses on the functionalities of ViM,
intending to improve the process that would eventually increase the productivity of the
analysts using the tool.

As is the case with every tool, JupyViM is also subject to some limitations.

53

6 Conclusion

1. In it is current state, JupyViM only has implemented a single default user for
logging into the ViM platform to bypass the security feature of ViM during its
user-token sessions. Although this feature is added by design to not spend time
in logging into the ViM platform, if future iterations of ViM were to limit and
restrict user access (as is not the case for now), then JupyViM would only be
able to display experiment results for experiments that this default user creates,
instead of all of them. This of course is easily fixable by adding user login support
but for now it remains a limiting factor in the trade-off between quick access and
security.

2. Jupyter Notebooks display the result of code executed in a cell, underneath that
cell. The forms and experiment results displayed to the user, are basically the
outputs of code that is executed to invoke them. The ViM platform has a feature
that allows it to show experimental results for experiments that are still running.
The results are updated periodically. In its current iteration, JupyViM does not
support the displaying of results for experiments that are still running. This
is because continuous updating of incoming data points requires the current
output to be cleared and then re-drawn upon. This essentially also wipes out
the form structure, which means that to display live experiment results, the user
would only be able to view one experiment’s results. In a design-functionality
compromise, this feature was omitted for the current prototype.

3. Another important point to note is that JupyViM is only an alternative to the
ViM client, not the ViM server. The functionality that JupyViM provides is
dependent on the features that the ViM server supports. Adding support for
newer simulation environments on JupyViM will not enable them unless the ViM
server also supports them.

6.1 Future Possibilities

To improve the current JupyViM prototype, one should first look at improving its
limitations. The default user limitation is probably not a very urgent change because the
ViM server still does not partition user spaces. The matter of showing live experiment
results, however, could be prioritized. One possible solution to this problem could
be to separate the displaying of results into two separate modules, one for presenting
all successful experiments and the other for showing live experiments. These would
require separate cell executions in the notebook. The live experimentation module
could be tied to the feature that starts a new experiment within JupyViM and then
streams the results of the experiment or continuously updates the results by drawing

54

6 Conclusion

over the live experimentation cell.

Since JupyViM is written entirely in Python, future works could include support
for adding newer simulation platforms. Creating query forms and class structures,
modeled after existing ones, for target systems and experiments, would achieve this.
However, for JupyViM to support the addition of new simulation systems, the ViM
server would also need to be updated.

In its process of retrieving and handling results, JupyViM un-packs the JSON payloads
that contain result data and creates robust data frames out of them. These data frames
are used to create visuals for plotting graphs for the user. Depending on future support
of newer simulation platforms, another possible direction for carrying JupyViM forward
could be to utilize these data frames for creating newer, more meaningful visuals.

55

7 Appendix

7.1 Jupyter Notebook

Jupyter Notebook [11] is a web-based interactive application based on IPython (com-
mand shell for programming languages - primarily python) [24] and supports parallel
computing by spinning a new task every time a new running notebook is created.
Jupyter follows the concept of compartmentalizing a source code file into smaller
manageable parts (called cells) that can be run independently and are stored in memory.
The output for each independent cell is tied to the code block, so running the code
displays the output right underneath it. It also provides the ability to share runnable
notebook files from one machine to another (irrespective of the operating system),
provided that the destination machine also has an interpreter (kernel) for the lan-
guage that the notebook was written in e.g a python notebook would require a python
interpreter installed. In addition, one can use Markdown to note down important
static information (like running instructions, questions, future ideas, etc.) to make the
notebook a nice all-in-one project prototyping and documentation tool

Figure 7.1: Sample Jupyter Notebook (Figure from [11])

56

7 Appendix

7.2 Three-Hump Camel Function

A common method of testing optimization algorithms in applied mathematics, is
through the use of test-functions. One such function is the bi-variate, non-convex
Three-Hump Camel Function (3HCF [20]):

f (x1, x2) = 2x2
1 − 1.05x4

1 +
x6

1
6

+ x1x2 + x2
2

Being continuous, the function can take any domain as input. However, the recom-
mended domain is: x1, x2 ∈ [−5, 5] The global minimum for this function f (x1, x2) = 0
exists at (x1, x2) = (0, 0).

In ViM, the Three-Hump Camel Function acts as a simulation environment that
is used to test the installation of the ViM project. This function is incorporated in a
separate server, but it is bundled within the ViM project for easy testing.

Figure 7.2: Three-Hump Camel Function (3HCF) (Figure from [20])

57

List of Figures

2.1 Tempe analysis notebook . 7
2.2 Netflix XP Experiment Flow . 8
2.3 Netflix XP Experiment Flow Examples . 9
2.4 Notebooks @Netflix . 10

3.1 ViM Component Diagram . 12
3.2 ViM Target System . 13
3.3 ViM Result Scatter Plot . 13
3.4 ViM Result Histogram . 14
3.5 ViM Backend Settings . 15
3.6 ViM Backend Result . 15
3.7 SUMO . 17
3.8 Apache Kafka . 18

4.1 JupyViM Component Diagram . 21
4.2 JupyViM MVC . 23
4.3 JupyViM Target Form . 24
4.4 JupyViM HTTP Target Class . 25
4.5 JupyViM CrowdNav Target Class . 26
4.6 JupyViM HTTP 3HCF Experiment Class 27
4.7 JupyViM CrowdNav Experiment Class 28
4.8 JupyViM Sequence Diagram . 30
4.9 JupyViM project Structure . 31
4.10 JupyViM deployment diagram . 32

5.1 JupyViM use-case . 34
5.2 JupyViM Target System . 36
5.3 JupyViM Target System DD Options . 37
5.4 JupyViM CN Target System . 39
5.5 JupyViM CN Target System2 . 39
5.6 ViM TS . 40
5.7 JupyViM Exp . 41
5.8 JupyViM Exp dd . 41

58

List of Figures

5.9 JupyViM CN Exp . 43
5.10 ViM New Exp . 43
5.11 JupyViM Results . 44
5.12 JupyViM Results dd . 44
5.13 JupyViM CN results1 . 45
5.14 JupyViM CN results2 . 45
5.15 JupyViM CN results3 . 46
5.16 JupyViM CN results4 . 46
5.17 JupyViM CN results5 . 47
5.18 JupyViM time analysis ts . 48
5.19 JupyViM-Exp-fixed-samples . 50
5.20 JupyViM-Exp-fixed-variables . 51
5.21 JupyViM results-fixed-variables . 52

7.1 Jupyter Notebook . 56
7.2 3 Hump Camel Function . 57

59

List of Tables

5.1 TS-creation . 48
5.2 Exp-fixed-samples . 49
5.3 Exp-fixed-variables . 50
5.4 results-fixed-variables . 52

60

Bibliography

[1] Apache. https://kafka.apache.org/intro. Accessed on 2020-03-20.

[2] Z. D. BAYERN. Virtual Mobility World (ViM). https : / / vim - project . org /
project/. Accessed on 2020-03-20.

[3] C. B. 4. Ch.ko123 - Own work. https://commons.wikimedia.org/w/index.php?
curid=59871096. Accessed on 2020-03-20.

[4] N. Diamantopoulos, J. Wong, D. I. Mattos, I. Gerostathopoulos, M. Wardrop,
T. Mao, and C. McFarland. “Engineering for a Science-Centric Experimentation
Platform.” In: arXiv preprint arXiv:1910.03878 (2019).

[5] T. Economist. The world’s most valuable resource is no longer oil, but data. https:
//www.economist.com/leaders/2017/05/06/the- worlds- most- valuable-
resource-is-no-longer-oil-but-data. Accessed on 2020-03-20. May 2017.

[6] Elastic. https://www.elastic.co/what-is/elasticsearch. Accessed on 2020-
03-20.

[7] A. Fabijan, P. Dmitriev, H. H. Olsson, and J. Bosch. “The evolution of continuous
experimentation in software product development: from data to a data-driven
organization at scale.” In: 2017 IEEE/ACM 39th International Conference on Software
Engineering (ICSE). IEEE. 2017, pp. 770–780.

[8] D. Fisher, B. Chandramouli, R. DeLine, J. Goldstein, A. Aron, M. Barnett, J. C.
Platt, J. F. Terwilliger, and J. Wernsing. “Tempe: an interactive data science
environment for exploration of temporal and streaming data.” In: Tech. Rep.
MSR-TR-2014–148 (2014).

[9] I. Gerostathopoulos. https://github.com/iliasger/OEDA. Accessed on 2020-03-
20.

[10] I. Gerostathopoulos, A. N. Uysal, C. Prehofer, and T. Bures. “A tool for on-
line experiment-driven adaptation.” In: 2018 IEEE 3rd International Workshops on
Foundations and Applications of Self* Systems (FAS* W). IEEE. 2018, pp. 100–105.

[11] Jupyter. https://jupyter.org/. Accessed on 2020-03-20.

61

https://kafka.apache.org/intro
https://vim-project.org/project/
https://vim-project.org/project/
https://commons.wikimedia.org/w/index.php?curid=59871096
https://commons.wikimedia.org/w/index.php?curid=59871096
https://www.economist.com/leaders/2017/05/06/the-worlds-most-valuable-resource-is-no-longer-oil-but-data
https://www.economist.com/leaders/2017/05/06/the-worlds-most-valuable-resource-is-no-longer-oil-but-data
https://www.economist.com/leaders/2017/05/06/the-worlds-most-valuable-resource-is-no-longer-oil-but-data
https://www.elastic.co/what-is/elasticsearch
https://github.com/iliasger/OEDA
https://jupyter.org/

Bibliography

[12] D. Krajzewicz, G. Hertkorn, C. Rössel, and P. Wagner. “SUMO (Simulation of
Urban MObility)-an open-source traffic simulation.” In: Proceedings of the 4th
middle East Symposium on Simulation and Modelling (MESM20002). 2002, pp. 183–
187.

[13] J. Kreps, N. Narkhede, J. Rao, et al. “Kafka: A distributed messaging system for
log processing.” In: Proceedings of the NetDB. Vol. 11. 2011, pp. 1–7.

[14] G. A. C. .-.-. D. Z. für Luft- und Raumfahrt e.V. https://www.dlr.de/ts/en/
desktopdefault.aspx/tabid-9883/16931_read-41000/. Accessed on 2020-03-
20.

[15] G. A. C. .-.-. D. Z. für Luft- und Raumfahrt e.V. https://sumo.dlr.de/docs/
Simulation/Routing.html. Accessed on 2020-03-20.

[16] G. A. C. .-.-. D. Z. für Luft- und Raumfahrt e.V. https://sumo.dlr.de/docs/
Screenshots.html. Accessed on 2020-03-20.

[17] G. A. C. .-.-. D. Z. für Luft- und Raumfahrt e.V. https://sumo.dlr.de/docs/
TraCI.html. Accessed on 2020-03-20.

[18] MICROSOFT. https://www.typescriptlang.org/. Accessed on 2020-03-20.

[19] N. TechBlog. https://netflixtechblog.com/notebook-innovation-591ee3221233.
Accessed on 2020-03-20.

[20] S. F. University. https://www.sfu.ca/~ssurjano/camel3.html. Accessed on
2020-03-20.

[21] A. Uysal. https://github.com/alinaciuysal/OEDA. Accessed on 2020-03-20.

[22] Wikipedia. https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm. Ac-
cessed on 2020-03-20.

[23] Wikipedia. https://en.wikipedia.org/wiki/A*_search_algorithm. Accessed
on 2020-03-20.

[24] Wikipedia. https://en.wikipedia.org/wiki/IPython. Accessed on 2020-03-20.

[25] G. Wilson. “Software carpentry: getting scientists to write better code by making
them more productive.” In: Computing in Science & Engineering 8.6 (2006), pp. 66–
69.

62

https://www.dlr.de/ts/en/desktopdefault.aspx/tabid-9883/16931_read-41000/
https://www.dlr.de/ts/en/desktopdefault.aspx/tabid-9883/16931_read-41000/
https://sumo.dlr.de/docs/Simulation/Routing.html
https://sumo.dlr.de/docs/Simulation/Routing.html
https://sumo.dlr.de/docs/Screenshots.html
https://sumo.dlr.de/docs/Screenshots.html
https://sumo.dlr.de/docs/TraCI.html
https://sumo.dlr.de/docs/TraCI.html
https://www.typescriptlang.org/
https://netflixtechblog.com/notebook-innovation-591ee3221233
https://www.sfu.ca/~ssurjano/camel3.html
https://github.com/alinaciuysal/OEDA
https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm
https://en.wikipedia.org/wiki/A*_search_algorithm
https://en.wikipedia.org/wiki/IPython

	Acknowledgments
	Abstract
	Contents
	Introduction
	Problem and Motivation
	Goal
	Overview of Approach and Contributions
	Road-map of the Thesis

	Background and Related Work
	Project Background
	Related Work
	Tempe
	Netflix XP

	Exploring ViM
	Virtual Mobility World (ViM) Experimentation Platform
	Elasticsearch

	CrowdNav
	Simulation of Urban Mobility (SUMO)

	System Design
	Functional Requirements
	Non-Functional Requirements
	Architecture
	Design Decisions
	Building Blocks
	Features

	Evaluation
	Features
	Creating Target Systems
	Creating Experiments
	Retrieving Results
	Run-time Analysis

	Conclusion
	Future Possibilities

	Appendix
	Jupyter Notebook
	Three-Hump Camel Function

	List of Figures
	List of Tables
	Bibliography

