
DEPARTMENT OF INFORMATICS
TECHNISCHE UNIVERSITÄT MÜNCHEN

Bachelor’s Thesis in Informatics

Smart Building Control with XMPP for IoT

Fabian Sauter

DEPARTMENT OF INFORMATICS
TECHNISCHE UNIVERSITÄT MÜNCHEN

Bachelor’s Thesis in Informatics

Smart Building Control with XMPP for IoT

Smart Building Verwaltung mit XMPP für
IoT

Author: Fabian Sauter
Supervisor: Prof. Dr.-Ing. Jörg Ott
Advisor: M.Sc. Teemu Kärkkäinen
Submission Date: 13.12.2019

I confirm that this bachelor’s thesis in informatics is my own work and I have docu-
mented all sources and material used.

Munich, 13.12.2019 Fabian Sauter

Abstract

Traditionally, XMPP was never a solution for interacting or controlling home-user IoT
devices. Until now, a full TCP/IP stack introduced too much overhead compared to the
available processing power on small IoT devices. Even in the professional space XMPP,
in combination with IoT, was never widely used since the existing protocol extension
(XEP) is to complex to implement on such low-power devices. However, we try to
change this. With our approach, even the smallest of all IoT devices (e.g., light bulbs)
can be controlled using XMPP. Our approach focuses on using only already existing
extensions like Publish-Subscribe (XEP-0060) or XEP-0004 Data Forms as possible
to reduce time spent implementing duplicate features that already exist in another
form. Also, we made sure to keep the overall design as simple as possible, forcing
developers to keep their applications as simple as possible for home-users to use. Our
result demonstrates how simple it can be to use and implement an XMPP extension
targeting IoT devices. In a broader sense, this thesis introduces a basic protocol with
all the requirements satisfied for a working extension to XMPP that allows home-
users to interact with their IoT devices. Later, this basic protocol can be extended to
include features like access control or integrating support for IFTTT, Alexa and Google
Assistant.

iii

Contents

Abstract iii

1 Introduction 1

2 Background 2
2.1 Internet of Things . 2

2.1.1 Smart Home . 2
2.1.2 Data Processing . 3

2.2 XMPP . 4
2.2.1 Jabber-ID . 5
2.2.2 XMPP Sessions . 5

2.3 Wireless Technologies . 8
2.3.1 Bluetooth Low Energy . 8
2.3.2 Wi-Fi . 10
2.3.3 ZigBee . 10

3 System Design 11
3.1 Application Area . 13

3.1.1 Hub-Based Devices . 13
3.1.2 Standalone Devices . 14

3.2 XMPP Server . 14
3.2.1 Public XMPP Server . 15
3.2.2 Private XMPP Server . 15
3.2.3 Registration . 17
3.2.4 Data Access . 18

3.3 Summary . 19

4 Protocol Design 21
4.1 Existing Solutions . 21
4.2 Building Blocks . 23

4.2.1 XEP-0077: In-Band Registration 23
4.2.2 XEP-0004: Data Forms . 23
4.2.3 XEP-0336: Data Forms - Dynamic Forms 24

iv

Contents

4.2.4 XEP-0060: Publish-Subscribe . 25
4.2.5 XEP-0223: Persistent Storage of Private Data via PubSub 25

4.3 Registration . 26
4.4 Data Access . 31

4.4.1 Publishing Data from an IoT Device 31
4.4.2 Subscribing to Data from a Client 34
4.4.3 Text Based Data Access . 36
4.4.4 The UI node . 36
4.4.5 Publishing Updated Values . 38

4.5 Summary . 39

5 Implementation 41
5.1 The IoT Device . 41

5.1.1 The ESP32 . 41
5.1.2 Hardware . 41
5.1.3 The Development Framework . 43
5.1.4 XMPP and the ESP32 . 43

5.2 The XMPP Client . 44
5.2.1 UWPX . 44
5.2.2 Registering IoT Devices . 44

5.3 Summary . 48

6 Evaluation 50
6.1 Use Case . 50

6.1.1 The Setup Process . 50
6.1.2 Reuse of Existing Protocol Mechanisms 52

6.2 Performance . 53

7 Conclusion 57

List of Figures 58

List of Tables 59

Bibliography 60

v

1 Introduction

In the last few years, we have seen a drastic increase in how many IoT devices are
connected to the world wide web. Therefore the need arose, how home-users can
interact with those in a standardized way using XMPP. Previous solutions are either
to complex or mainly focus on large scale IoT installations. These then only mention
home users in a side node.

However, minimal effort has been invested in giving home-users an option to control
their IoT devices using their already installed XMPP chat clients.

The purpose of this thesis is to develop a basic XMPP extension protocol (XEP),
which allows home-users to interact with their IoT devices purely by using their already
installed XMPP chat clients. All of this without having to go through the trouble of
having to interact with IoT devices in a purely text-based manner. Additionally, we
want to keep the interface for the home-user as simple as possible to use and use as
may existing building blocks (XEPs) as possible.

Therefore this thesis starts with a brief overview of all the required technologies.
After that, we continue with our system design. There we are outlining the overall
system design and all required system components for our protocol. Following the
system design, we are introducing our protocol design. Here we have a detailed look
at the actual XMPP stanzas send between all participants. To make sure our approach
is functioning, we then continue with a detailed look at our reference implantation. In
the end, we are concluding with an evaluation of our protocol, including performance
measurements (e.g., how much time passes before an action is executed).

1

2 Background

In this chapter, we will give a brief overview of all the required technologies for this
thesis. The first section will talk about IoT in a general manner. After that, we will
continue with a brief introduction to XMPP and its terminology. In the end, we will
have a look at wireless technologies and compare their key selling points like range,
energy usage and data rates.

2.1 Internet of Things

In a general manner Internet of Things (IoT) is an umbrella term for all kinds of devices
that are connected to the internet. They do not require any active human interaction to
function or report data.

Such devices usually collect and process some kind of sensor data, which then gets
either actively sent to other devices (i.e., a central server) or is stored locally until
another device/user accesses the data via the internet. An example IoT device could
be a thermostat that reports the current temperature and humidity at regular intervals
to a central air conditioner controller. The controller then decides based on the data
received from our and perhaps a bunch of other connected IoT devices, whether it
should turn on and off the local air conditioner to react to temperature or humidity
changes.

On the other hand, actuators like light bulbs that are connected to the internet and
can be turned on and off or even dimmed are considered an IoT device too.

In this thesis, we mainly focus on IoT devices that are designed to run in buildings
owned by home-users and do not focus too much on large scale commercial IoT sensor
networks.

2.1.1 Smart Home

As suggested by Ricquebourg, Menga, Durand, et al. [Ric+06], Smart Home is a term
for buildings or homes that have so-called smart objects or devices. Those smart objects
or devices control and monitor properties and or people of that building. This ranges
from a simple light bulb, connected to a light sensor turning on when it is getting dark

2

2 Background

outside, to a fridge that tracks its contents and informs its owner, in case something is
missing for the next meal.

Usually, all devices connect to a central hub where the data then gets processed
further. Those hubs often act as a gateway between multiple ways of signal transmission.
At the moment, it is common for really small devices like light bulbs or thermometers
to send data via low-power, bandwidth and overhead connections (e.g., ZigBee) to their
hub. There the data gets relayed. This mostly happens through the use of TCP/IP to
other hubs or connected devices like the owner’s mobile phone.

At the time of writing, a full TCP/IP (and TLS) stack for data exchange is simply not
feasible for the smallest devices. Especially for power constraint devices, a full TCP/IP
and TLS stack would introduce too much overhead and Therefore, too much cost in
terms of energy.

2.1.2 Data Processing

In general, two places exist where data can be processed. This can happen on the edge
(i.e., the device itself) or in the cloud (i.e., on some central server (farm)).

Edge Computing

The process of moving computational efforts to the edge of the network is called edge
computing. Here, IoT devices (sensor devices) do not store/send every individual data
point (value) directly. Instead, they interpret or process multiple data points to one
single value that then gets stored for later use or gets send to connected devices and
services.

Since we are usually only interested in the overall change of a value, this on the
one side drastically reduces the amount of network bandwidth required by the sensor
device. Especially in data constraint environments, like if there is only a fixed data cap
in combination with a rather small network bandwidth available that multiple devices
have to share. On the other hand, we increase the processing power required on those
devices which might get relevant, especially in power constraint application cases (e.g.,
the device is running on battery power).

Cloud Computing

Besides Edge Computing, Cloud Computing is another alternative to how data can be
processed. Here, the raw data gets packaged and then send to some kind of remote
server (farm). There the data gets stored, processed and evaluated. This is widely used
if, for example we want/need to apply complex models on top of our date like it is
done for weather forecasts.

3

2 Background

For this, small stations spread around the world, collect and report current infor-
mation about the weather and then send it to a central server. Once the data arrives,
supercomputers apply complex algorithms/models to the data to predict tomorrow’s
weather.

Cloud and Edge Computing are by far not mutually exclusive to each other. Both
technologies can cooperate. For example, the IoT devices (sensor devices) already do
some kind of light data preprocessing (e.g., smoothing values over time) and then send
those data packages to a cloud server (farm), where they get archived and processed
even further.

2.2 XMPP

XMPP (Extensible Messaging and Presence Protocol) [XMPa], formerly known as Jabber,
is a text-based communication protocol, enabling real-time message exchange between
multiple clients. It leverages XML (Extensible Markup Language) as its underlying data
encoding. The development of Jabber started in 1999 with a focus on instant messaging
(IM). With more than one billion users split across multiple services like WhatsApp,
Nimbuzz, ChatMe and Kontalk, IM was the largest application field for XMPP [XMPb].
Nevertheless, in the past couple of years this has changed. Application fields like online
gaming (about 500 million users [XMPc]), social (e.g., push notifications) (over 2 billion
users [XMPd]) and IoT (no concrete statistics) started to get important as well.

The basic protocol structure is defined by RFC 6120 [Sai11a], RFC 6121 [Sai11b] and
RFC 7622 [Sai15]. Besides that, additional extensions are defined by so called XMPP
Extension Protocols (XEPs) [Spe][SCM]. Those XEPs introduce features like Multi-User
Chat [Saic], Bookmarks [BMS] and Data Forms [Eat+].

Typically XMPP is used in a distributed client-server architecture environment. Once
a connection between two entities (client-to-server (c2s) or server-to-server (s2s)) has
been established, small pieces of structured data ("XML stanzas") are transmitted
[Sai11a]. Clients are uniquely identified by so called JIDs (Jabber-IDs). Those JIDs (e.g.,
romeo@example.com) are included in almost every XML stanza. The following example
shows a stanza for sending a message with the contents "Neither, fair saint, if either
thee dislike.", send from romeo@example.org to juliet@example.com:

<message from='romeo@example.org' to='juliet@example.com'>
<body>Neither, fair saint, if either thee dislike.</body>
</message>

4

2 Background

2.2.1 Jabber-ID

XMPP uses Jabber-IDs (JIDs) to identify individual users and their devices. A bare JID is
structured like an e-mail address. Such a bare JID consists of two parts, the local and
domain part connected by an "@" symbol. As a concrete example, we use the bare JID
romeo@example.org. Here, "romeo" is our local part, identifying a specific user on our
XMPP server "example.com"(domain part).

Since XMPP supports multiple devices per account (e.g., romeo@example.org) there is
the need to identify and address each device of an account individually. Thats where
so called full JIDs are used. A full JID is a bare JID (e.g., romeo@example.org) with an
appended resource part, separated by a "/". Now our user romeo can have multiple
devices for example romeo@example.org/home or romeo@example.org/phone where "home"
and "phone" represent individual devices. Figure 2.1 shows the correlation between bare
and full JIDs.

bare JID︷ ︸︸ ︷
user @ domain / resource︸ ︷︷ ︸

full JID

Figure 2.1: Format of a full/bare JID

2.2.2 XMPP Sessions

To build up and hold a connection/session between two entities (c2c or c2s), XMPP
leverages TCP as underlying transport layer protocol.

Opening a Stream

Once a TCP connection has been established, the initiating entity sends the first XML
message, the so called "initial stream header". The following example shows such a header
initiating a new XMPP session, where romeo@example.org builds up a c2s connection to
its XMPP server example.org.

5

2 Background

<?xml version='1.0'?>
<stream:stream
from='romeo@example.org'
to='example.com'
version='1.0'
xml:lang='en'
xmlns='jabber:client'
xmlns:stream='http://etherx.jabber.org/streams'>

Note: At this point the sent message does not represent valid XML. The reason for
this is that a complete session between two entities has to be seen as one single valid
XML object. Therefore, if an entity likes to discontinue the session, it has to send
</stream:stream>. After that, the session forms a valid XML object similar to the one
visualized by Figure 2.2.

Once the receiving entity of the initial stream header responds with an initial stream
header itself both entities can continue with the next step: Stream Negotiation

<stream:stream>

<presence>
<show/>
</presence>

<message from="romeo@example.org/terra"
to="juliet@example.org">
<body>
Mercy but murders, pardoning those that kill.
</body>
</message>
. . .
</stream:stream>

Figure 2.2: Valid XML at the end of an XMPP session

Stream Negotiation

Stream Negotiation is the phase where the receiving entity requires certain conditions
to be met by the initiating entity like authentication, compression, or a connection
upgrade to TLS. Therefore the receiving entity sends so-called "stream features" to the

6

2 Background

initiator, which then tries to fulfill them. The following shows an example where an
upgrade to TLS is required and the use of either zlib or lzw compression is optional.
All features that are required include a <required/> tag. If there is no <required/>
keyword included in the feature, this feature is optional and not required to be fulfilled
before the entity processed to the next step.

<stream:features>
<starttls xmlns='urn:ietf:params:xml:ns:xmpp-tls'>
<required/>
</starttls>
<compression xmlns='http://jabber.org/features/compress'>
<method>zlib</method>
<method>lzw</method>
</compression>

</stream:features>

Once all required and optional stream features have been fulfilled both entities have
to replace the current session with a new one. This happens by keeping the current
TCP connection, which might now be in a new state through a potential upgrade to
TLS. After that, both entities resend the initial stream headers and continue with SASL
Negotiation.

SASL Negotiation

SASL (Simple Authentication and Security Layer protocol) negotiation describes the
process of authenticating a SASL client against a SASL server. Therefore the SASL
server provides an ordered list of authentication mechanisms to the client. The first
item in the order is the most preferred SASL mechanism by the server. Once the client
has selected a mechanism to authenticate against the server, this mechanism then gets
used for authentication. The following example shows a collection of authentication
mechanisms provided by the server.

<stream:features>
<mechanisms xmlns='urn:ietf:params:xml:ns:xmpp-sasl'>

<mechanism>EXTERNAL</mechanism>
<mechanism>SCRAM-SHA-1-PLUS</mechanism>
<mechanism>SCRAM-SHA-1</mechanism>
<mechanism>PLAIN</mechanism>

</mechanisms>
</stream:features>

7

2 Background

After successful SASL Negotiation both entities have to replace the current session
again with a new one, like described in section Stream Negotiation.

Resource Binding

The last step before an XMPP session can be seen as established is the process of
Resource Binding. Since XMPP has proper multi-device support, in other words: it
supports multiple devices associated with a single JID, we have to bind a single device
or resource to the current stream. This is only required for c2s connections and allows
the server to address each of the devices/resources associated with our JID individually.
In the following example the client tries to bind the resource balcony to the current
stream.

<iq id='wy2xa82b4' type='set'>
<bind xmlns='urn:ietf:params:xml:ns:xmpp-bind'>

<resource>balcony</resource>
</bind>

</iq>

On success, the server responds with the full JID
(juliet@im.example.com/balcony), confirming a successful Resource Binding like shown in
the following example:

<iq id='wy2xa82b4' type='result'>
<bind xmlns='urn:ietf:params:xml:ns:xmpp-bind'>

<jid>juliet@im.example.com/balcony</jid>
</bind>

</iq>

Once Resource Binding was successful, the session is established and both entities can
start sending XML stanzas.

2.3 Wireless Technologies

There are a couple of wireless communication standards. In the following, we will have
a look at a few of them and list their key criteria for the use with IoT devices.

2.3.1 Bluetooth Low Energy

Bluetooth Low Energy (BLE) is the successor of Bluetooth (Classic). It operates in the
same 2.4 GHz ISM (Industrial, Scientific and Medical Band) spectrum like Bluetooth

8

2 Background

(Classic). The Bluetooth Special Interest Group (Bluetooth SIG) has developed the BLE
standard. There, one device acts as a server and the other ones as clients. The server
then offers a set of services to its clients. Those services (e.g., Generic Access, Battery
Service, . . .) [Bluc] themselves offer a set of GATT characteristics like Age, Battery Level,
Battery Level State, . . . [Blub], that carry the actual values.

Range: Bluetooth can have a range from less than a meter up to more than a kilometer
[Blud]. The range heavily depends on the use case of the device, as well as the available
transmission power.

Energy Usage: The higher the range for a Bluetooth signal should be, the more energy
it uses. This results in the energy usage of Bluetooth ranging from 0.01 mW (-20 dBm)
up to 100 mW (+20 dBm) [Blud].

Data Rates: While Bluetooth (Classic) can archive data rates of up to 3 Mb/s, BLE
only archives data rates from 125 Kb/s up to 2 Mb/s [Blua]. This is caused by BLE
being designed especially for very low-power operations like a peacemaker, reporting
only rather small bits of data, but over a long time without having access to an external
power source.

Security: BLE offers two security modes with a couple of levels each. On the one side,
there is mode 1. If a connection in mode 1 is established, starting from level 2, all data
that gets send and received is encrypted.

• Level 1: No security (no authentication and no encryption)

• Level 2: Unauthenticated pairing with encryption

• Level 3: Authenticated pairing with encryption

• Level 4: Authenticated LE Secure Connections pairing with encryption

The higher the level, the more security mechanisms are used to make sure attackers do
not access to the data transmitted and received.

On the other hand, mode 2 does not offer any kind of encryption; it only offers data
signing.

• Level 1: Unauthenticated pairing with data signing

• Level 2: Authenticated pairing with data signing

While level 1 of mode 2 only offers data signing, a connection established in mode 2,
level 2, also offers authenticated pairing [Sch].

9

2 Background

2.3.2 Wi-Fi

Wi-Fi 6 (IEEE 802.11ax) is the latest version of the Wi-Fi standard developed by the
Wi-Fi Alliance [Wi-a]. It can operate in the 1 GHz to 7 GHz range with 2.4 GHz and 5
GHz as the more common frequencies used [Wi-b].

Range: Like with Bluetooth, the possible range is highly dependent on the use case
of the device. It can range from a couple of meters up to multiple kilometers under
optimal conditions when for example beamforming antennas are being used.

Energy Usage: Since energy usage also heavily depends on the range between devices
and which features of Wi-Fi are enabled, we can not give any concrete numbers here.
Due to the larger overhead and overall data rates compared to Bluetooth, the energy
usage is also higher. Like for the Wi-Fi range, there are no concrete and independent
numbers available at the time of writing this thesis.

Data Rates: The latest Wi-Fi standard (Wi-Fi 6) allows theoretically data rates of up
to 9.6 Gbps [Wi-b]. At the time of writing, there were no independent sources available
that were able to confirm those data rates.

2.3.3 ZigBee

Developed by the ZigBee Alliance, ZigBee is a low-power network protocol, designed
for long-range and low data rate networks [Ziga]. This makes it especially useful
for home automatization in the area of Smart Home (IoT). Like Wi-Fi and Bluetooth,
ZigBee also uses the 2.4 GHz ISM band (IEEE 802.15.4-2011) for its data transmission
[Zigb].

Range: ZigBee offers a transmission range of up to 300 meters (line of sight) and 75
to 100 meters indoors [Zigb].

Energy Usage: Due to the low protocol overhead and the also rather low data rates of
ZigBee, the power consumed can range from 1 mW up to 100 mW, heavily depending
on the range between the sender and receiver [Zigb].

Data Rates: Since ZigBee was designed to be extremely power-efficient, it only can
archive data rates of up to 250 Kbits/sec [Zigb].

10

3 System Design

In this chapter, we will have a look at the system design for our protocol. We incorporate
the distributed client-server architecture of XMPP in a way that we do not restrict the
home-user to a specific XMPP server. This allows us to either host your own server or
use one of the hundreds of public XMPP servers out there [404].

To archive this, our main goal is to not changing anything on the server-side. This
allows a faster adoption rate since there is no chicken or egg problem. Server developers
do not run into the problem of having to wait for client developers to implement the
suggested new features first, for them to be able to test their server implementation
and vice versa.

Not requiring any server-side modifications also removes, for example the possibility
of having some kind of central location where a client could send something like a
discovery message too, to get all available/registered IoT devices for this server or
home network from.

While ensuring that all IoT devices join a central MUC (Multi-User Chat [Saic]) would
solve the problem of discovery, this also would introduce a couple of new problems.
For example, who is allowed to join this MUC to retrieve the list of occupants (IoT
devices)? Or how do we handle/detect devices that are currently listed as members of
the room while they retrieve the list of participants? What happens if an IoT device is
currently offline since a MUC room has no persistent list of members. Only those who
are currently online are listed as members. All in all, this solution would introduce
many more problems than it actually solves.

To tackle this, we suggest making the base protocol usable without any server-side
modifications. As soon as enough clients have started working on an implementation
and the need for features like a central registry for IoT devices arises, extensions to our
protocol could be created where server-side modifications are required.

Figure 3.1 shows a traditional home network connected to the internet using a
modem. Since today’s modems are not just modems anymore, but instead combine
a bunch of functionality (time server, DHCP (Dynamic Host Configuration Protocol),
DECT (Digital Enhanced Cordless Telecommunications), media server, . . .) in one
central device, this results in them being more or less small and a central home servers
with quite respectable hardware. An example of such a device could be the Turris
Omnia, with its ARM Marvell Armada 385 (Dual Core) [Mar] and 2 GB of RAM [CZN],

11

3 System Design

Internet

Private XMPP Server

Modem/Gateway

Device Hub

IoT Device 2

IoT Device 1

Home Server

Juliet's Computer Juliet's Phone

IoT Device 3 IoT Device 4

Public XMPP Server

Figure 3.1: System Design

running an extended version of the Open-Source operating system OpenWrt [Opea] for
embedded devices.

Besides devices built from ground up with the intention to work with an operating
system like OpenWrt, for example modems from TP-Link [TP-] can also be flashed
with OpenWrt and then used as a modem with an integrated XMPP server [Opec].
Nevertheless, flashing modems that are not meant to be used with a modified firmware
can be quite tedious. Also, manufacturers will try anything to prevent this, since this
could also be used by an attacker to manipulate the original firmware. If it is possible
to flash devices with custom firmware, this also could be used to override potential
restrictions in how much energy is allowed to use as transmission power for e.g., Wi-Fi
antennas [Opeb].

These were only two of the hundreds of different home servers available for home-
users, powerful enough to run an XMPP server besides their usual duties as a
modem/router.

12

3 System Design

3.1 Application Area

Since XMPP is a protocol that builds on top of the TCP transport layer protocol and
requires a complete TCP/IP and TLS stack with a global protocol state, its application
area is restricted. There are multiple factors that restrict the use of XMPP to larger
devices only.

The first factor is simply the performance overhead required for establishing and
maintaining an XMPP session. If we want an XMPP session to be kept up and running
while being able to collect and process sensor data in real-time, this requires at least a
dual-core microcontroller or even a microprocessor, if we have only a single core, we
can not react in real-time to sensor data changes while reacting to incoming requests
or simply just data arriving through our XMPP connection. Especially, if the intervals
in which our sensor reports data goes down, the availability of our single core for
maintaining and reacting to events, happening on our XMPP connection goes down as
well.

With the second core, as well as the need to send and receive data over Wi-Fi comes
power usage into play. Wi-Fi initially never has been intended to be used by devices
with such strict power constraints. Although this has changed with the latest version
of the Wi-Fi specification (especially Wi-Fi 6), it still uses a lot more power than other
standards designed from the ground up with IoT devices in their minds. Protocols
like ZigBee, offering significantly less power usage, while still maintaining usable (but
significantly lower) data rates if compared to Wi-Fi exist.

Besides that, with an additional core, the chips die size also increases and not all
devices have enough space left for such a large chip. On the low end, devices like light
bulbs have a rather strict restriction on how much space electric components can take
over in their socket.

Over time, with shrinking die sizes and better, more power-efficient chip designs,
those restrictions will be solved. Other than that, we are limited to only larger devices
being able to host an XMPP session. This results in us currently having to split up our
devices into two groups: Hub-Based Devices and Standalone Devices.

3.1.1 Hub-Based Devices

Hub-Based devices are devices that connect to a central hub using some kind of low-
power and low overhead connection like ZigBee. In Figure 3.1 IoT Device 3 and 4 are
connected to such a hub. The hub then acts as a proxy between the low-power ZigBee
and XMPP connection.

This is especially useful if you have a lot of rather small devices like light bulbs. If
every light bulb in a typical household would be connected to a single access point,

13

3 System Design

this access point would quickly get overwhelmed by the number of associated devices;
it would have to maintain.

Besides that, if the amount of network-connected devices increases, the attack vector
does as well. As shown by Wurm, Hoang, Arias, et al. [Wur+16] a lot of devices
have numerous flaws that attackers can and are exploiting. Websites like Shodan list
thousands of IoT devices, that are exposed to the internet readily attackable using
back-dors [AA19].

3.1.2 Standalone Devices

While hub-based devices usually are only data collection (i.e., sensor) or actuator
devices and expose only a handful of properties, standalone devices usually are the
opposite. A device that fulfills the requirements to hold an XMPP session tends to
be connected to a power outlet. Examples for such devices could be a fridge, TV or
air conditioner. This is shown in Figure 3.1. Here, IoT devices 1 and 2 are directly
connected to the local network and the corresponding home server.

3.2 XMPP Server

For devices to be able to communicate with each other, they require an XMPP server
that handles the communication. This server also offers services like caching messages
if a receiver is not available at the moment or provides a Publish-Subscribe (XEP-0060
[MSM]) interface.

Due to the decentralized nature of XMPP, it is possible for everyone to host their own
server (Figure 3.1 Private XMPP Server). Since by far not every home-user is tech-savvy
enough or even willing to take on the burden to host a personal XMPP server, it also
has to be possible for IoT devices to be registered on a public XMPP server (Figure 3.1
Public XMPP Server).

Latency

One obvious difference between a private and public XMPP server is latency. More
concrete: The latency from pressing a button on the user interface (UI) of an XMPP
client to, for example turn off a light bulb until the light actually turns off and vice
versa. While signals that travel from and to local devices using a local server in between
won’t have that much latency, for devices that are not located in the same network, the
latency between action and reaction can increases drastically up to multiple seconds.
It can be quite confusing and frustrating if a button on the phone to turn on a light
gets pressed and it takes the light a couple hundred milliseconds (or even one or two

14

https://www.shodan.io/

3 System Design

seconds) to actually turn on. Especially if you are standing right next to it and you are
used to light switches turning lights on and off immediately.

Registration

Typically two ways exist, how an user can register a new account (JID) for his device:
out-of-band and in-band registration. While out-of-band registration typically requires
the user to visit some kind of external website and fill out a web form, in-band
registration (XEP-0077 [Saib]) allows the registration to happen directly through the
XMPP client.

3.2.1 Public XMPP Server

There exists a large number of public and well maintained XMPP servers [404]. But
we have to keep in mind that every device registered on a public XMPP server is, in
theory, accessible by the public. This means everybody can initiate a conversation
with the device and in theory, start accessing the data and services provided by this
device. To prevent other people from accessing the data, a permission system, as
described in section 4.2.4 is required. Furthermore, even the best permission system
does not eliminate the requirement to trust your server provider. Especially data that
gets published using Publish-Subscribe (XEP-0060 [MSM]) gets stored in plain text on
the server. This leads to the fact that the server provider or any other person/attacker
that gets access to the server’s database can read and manipulate all the stored data
without the user knowing. In a case where devices publish and/or transmit sensible
personal data, this is especially dangerous [Mal+18; MIT].

A public server offering services is always a primary target for attackers [Saia].
Besides that, what happens if the server provider goes down or is momentarily un-
reachable? Do we really want to depend on an external server for turning our lights on
and off?

3.2.2 Private XMPP Server

A private XMPP server is a server that is hosted inside our direct sphere of influence
(i.e., in the same network as our IoT devices). If we decide to host our own server, this
solves a bunch of security-related concerns.

First of all, since the server is under our direct control, we do not have to trust any
external person, organization or company to store and handle our data responsibly.

Secondly, thanks to the proper multi-device support of XMPP, it is possible for a user
(e.g., Juliet in Figure 3.1) to control associated devices (e.g., IoT Device 1-4 in Figure 3.1)

15

3 System Design

at home using a computer or tablet and on the go, using a phone associated to the
same JID like her device(s) at home.

All of this does not come without a cost. In our case, this cost is security and/or
privacy. Since it is no easy task to set up and maintain an XMPP server, this as well
can have severe security implications, if the server and its network is not configured
correctly. While exposing our local server to the internet allowing users to connect
from anywhere in the world to it, control and monitor their devices, this also opens
the door for attackers. Those attackers could find a back door in our server setup,
infiltrating or even taking over our whole server/home network. All of this just because
the home-user was, for example running an outdated version of the server software.

Another way attackers could go is by starting a DoS (Denial of Service) attack against
our server, resulting in a crash [MIT]. As a result, devices (IoT and home-user clients)
could be unable to communicate with each other (i.e., in the best case, we just can not
control our smart light bulbs any more).

As a solution for some of those problems, we suggest integrating the XMPP server
into a modem/router. Like mentioned earlier, modern modems usually come equipped
with enough compute power and storage capacity to host an XMPP server alongside
their other various servers like mail, time, media and files. This would take the burden
of having to configure and maintain the server from the home-user and shift this to the
modem/router manufacturer or their operating system developers.

This does not come without the possible cost of losing direct control over the
server, the freedom of choice which software for the server is being used and what
configuration options are actually exposed to the home-user. Nevertheless, this gives
home-users simplified and direct access to an XMPP server in their direct sphere of
influence. All of this without having to go through the tedious process of setting up
and maintaining their own private XMPP server on external hardware.

Anchor Points

it is possible to run an XMPP server without owning a "domain name". An IPv4 or IPv6
address can also be used as a domain name for the server (e. g. romeo@123.123.123.123
(RFC 7622 §3.2 [Sai15])). But this is only feasible if the public IP address of the server
does not change on a regular basis.

If it does, we need some kind of Dynamic DNS (DynDns) provider. This provider then
acts as an anchor point, providing a subdomain associated with our (regularly changing)
IP address. Now we can just use this subdomain (e.g., subdomain.example.org) for
our XMPP server and once our local IP address changes we just inform our DynDns
provider about the change so he can update the corresponding DNS record(s) for us.

It would also be possible for the router manufacturer to offer such a DynDns service.

16

3 System Design

He could simply buy a single domain and then based on some kind of unique identifier
(e.g., serial number or a hash of the serial number to not directly leak any information
about the device) of the router associate a subdomain to each of his routers (e.g.,
<serial_number>.example.org).

If we do not want to use our XMPP server from the outside and do not want it being
able to communicate with other XMPP servers (e.g., sending chat messages between
different XMPP servers), we can use a VPN. A VPN (Virtual Private Network) can be
set up and if we want to control our devices from remote, we just have to connect to
the VPN. Nowadays, modems/routers (home servers) usually come equipped with
everything required to host a VPN server, where we then can connect from the outside
to.

A VPN does not solve the need for some kind of anchor point (e.g., DynDns service),
which we can contact if the public IP address of our VPN server changes on a regular
basis. The same home servers that come equipped with a VPN server usually also are
equipped with a DynDns client. This makes it extremely easy for home-users, since
everything is available and controlled in a central place (e.g., the home servers web
interface).

3.2.3 Registration

Figure 3.2 shows the flow for registering a new IoT device. It starts with the client
(Juliet’s Phone) scanning the QR-Code printed on the IoT device (IoT Device 1). This
QR-Code contains basic information about the device and its Bluetooth MAC address.

Once the scan was successful, the client will contact its XMPP server (step two in
Figure 3.2) and registers a new JID for the IoT device.

In the third step of the registration procedure, the client will connect to the IoT device
using Bluetooth LE and the scanned Bluetooth MAC address. Once a connection has
been established successfully, the client will transmit the registered JID, JID password,
Wi-Fi SSID, Wi-Fi password and its own JID to the device.

After that, in step four, the IoT device switches from BLE to Wi-Fi using the received
Wi-Fi SSID and password. Once a Wi-Fi connection has been established, the IoT device
also connects to the XMPP server with the received JID and JID password. If this
succeeds as well, the IoT device sends a simple success message stanza to the client
where this stanza then gets mirrored and gets sent back to the IoT device.

If this stanza arrives at the IoT device, the registration process is done. Now the
registered device can start collecting data and distribute it or react on data received
from other sources.

17

3 System Design

Internet

Private XMPP Server

Modem/Gateway

Home Server

Juliet's Phone
1

2

 3

4

IoT Device 1

QR-Code

Figure 3.2: Device Registration

3.2.4 Data Access

There are two ways in which we can access the data provided by the IoT devices —
active and passive.

Active Data Access

As shown in Figure 3.3 for the active data access, the client (Juliet’s Phone) has to
become active and send a request to the IoT device (IoT Device 4). This XMPP stanza
of type request gets send over the internet to the Private XMPP Server. The server then
forwards the stanza to the Device Hub, acting as an XMPP proxy for all its connected
devices (IoT devices 3 and 4). Since IoT Device 4 is a hub-based device, the Device Hub
will convert the XMPP stanza to some kind of low-power signal (e.g., ZigBee), which it
then forwards to IoT Device 4.

Now that IoT Device 4 has received the request from Juliet’s Phone, it answers it and
sends it back to the Device Hub. There the signal gets converted back to an XMPP
stanza of type result. This stanza then gets send to the Private XMPP Server, which
forwards it to its receiver (Juliet’s Phone) over the internet.

Passive Data Access

Another way of accessing data from an IoT device is by using passive data access. Here,
the device (IoT Device 2) offers a data node, to which other users (e.g., Juliet) can
subscribe. Once Juliet has subscribed to the node provided by IoT Device 2, she will

18

3 System Design

2

3

 1
8

Internet

Private XMPP Server

Modem/Gateway

Device Hub

IoT Device 2

IoT Device 1

Home Server

Juliet's Computer Juliet's Phone

IoT Device 3 IoT Device 4

5

6

7

 4

Figure 3.3: Active Data Access

receive all updates provided by IoT Device 2.
This process is illustrated in Figure 3.4. Here, IoT device 2 constantly produces new

data, which it publishes to the Private XMPP Server.
There the data gets stored and mirrored to all of Juliet’s devices (i.e., Juliet’s Computer

and Juliet’s Phone) that are online. If a device is not online currently, the server forwards
it to the device as soon as it comes online for the next time.

If in the meantime even newer data arrives at the server from IoT Device 2, the server
will make sure to override the now outdated data This ensures that the client only
receives the latest data when it comes online again.

3.3 Summary

In this chapter we introduced the concept of Hub-Based and Standalone devices. While
standalone devices can host their own XMPP clients, pushing data to their XMPP server,
hub-based devices can not. Those connect using some form of low-power and low
overhead connection like ZigBee to a central hub, which then acts as a proxy between
XMPP and for example, ZigBee.

We also do not want to restrict users to private or public XMPP servers. Both types

19

3 System Design

3

Internet

Private XMPP Server

Modem/Gateway

Device Hub

IoT Device 2

IoT Device 1

Home Server

Juliet's Computer Juliet's Phone

IoT Device 3 IoT Device 4

1

2

2

Figure 3.4: Passive Data Access

of servers have their own advantages and disadvantages. While private XMPP servers
offer greater security in terms of direct control over the server and its data, public
servers are always available and the home-user does not have to go through the hassle
of setting up and maintaining his own private XMPP server.

Therefore we propose to integrate XMPP servers into modems/routers since they
are nowadays far more than a simple modem/routers. They offer services like SMTP,
DECT and act as media servers. This would shift the responsibility of maintaining an
XMPP server to the router manufacturer while the home-user still has direct access to
the server and its data.

As a general concept for the registration of new IoT devices, we propose the following:
The procedure starts with the client scanning the IoT devices QR Code. This QR Code
contains information about how to connect to the IoT device using BLE. Once scanned,
the client connects to the IoT device’s BLE server as a client. Both devices exchange
information (e.g., Wi-Fi SSID, Wi-Fi password, JID, ...). As soon as all information has
been exchanged, the IoT device shuts down its BLE server and connects to the XMPP
server, using the received credentials for Wi-Fi and the XMPP server. Once connected, it
confirms the successful registration by sending an XMPP message stanza to the client.

20

4 Protocol Design

The protocol design can be split up into two sections: Registration and Data Access.
The overall rule for our design and implementations is: First of all to keep it as simple
as possible. This means, on the one side it should be as easy as possible for developers
to implement the new features. We archive this by using as many existing building
blocks (XEPs) as possible.

On the other hand, our design aims to make it for the home-users as simple as
possible to register/discover and manage their IoT devices. They should be able to use
our design without any additional knowledge about the underlying architecture.

As an additional goal, we aim to allow home-users to interact with their IoT devices
even if their client does not yet support all the new features. This won’t always be
possible (e.g., Registration), but basic functionality like requesting data and sending
actions to devices should still be possible.

This thesis only focuses on a concrete protocol for standalone devices. Hub-Based
devices are not directly targeted by the following protocol. We are going focus on those
in an additional paper.

4.1 Existing Solutions

There already exists a solution developed by the XMPP Interface Working Group (XMPPI)
[IEEb]. IEEE working groups are groups that are open to anyone (no IEEE membership
is required). Those groups strive for broad representation of all interested parties and
create standards published by the IEEE [IEEa].

The existing solution started as a collection of XEPs [Waha] that later got retracted
and are now a part of IEEE [XMPf]. But there are a few problems with this existing
solution, which makes it not suitable for our use case:

Complexity

The first problem is the complexity of their solution. They provide quite a large and
feature-rich framework for all kinds of use cases. They primarily aim to support large
scale IoT installations, while still maintaining usability for home-users and their IoT
installations. Since in this thesis, we are only interested in the home-user sector, their

21

4 Protocol Design

solution for e.g., smart contracts [XMPh] and provisioning [XMPg] is irrelevant for us
and introduces unnecessary complexity.

Because the solution proposed by the XMPPI is rather large and complex (requires
a client, as well as a server component/implementation to function properly), this is
leading to a classical "chicken or egg" problem, like mentioned earlier. Server developers
will (have to) wait for client developers to implement the suggested new features first,
for them to be able to test their server implementation and vice versa. Not requiring
any server-side modifications also removes, for example the possibility to have some
central location where we could send something like a discovery message to, to get all
available/registered IoT devices for this server or home network. But this is something
that can be added later when the first client implementations exist and the need for
such a server component increases.

There exists already a self-contained reference implementation, developed by Waher
[Wahc], for all of those features. Nevertheless, this implementation is self-contained
and does not build on top of other existing clients or servers, which does not solve the
"chicken or egg" mentioned above.

Another way to boost availability could be to keep compatibility to clients that do
not support the new features introduced. Here, we could, for example allow users of
such apps to send messages to the IoT device and get a text-based response.

Besides that, they only mention that additional metadata required should be kept at
a minimum and do not give a solution on how to minimize metadata needed [XMPe].
Also, there is no concrete way or procedure described how an IoT device should be
connected to the internet if this is only possible using Wi-Fi.

This is going to result in every manufacturer coming up with its way how the device
should be connected to Wi-Fi. For example, one could use a proprietary app, with the
only purpose of that app being, sending a Wi-Fi SSID and password to the device by
the use of Bluetooth. Another one could also use such an app, but that app does not use
Bluetooth, instead it could leverage NFC for that. Even more, a third manufacturer then
uses some interface, directly built into the device, which has to fulfill this particular
case of entering Wi-Fi credentials.

In general manner, freedom in terms of design usually comes with the cost of
interoperability and increases fragmentation. Especially if we want to create a process
that is as simple as possible for the home-user to follow and is almost the same for all
devices, we need a concrete standard for it. This process will not fulfill all potentially
existing use cases for all IoT devices out there and there will be exceptions. Still, for
the majority of devices, there should be a concrete standard available.

22

4 Protocol Design

Target Group

The other big problem of the solution provided by the XMPPI is the target group. They
aim to support not only large scale IoT installations. Instead, they also aim to support
home-user installations as well. But while the basics are there, home-user support is
not fully done (yet). As an example, we again use the registration process for new IoT
devices. This process is existent but allows manufacturers like mentioned above, much
freedom in the way their devices are setup. Like also mentioned above, this is a critical
problem because now manufacture can go their way and in the worst case, every device
has a different setup procedure.

To make it as easy as possible for the home-user to register and set up a new IoT
device, we would like to standardize this process.

4.2 Building Blocks

Since we want to keep our processes and protocols as simple as possible for developers
to implement, we heavily focused on using existing XMPP extension protocols (XEPs).
In the following, we are going to introduce all XEPs required by our implementation.

4.2.1 XEP-0077: In-Band Registration

This XEP allows clients to register new accounts for example for new IoT devices
directly via the XMPP protocol inside a client without having to visit an external
website (i.e., the website of the server provider) [Saib].

4.2.2 XEP-0004: Data Forms

Data forms are a way for a device to offer a configuration form that then gets rendered
by the client. A user then can fill out this form and send back the result to the sender
where it then gets evaluated. The following shows a simple data form which offers the
configuration of a simple IoT device.

23

4 Protocol Design

<x xmlns='jabber:x:data'
type='form'>
<title>Device Configuration</title>
<instructions>
Fill out this form to configure your new IoT device!
</instructions>
<field type='fixed'>

<value>Section 1: Device Info</value>
</field>
<field type='text-single'

label='The␣name␣of␣your␣device'
var='botName'/>

<field type='text-multi'
label='Helpful␣description␣of␣your␣device'
var='description'/>

<field type='boolean'
label='Public␣device?'
var='public'>

<required/>
</field>

</x>

The above example only shows the actual data form. Usually a data form comes
wrapped inside an <iq/> stanza where it has a from, to and type (with set, result, ... as it
is value) attribute. However, this was neglected here for the sake of readability [Eat+].

4.2.3 XEP-0336: Data Forms - Dynamic Forms

This extension focuses on providing more option for XEP-0004 Data Forms. It intro-
duces properties like <xdd:readOnly/> for read only controls and <xdd:notSame/> for
undefined values. This is shown in the following example where we create a data form
with a read only control displaying the device id and an undefined value for the bus
address control.

24

4 Protocol Design

<x xmlns='jabber:x:data'
type='form'>
<title>Device Configuration</title>
<instructions>
Fill out this form to configure your new IoT device!
</instructions>
<field type='fixed'>

<value>Section 1: Device Info</value>
</field>
<field type='text-single'

label='Device␣ID:␣'
var='botId'>

<xdd:readOnly/>
<value>583002373287</value>

</field>
<field type='text-single'

label='Enter␣the␣bus␣address␣of␣the␣device.'
var='busAddress'>

<xdd:notSame/>
<value>1</value>

</field>
</x>

4.2.4 XEP-0060: Publish-Subscribe

The Publish-Subscribe extension allows devices to expose so-called nodes which other
devices than can subscribe to. Those nodes support a full-fledged permission system
and once a device has subscribed to a node, it will receive notifications as soon as the
value of that node changed [MSM].

4.2.5 XEP-0223: Persistent Storage of Private Data via PubSub

This extension introduces the concept of a private storage associated with an users
bare JID. It defines a set of best practices on how to publish nodes for private storage.
While Publish-Subscribe (XEP-0060) only focuses on publishing public nodes, this
extension shows how, for example we have to configure nodes so only people and
devices whitelisted or added to our roster can access and interact with them.

25

4 Protocol Design

4.3 Registration

Once a home-user has gotten access to a new IoT device, he has to register it at his
local or remote XMPP server. Therefore the home-user needs a client, running on a
device that has a camera and an antenna supporting Bluetooth Low Energy (≥ 4.0).

Scanning the QR Code

Once all of those prerequisites are met, the registration process can start like shown in
Figure 4.2. To start the process, the client (e.g., Juliet’s Phone in Figure 4.2) has to scan
the QR Code printed on the device itself or its packaging material.

This QR Code contains the Bluetooth MAC address of the device, as well as a public
key and the name of the algorithm used to generate this key. For this, we use the
Uniform Resource Identifier (URI) syntax defined by RFC 3986 [BFM05]. The following
example shows the general syntax of the XMPP IoT registration URI:

xmpp:iot-register
?mac=<DEVICE-BLUETOOTH-MAC-ADDRESS>
&algo=<KEY-ALGORITHM>
&key=<KEY>

The Bluetooth MAC address is used in step 3 to connect to the BLE server. Besides
the Bluetooth MAC address, the URI also contains a cryptographic public key (key)
and the algorithm used to create this key (algo).

Those are used to encrypt and decrypt all messages send from and to the IoT
device over Bluetooth. Since we are not able to perform authenticated pairing with
encryption (Mode 1 Level 3) for the Bluetooth connection, we would have to rely on
unauthenticated pairing with encryption (Mode 1 Level 2). This would allow attackers
to host their own Bluetooth server, spoofing the MAC address from our IoT device
and Therefore receiving XMPP credentials, as well as our Wi-Fi SSID and password,
transmitted in a later step of the registration procedure.

This could be solved by showing the Bluetooth pin on both devices and then the user
comparing those manually. Since it is not feasible, especially for small IoT devices like
light bulbs to have some kind of small display build in just to show those Bluetooth
pins, we decided to use public-key cryptography for this.

We still use encrypted Bluetooth connections, but without authentication (Mode 1,
Level 2). Once a Bluetooth connection has been initiated, all data that gets send from
and to the IoT device is encrypted. Since an attacker is still able to decrypt data sent
from an IoT device if he was able to get access to the device and was able to obtain
a copy of the public key, the IoT device should not send any sensitive data to over

26

4 Protocol Design

Bluetooth. It should just provide necessary information like manufacturer, software
revision, hardware revision and it is product name to connected devices.

This also could be solved by using a session key in combination with a hybrid
cryptosystem. We decided against this because the IoT device only publishes basic
data, which makes it not worth the effort.

Figure 4.1 shows a concrete example, where the IoT device with the Bluetooth MAC
address FF:FF:FF:FF:FF:FF published a 512 bit Elliptic Curve Cryptography (ECC)
public key generated with curve ed25519. While the option for specifying allows in
theory manufacturers to specify a key algorithm of their choice, this field only exists
to make the protocol future prof. This offers the possibility for further revision of this
protocol to change this algorithm to something else. At the moment, only ECC keys,
generated by curve ed25519 should be used to prevent segmentation of the market and
make it easier for developers to support a wide variety of devices.

We decided to use ECC keys instead of, for example, RSA keys since they provide
higher security with a far shorter key. This is especially important for the QR Code.
We only have a finite amount of bits available until the QR Code gets to large and
Therefore to hard to read, especially for lower-end cameras with a lower resolution. The
key length of choice here is at time of writing (autumn 2019) a 512 ECC key, generated
using curve ed25519 [NIS].

xmpp:iot-register
?mac=FF:FF:FF:FF:FF:FF
&algo=ed25519
&key=AAAAC3NzaC1lZDI1NTE5AAAAIP
AHxEzAdvx+W60ENEQVRXUaNHQX
hhslumDn1N5l6PRl

Figure 4.1: Device Registration QR Code

We decided to use QR Codes instead of, for example Near-field communication
(NFC) since nearly every device has a camera nowadays. Technologies like NFC are
only rather common on mobile devices and are widely used for mobile payment.
Nevertheless, access to it is still rather hard since, for example an actual API to access
the NFC chip for Apple’s mobile operating system IOS just got added quite recently
with IOS 11 [HG18].

Besides that, laptops and desktop computers usually do not come equipped with an
NCF chip since there is just no need for them to have one. Cameras like mentioned
above are far more common and therefore, the way to go here.

27

xmpp:iot-register?mac=FF:FF:FF:FF:FF:FF&algo=ed25519&key=AAAAC3NzaC1lZDI1NTE5AAAAIPAHxEzAdvx+W60ENEQVRXUaNHQXhhslumDn1N5l6PRl

4 Protocol Design

IoT Device 1

QR-Code

Private XMPP Server Juliet's Phone

(1) Scan QR Code

(2) QR Code

(3) Connect to the BLE Server

(4) Approve Connection

(5) Retrieve Device Information

(6) Encrypted Device Information

(9) Send Encrypted XMPP and Wi-Fi Credentials

(10) Stop the BLE Server

(11) Connect to the XMPP Server

(12) Accept connection

(13) Send Hello Message

(16) Forward Mirrored Hello Message

(14) Forward Hello Message

(15) Mirror Hello Message

(17) Add to Roster

(18) Confirm: Added to Roster

(19) Send Setup Done Message (20) Forward Send Setup Done Message

(22) Forward Presence Subscription Request (21) Send Presence Subscription Request

(23) Confirm Presence Subscription (24) Forward Presence Subscription Confirmation

Switch from Bluetooth Low Energy to Wi-Fi

(7) XEP-0077: In-Band Registration

(8) Confirm Account Creation

Figure 4.2: Registration process for new IoT devices

28

4 Protocol Design

UUID NAME FLAGS
00002AA2-0000-1000-8000-00805F9B34FB Language READ
00002A27-0000-1000-8000-00805F9B34FB Hardware Revision READ
00002A28-0000-1000-8000-00805F9B34FB Software Revision READ
00002A25-0000-1000-8000-00805F9B34FB Serial Number READ
00002A29-0000-1000-8000-00805F9B34FB Manufacturer Name READ
00000001-0000-0000-0000-000000000002 Wi-Fi SSID WRITE
00000002-0000-0000-0000-000000000002 Wi-Fi Password WRITE
00000003-0000-0000-0000-000000000002 JID WRITE
00000004-0000-0000-0000-000000000002 JID Password WRITE
00000005-0000-0000-0000-000000000002 JID Sender WRITE
00000006-0000-0000-0000-000000000002 Setup Done WRITE

Table 4.1: Minimum Required Set of Bluetooth Characteristics

Bluetooth Data Exchange

Once the client was able to read the Bluetooth MAC address of the IoT device, he can
start initiating a connection to the BLE server provided by the IoT device (steps 3 and
4 in Figure 4.2). As soon as the connection has been established, the client starts to
retrieve all information (Bluetooth characteristics) from its Bluetooth server (IoT device),
decrypts the contents with the scanned public key and displays them to the user.

Now the user should decide if he wants to proceed. If he decides to proceed the
client performs XEP-0077 In-Band Registration to obtain a new JID for the device, with
a password provided by the user (step 7 and 9 in Figure 4.2).

After that, the user can decide which Wi-Fi network should be used and eventually
provide credentials for it. In steps 9 and 10, the client encrypts the Wi-Fi SSID, Wi-
Fi password, JID, JID password and its JID and sends them to the representative
characteristics on the server. There the IoT device decrypts them again using its private
key and stores them in non-volatile memory for later use.

Table 4.1 gives an overview of all required Bluetooth characteristics and their set
flags that should be provided by the IoT devices Bluetooth server. All characteristics
ending with 00805F9B34FB should be stored inside a Bluetooth service with the UUID
0000180A-0000-1000-8000-00805F9B34FB. All others should be stored in a service with
the UUID 00000001-0000-0000-0000-000000000001.

Hello World over XMPP

Once the configuration is done, the client should send a binary one (0b0000 0001) to
the Setup Done characteristics (encrypted), followed by disconnecting from the Blue-
tooth server. The IoT device reacts to this by shutting down its Bluetooth server and

29

4 Protocol Design

connecting to the Wi-Fi network with the received credentials. If it was possible to es-
tablish a connection to the Wi-Fi network, the device should continue with establishing
a connection to the XMPP server with the given JID and password like described in
subsection 2.2.2.

Once this is done, the device has to send a message stanza to the client. The body
should not be empty and contain some contend. The following message stanza shows
such a message send from our IoT device kettle@example.org to juliet@example.org.

<message from='kettle@example.org/kitchen'
id='hello_world_1'
to='juliet@example.org'
type='chat'
xml:lang='en'>

<body>Hi from the ESP32. Please mirror this message!</body>
</message>

Once the client received this stanza, he should mirror it and send it back to the IoT
device. This is shown by the following example:

<message from='juliet@example.org/balcony'
id='hello_world_2'
to='kettle@example.org'
type='chat'
xml:lang='en'>

<body>Hi from the ESP32. Please mirror this message!</body>
</message>

Now that the mirrored message arrived at the IoT device again, we know the
connection works and we are able to exchange messages in both ways. To finish the
setup, we add the sender JID that we received over Bluetooth earlier to our roster.

<iq type='get'
from='kettle@example.org/kitchen'
to='example.org'
id='hello_world_3'>
<query xmlns='jabber:iq:roster'>

<item jid='juliet@example.org'/>
</query>

</iq>

After that, we confirm to the client that the setup was successful with another
message stanza with a non-empty body.

30

4 Protocol Design

<message from='kettle@example.org/kitchen'
id='hello_world_4'
to='juliet@example.org'
type='chat'
xml:lang='en'>

<body>Setup done!</body>
</message>

Now the client knows that the setup is done for the IoT device and the data access
can begin.

4.4 Data Access

In a general manner data can be actual sensor data, as well as the current state of an
actuator. For both cases, we need some way to access it and a way to get notified once
it changes.

4.4.1 Publishing Data from an IoT Device

For publishing data to other clients we use XEP-0060 Publish-Subscribe (PubSub) in
combination with XEP-0223 Persistent Storage of Private Data via PubSub. Therefore
we use the node structure shown in Figure 4.3. We have three top level nodes Sensors
(xmpp.iot.sensors), Actuators (xmpp.iot.actuators) and UI (xmpp.iot.ui).

The Sensors and Actuators nodes themselves host other nodes. Those nodes are actual
leave nodes and consist only of the current value for the sensor/actuator. Every sensor
and actuator has to have its own leave node in the correct node with its value. The
UI node has only one child, the "current" leave node. This leave node contains the
definition for the user interface (based on XEP-0004 Data Forms).

Every time an IoT device booted up and has initiated a connection, it first hast to
check if all nodes for publishing data still exist. Therefore the device sends a query to
it is PubSub server to retrieve all stored nodes.

<iq type='get'
from='kettle@example.org/kitchen'
to='pubsub.example.org'
id='nodes1'>

<query xmlns='http://jabber.org/protocol/disco#items'/>
</iq>

If no nodes exist, the server will return an empty query as a result.

31

4 Protocol Design

SensorsActuators UI

Temperature
Sensor

Ambient
Pressure
Sensor

CurrentLEDMotor

Figure 4.3: XEP-0060 Publish-Subscribe node structure

<iq type='result'
from='pubsub.example.org'
to='kettle@example.org/kitchen'
id='nodes1'>

<query xmlns='http://jabber.org/protocol/disco#items'/>
</iq>

If nodes exist, the server returns those top-level nodes. Here, the server has found all
required top level nodes xmpp.iot.sensors, xmpp.iot.actuators and xmpp.iot.ui.

<iq type='result'
from='pubsub.example.org'
to='kettle@example.org/kitchen'
id='nodes1'>
<query xmlns='http://jabber.org/protocol/disco#items'>

<item jid='pubsub.example.org'
node='xmpp.iot.sensors'
name='All␣IoT␣sensors'/>

<item jid='pubsub.example.org'
node='xmpp.iot.actuators'
name='All␣IoT␣actuators'/>

<item jid='pubsub.example.org'
node='xmpp.iot.ui'
name='UI␣data␣form␣(XEP-0004)'/>

</query>
</iq>

32

4 Protocol Design

After that, the device has to query the top level nodes xmpp.iot.sensors and
xmpp.iot.actuators to make sure all sensors still exist.

<iq type='get'
from='kettle@example.org/kitchen'
to='pubsub.example.org'
id='nodes2'>

<query xmlns='http://jabber.org/protocol/disco#items'
node='xmpp.iot.sensors'/>

</iq>

The following example shows two sensors (xmpp.iot.sensor.temp for temperature
and xmpp.iot.sensor.bar for air pressure) existing.

<iq type='result'
from='pubsub.example.org'
to='kettle@example.org/kitchen'
id='nodes2'>

<query xmlns='http://jabber.org/protocol/disco#items'
node='xmpp.iot.sensors'>

<item jid='pubsub.example.org'
node='xmpp.iot.sensor.temp'/>

<item jid='pubsub.example.org'
node='xmpp.iot.sensor.bar'/>

</query>
</iq>

In case, not all leave nodes exist, the device has to create them. This is done by
publishing new items with their value to the corresponding node.

To make sure only trusted people and devices get access to our nodes we set
the pubsub#access_model option in our <publish-options/> node to roster. This
prevents everyone who is not a part of our roster from accessing our node.

33

4 Protocol Design

<iq type='set'
from='kettle@example.org/kitchen'
to='pubsub.example.org'
id='publish1'>

<pubsub xmlns='http://jabber.org/protocol/pubsub'>
<publish node='xmpp.iot.sensors'>

<item id='xmpp.iot.sensor.temp'>
<val xmlns="urn:xmpp:uwpx:iot"

unit='celsius'
type='float'>22.43</val>

</item>
</publish>

<publish-options>
<x xmlns="jabber:x:data"

type="submit"/>
<field var="FORM_TYPE"

type="hidden">
<value>http://jabber.org/protocol/pubsub#publish-

options</value>
</field>
<field var="pubsub#persist_items">

<value>true</value>
</field>
<field var="pubsub#access_model">

<value>roster</value>
</field>

</x>
</publish-options>

</pubsub>
</iq>

In case the device wants to update values stored, for example the temperature
changes, it has to publish those values the same way as if it would create new leave
nodes. Additionally, both messages have always to include a <publish-options/>
node describing who has access to the node and how it is stored on the server.

4.4.2 Subscribing to Data from a Client

If a client likes to get access to data provided by an IoT device, it has to first has
to subscribe to all of the three nodes (xmpp.iot.sensors, xmpp.iot.actuators and

34

4 Protocol Design

xmpp.iot.ui).
The following example shows the subscription request message, send from a client

to its server for the node xmpp.iot.sensors.

<iq type='set'
from='juliet@example.org/balcony'
to='pubsub.example.org'
id='sub1'>
<pubsub xmlns='http://jabber.org/protocol/pubsub'>

<subscribe node='xmpp.iot.sensors'
jid='juliet@example.org'/>

</pubsub>
</iq>

On success the server will return a confirmation with an unique subscription id.

<iq type='result'
from='pubsub.example.org'
to='juliet@example.org/balcony'
id='sub1'>

<pubsub xmlns='http://jabber.org/protocol/pubsub'>
<subscription node='xmpp.iot.sensors'

jid='juliet@example.org'
subid='ba49252aaa4f5d320c24d3766f0bdcade78c78d3'
subscription='subscribed'/>

</pubsub>
</iq>

If now the device publishes a new value for the xmpp.iot.sensor.temp node all
subscribers will be notified about it.

35

4 Protocol Design

<message from='pubsub.example.org'
to='juliet@example.org/balcony'
id='notification1'>

<event xmlns='http://jabber.org/protocol/pubsub#event'>
<items node='xmpp.iot.sensors'>

<item id='xmpp.iot.sensor.temp'>
<val xmlns="urn:xmpp:uwpx:iot"

unit='celsius'
type='float'>22.43</val>

</item>
</items>

</event>
</message>

4.4.3 Text Based Data Access

To make IoT devices also usable from existing XMPP clients, that do not implement
all of our proposed features, IoT devices should be able to fall back to text-based data
access.

Here, the IoT device has to expose a set of text-based commands that can be requested
by sending "help" to the IoT device using the default XMPP chat protocol and message
stanzas. Once the "help" command arrives at the IoT device, it has to respond with a list
of available commands. Besides the "help" command, the device could offer a command
for retrieving the current temperature from a sensor with the "temp" command. Another
example could be turning an LED on with the "led on" command.

4.4.4 The UI node

The xmpp.iot.ui node is different than the other nodes. It does not provide any
actuator or sensor data. Instead, it contains information about the UI and how a client
should display the sensors and actuators to the client.

The following example shows our IoT device kettle@example.org/kitchen publishing
the XEP-0004 Data Forms UI definition for its sensors and actuators. As an addition we
use XEP-0336: Data Forms - Dynamic Forms to define read only sensor readings like
shown in the bellow example for the Temperature and Air Pressure controls. The id of
the item element always has to be "current" to make sure old definitions get replaced.

36

4 Protocol Design

<iq type='set'
from='kettle@example.org/kitchen'
to='pubsub.example.org'
id='publish1'>
<pubsub xmlns='http://jabber.org/protocol/pubsub'>

<publish node='xmpp.iot.ui'>
<item id='current'>

<x xmlns='jabber:x:data' type='form'>
<title>ESP32 XMPP</title>
<field type='boolean'

label='Light␣on?'
var='xmpp.iot.sensor.led'/>

<field type='boolean'
label='Sound␣on?'
var='xmpp.iot.sensor.speaker'/>

<field type='text-single'
label='Temperature:␣'
var='xmpp.iot.sensor.temp'>

<xdd:readOnly/>
</field>
<field type='text-single'

label='Air␣Pressure:␣'
var='xmpp.iot.sensor.bar'>

<xdd:readOnly/>
</field>

</item>
</publish>

<publish-options>
<x xmlns="jabber:x:data"
type="submit"/>

<field var="FORM_TYPE"
type="hidden">
<value>http://jabber.org/protocol/pubsub#publish-options</

value>
</field>
<field var="pubsub#persist_items">

<value>true</value>
</field>
<field var="pubsub#access_model">

37

4 Protocol Design

<value>roster</value>
</field>

</publish-options>
</pubsub>

</iq>

The client itself is free in the way it presents this form to the user. It just has to make
sure all fields are displayed and accessible by the user.

This data form contains all controls (fields) with respective node names. For example
the Air Pressure: control (field) has the attribute var=’xmpp.iot.sensor.bar’. The
value of this attribute (xmpp.iot.sensor.bar) is the same as the pubsub item node.
Therefore if the client has a concrete value for the xmpp.iot.sensor.bar node, it has to
append it to the value of the label node.

4.4.5 Publishing Updated Values

The following section will describe how to proceed if, for example a home-user clicks on,
for example a toggle switch to toggle on a kettle. Here, our home-user juliet@example.org
uses her device balcony to toggle on her kettle (kettle@example.org).

After she pressed the toggle switch representing the power button in her UI, her client
has to update the pubsub node. Therefore it sends, like the owner (kettle@example.org), a
publish stanza containing the updated value for the powerOn leave node. This message
should not contain any <publish-options/> since in this case the sender is not the
owner.

<iq type='set'
from='juliet@example.org/balcony'
to='pubsub.example.org'
id='publish5'>
<pubsub xmlns='http://jabber.org/protocol/pubsub'>

<publish node='xmpp.iot.actuators'>
<item id='xmpp.iot.actuator.powerOn'>

<val xmlns="urn:xmpp:uwpx:iot"
type='boolean'>1</val>

</item>
</publish>

</pubsub>
</iq>

On success the server returns the node with all its items (leave nodes).

38

4 Protocol Design

<iq type='result'
from='pubsub.example.org'
to='juliet@example.org/balcony'
id='publish15'>
<pubsub xmlns='http://jabber.org/protocol/pubsub'>

<publish node='xmpp.iot.actuators'>
<item id='xmpp.iot.actuator.powerOn'/>

</publish>
</pubsub>

</iq>

As shown earlier, the server will now inform all subscribers about the change. The
following example only shows this message for the owner of this node (our kettle
kettle@example.org).

<message from='pubsub.example.org'
to='kettle@example.org/kitchen' id='notification16'>

<event xmlns='http://jabber.org/protocol/pubsub#event'>
<items node='xmpp.iot.actuators'>

<item id='xmpp.iot.actuator.powerOn'>
<val xmlns="urn:xmpp:uwpx:iot"

type='bool'>1</val>
</item>

</items>
</event>

</message>

4.5 Summary

All in all, our target was to keep our protocol as simple as possible and reusing already
existing building blocks like Publish-Subscribe (XEP-0060) whenever possible. While
there already exists a general solution for connecting IoT devices to an XMPP server,
this solution is far to complex and has a bunch of weaknesses which forced us to wor
on our own design.

As building blocks we are using Publish-Subscribe (XEP-0060), In-Band Registration
(XEP-0077), Data Forms (XEP-0004), Data Forms - Dynamic Forms (XEP-0336) and
Persistent Storage of Private Data via PubSub (XEP-0223). Those are then used for the
Registartion and Data Access.

For the registration procedure, we use a QR Code printed on the IoT device, which

39

subsection:private_pubsub

4 Protocol Design

allows the client to connect to the IoT device using BLE and configure it with, for
example the Wi-Fi SSID, Wi-Fi password and its JID. After that, the device can connect
to the XMPP server and the client can start subscribing to the PubSub nodes offered by
the IoT device.

40

5 Implementation

The following sections will focus on the reference implementation that was used for
validation and practicability testing of the overall design. The implementation for this,
has been split up into multiple parts: The IoT Device The XMPP Client

5.1 The IoT Device

In this part of the implementation we were focusing on a reference implementation
for standalone IoT devices. As a microcontroller we choose the ESP32 from Espressif
[Espa].

5.1.1 The ESP32

The ESP32 from Espressif is a low-power and low-cost system on a chip microcontroller.
With its two Xtensa® 32-bit LX6 microprocessors, it is perfect for our requirements,
since we would like to host a full TCP/IP stack while still being able to evaluate
sensor data in real-time. Some of its other features include integrated support for
Wi-Fi, Bluetooth, DAC and ADC. it is produced by TSMC (Taiwan Semiconductor
Manufacturing Company) [TSM] on their 40 nm process and able to resist temperatures
between −40 ◦C and 150 ◦C [Espb].

5.1.2 Hardware

Figure 5.1 shows our reference device consisting of an ESP32 connected to a button,
LED, buzzer and a BMP180 (pressure and temperature sensor). The LED was used as a
status indicator like shown in Figure 5.2 and the button as a hardware reset, that erases
all configurations once pressed.

As an actuator, we are using the buzzer and the BMP180 is used as a sensor. Both
send their current values using XMPP to the subscribed clients like descried in Protocol
Design section. The buzzer can be controlled by a connected client like also described
in the Protocol Design section.

Besides that Figure 5.1 also shows the QR Code used for initiating the registration
process like described in the Registration section.

41

5 Implementation

Figure 5.1: Reference IoT device hardware

#1
 Error/Booting

Setup done.
Initialized = true

#2
 BLE Enabled

#4
 Wi-Fi Connected

#3
 Connecting to Wi-Fi

No

 Yes

Initialized?

Figure 5.2: ESP32 LED status colors

42

5 Implementation

5.1.3 The Development Framework

As development framework we are using the Espressif IoT Development Framework
(ESP-IDF) [Espc]. It offers a rich feature set in C and is rather well documented. Since
we wanted to develop the reference implementation in C++, we are using the Smooth
framework [Mal]. Smooth offers C++ wrappers for a bunch of ESP-IDF and FreeRTOS
APIs. Besides Smooth, we are also using a fork of Neil Kolban’s ESP32 Snippets library
[Kol]. It offers a great C++ wrapper for the Bluetooth and Bluetooth Low Energy APIs
provided by the ESP-IDF.

5.1.4 XMPP and the ESP32

For the process of teaching the ESP32 how to speak XMPP, we started searching for a
library that was written in C/C++. Furthermore, it had to have a minimal RAM and
ROM footprint since we only have 520 KB SRAM and 448 KB ROM available [Espb].
This reduced the amount of usable libraries to only libcouplet [lou], libstrophe [Mof]
and dxmpp [ste]. We decided against the use of libcouplet and libstrophe since both of
them do not use CMake as their build system and they have too many dependencies,
which made them too large to fit onto our ESP32.

It looked like dxmpp was our only option since it uses CMake as their build system
and has only pugixml [Kap] and boost [DA] as dependencies. Therefore it was perfect
and minimalist enough for our case.

Later it turned out it wasn’t. Since dxmpp uses boost threads instead of p_thread, it
won’t be able to run on the ESP32. We no either had to replace all boost threads with
p_threads or write our own minimalists XMPP API. We decided to write our own XMPP
API. it is Open Source and available under https://github.com/COM8/esp32-xmpp-iot.

At the time of writing, it included only essential functionally like PLAIN SASL
authentication and no support of TLS yet. Besides that it uses TinyXML-2 [Tho] as
XML library for parsing and generating XMPP stanzas. It has support for basic stanza
parsing and support the following XEPs:

• XEP-0060: Publish-Subscribe (basic)

• XEP-0223: Persistent Storage of Private Data via PubSub

• XEP-0004: Data Forms

• XEP-0336: Data Forms - Dynamic Forms

43

https://github.com/COM8/esp32-xmpp-iot

5 Implementation

5.2 The XMPP Client

The second part of the reference implementation consists of an XMPP client implemen-
tation. While it is still possible to interact with IoT devices purely by the use of text
messages, like described in subsection 4.4.3, for registering a new device, a compatible
client is required. Therefore we extended the Windows 10 XMPP client UWPX.

5.2.1 UWPX

UWPX [Saua] is an Open Source [Saub] XMPP client app for all UWP [Mic] (Windows
10) devices. This includes platforms like PC, Windows Phone, Xbox and HoloLens.
We choose UWPX since it is Open Source, written in C# and therefore easy enough to
extend. It already supports almost all required XEPs so we only needed to add support
for the following XEPs:

• XEP-0336: Data Forms - Dynamic Forms

• XEP-0077: In-Band Registration

QR Code Scanner

Besides the work that went into adding support for the XEPs mentioned above, we
added a QR Code scanner control. This Control can scan any QR Code and is used by
our implementation to scan the QR Codes that start the registration process for new
IoT devices.

Bluetooth Low Energy

We also added support for establishing a BLE connection with the IoT device. Therefore
we added a complete BLE client implementation that reads, caches and then writes to
Bluetooth characteristics provided by the Bluetooth server, running on the IoT device.

5.2.2 Registering IoT Devices

In the following, we are having a look at the registration procedure required for new IoT
devices. Like shown in Figure 5.3 the registration procedure starts with the home-user
having to select the device type (Standalone or Hub-Based). At the time of writing only
Standalone devices are supported.

Once the home-user has selected an option, he has to scan the QR Code printed on
the device, like shown in Figure 5.4.

44

5 Implementation

Figure 5.3: Selecting either a Standalone or Hub-Based device.

Figure 5.4: Scanning the device QR Code.

45

5 Implementation

After that, UWPX starts connecting to the IoT devices BLE Server as a BLE client, as
shown in Figure 5.5.

Figure 5.5: UWPX connects to the IoT device using BLE.

Once a connection has been established, UWPX retrieves basic information like device
name, manufacturer, serial number and hardware revision from the IoT device and
shows them to the home-user. This is shown in Figure 5.6. Now the home-user can
decide if this is the correct IoT device he connected to. If so, he can enter the Wi-Fi SSID
and password for the IoT device to connect to. UWPX typically already fills out the
Wi-Fi SSID filled with the currently connected Wi-Fi network the device is connected
to, where UWPX is running on. Due to API limitations, it is not possible to retrieve the
Wi-Fi password as well.

If the home-user now clicks on the "Send" button, UWPX sends the information
using the BLE connection to the IoT device. Once this is done, the IoT device restarts
and connects to the configured Wi-Fi network and the XMPP server. This is shown in
Figure 5.7.

Once the IoT device has sent the initial hello message using XMPP, UWPX mirrored
it and the IoT device responded with another XMPP message stanza the setup is done.
This is shown to the home-user in Figure 5.8.

Once the setup is done, the home-user can select the IoT device in the chat view.
When the home-user selects the IoT device, UWPX automatically shows the latest

46

5 Implementation

Figure 5.6: UWPX showing device information and configuration options.

Figure 5.7: UWPX sends all the configuration options to the IoT device.

47

5 Implementation

Figure 5.8: Setup was successful.

version of the UI provided by the IoT device. In Figure 5.9 UWPX shows the UI
received from an IoT device with two actuators (LED and Speaker) as well as two
sensors (temperature and pressure). Once the IoT device publishes new values for its
sensors, those will be shown in their representative boxes.

5.3 Summary

To sum up, we split the implementation into two parts: The IoT device and the client.
For the IoT device, we are using an ESP32 from Espressif. We are programming it
using C++ with the ESP-IDF framework, where we developed a custom bare-bones
XMPP client library for it. This is required since all the existing libraries are either too
large and therefore, won’t fit on our ESP32 or use dependencies that do not work in
combination with the ESP-IDF framework we are using.

The second part is a reference XMPP client implementation. Therefore we are
extending UWPX, an Open Source XMPP client written in C#. It already provides most
of the required components; we are using for our IoT protocol like Publish-Subscribe
(XEP-0060).

Because of that, we only had to do minimal work on the XMPP API. We still had to
implement the UI, Bluetooth Low Energy and a QR Code scanner for our protocol.

48

5 Implementation

Figure 5.9: Sensor and actuator view with empty values.

49

6 Evaluation

Our evaluation is split up into two parts: In part on (Use Case) we will have a look at
the home-user use case and evaluate if we were able to fulfill all of our goals mentioned
in the System Design and Protocol Design chapters.

In the second part (Performance) we will go through and benchmark our implemen-
tation. We measure for example, how long it takes a measurement that has been sent
from an IoT device to arrive at the home-users client.

6.1 Use Case

As a general use case for our solution we are targeting the home automation market.
We see our self as a direct competitor to all the existing solutions like Smart Home from
AVM [AVM] or Smart Home from Bosch [Bos].

Therefore we have to ask our self the following questions:

• How easy is the setup process for new IoT devices?

– What are the requirements?

– Do we require any server-side components?

– Will there be a "chicken or egg" problem?

• Do home-users require a client that supports all proposed features?

• How easy is it for developers to implement our protocol?

• Did we reinvent the wheel with our solution?

6.1.1 The Setup Process

We want to start with the question: "How easy is the setup process for new IoT devices?". To
answer this, we conducted a short experiment with 12 test persons. All of them were
either bachelor or master computer science students. Eight out of them never used
XMPP as a communication protocol before. None of them ever used UWPX as a chat
client before.

50

6 Evaluation

Their task was to register a new IoT device (like shown in Figure 5.1) to their account
using UWPX. After a basic introduction to the chat UI, we started a timer and measured
how long it would take them to figure out how to register a new device. We stopped
the timer as soon as they archived to get to the success screen (as shown in Figure 5.8).

0

1

2

3

4

5

6

7

8

Minutes

Minutes per test person

×

×

×

×
×

×
× × ×

×

×

×

×
Average

Figure 6.1: Time in minutes for registration per test persons

The results are shown in Figure 6.1, where we see the time in minutes it took them
to register a new device. The mean is 2 minutes and 14 seconds and the standard
deviation 1 minute and 26 seconds.

So did we succeed in making it as easy as possible for home-users to register a new
IoT device?

Yes, since once they found out how to initiate the process, all of them were able to
go through it without any additional guidance. Besides that, all of them responded
positively to the whole process. The most time was spend either waiting for the BLE
data transfer or by typing in the Wi-Fi SSID and password the IoT device should
connect to.

Server Side Components: We can realize all of that without requiring any server-side
modifications for our protocol. Not requiring any server-side components also limits
our ability to discover already registered IoT devices since there is no central registry
where new IoT devices register themselves on the server.

Even if we went the route of IoT devices registering themselves in a central group

51

6 Evaluation

chat (MUC), this would introduce other problems like: How do we ensure only IoT
devices register/enter those group chats? Or for being able to discover all devices in
that one central group chat, the home-users client would have to enter the group chat
as well, discover all participants and leave it again. During the time he discovers all
other participants, he is a participant as well, which again brings us back to the point,
how do we distinguish participants in those group chats from each other?

In the long term, we will require a server component that does provide precisely
those kinds of features, but for a start until adoption of our protocol arises, a server
component is not required necessarily. This also prevents the so-called "chicken or egg"
problem where server developers would wait for client developers to start implementing
our protocol on their side for them being able to test their implementation and vice
versa.

Requirements: Let’s go back one step and have a look at the requirements for our
protocol. First of all, the home-user requires an account on either a private or public
XMPP server. Our protocol does not limit the use to private or public XMPP servers
only. We want to keep it open for the home-user to decide what server to choose. If he
decides to host his own private XMPP server, while this greatly improves the control
he as over his data, this does not come without a cost. Here, the cost comes in the form
of additional labor he has to do to set up and maintain his private XMPP server.

Therefore we suggested to include XMPP servers in modems/routers since nowadays
those have enough computational power to host an XMPP server besides their usual
duties as a home server, e.g., media or files. This would shift the burden of setting up
and maintaining such a server implementation to the modem/router manufacturer.
The manufacturer then would have to make sure the home-user has easy access to it is
XMPP server through, for example a dedicated web interface.

Besides the requirement of an account on an XMPP server an XMPP client that
supports our protocols is also required — at least for the IoT device registration. Once
the IoT device has been registered, the home-user also can interact with its IoT device
using plain text message stanzas if he prefers (like described in section Text Based Data
Access).

6.1.2 Reuse of Existing Protocol Mechanisms

Our second goal was not to reinvent the wheel and make it as easy to implement on top
of an existing XMPP client implementation as possible. We think, we also succeeded
here since we only use already existing building blocks like Publish-Subscribe (XEP-
0060), In-Band Registration (XEP-0077), . . .

52

6 Evaluation

The only component we are introducing is how sensor values are stored. Therefore we
are using a custom <val/> XML node with our own namespace (urn:xmpp:uwpx:iot)
like shown in the section about Data Access. In a later iteration of our protocol, we plan
to replace this by using a simplified version of XEP-0323: Internet of Things - Sensor
Data [Wahb] for this task.

6.2 Performance

To measure the responsiveness and Therefore performance of our solution, we measured
the delay between publishing a new sensor reading and the home-users client receiving
the updated value.

3/6

2/7

 4/5
Modem/GatewayModem/Gateway8

Client IoT Device XMPP Server

Internet

 1

Figure 6.2: Round trip time (RTT) test setup with a public XMPP server

Figure 6.2 shows the test setup for our first test with a public XMPP server. Our IoT
device and the client were both connected to the same network. Both them used an
external server (xmpp.uwpx.org with ejabberd 19.09.1 installed on it) as their XMPP
server of choice. While the XMPP client was connected over a wired connection to the
modem/router, the IoT device was not. It was connected to a wireless access point in
the same network.

Since synchronizing time is rather hard between two devices, especially if we want
to measure time in the range of a couple of milliseconds, we decided to measure the
round trip time (RTT) instead. Therefore as soon as the client receives an event for a
changed value, it has to publish a new value as well. Now, as soon as the IoT device
receives this event, it stops the measurement. This process is shown in Figure 6.3.

The results of those measurements can be found in Figure 6.4. With a minimum of
49.69, a mean of 60.88, a variance of 90.48 and a standard deviation of 9.51 milliseconds
delay, this is acceptable. Especially for latency-sensitive actions like turning a light bulb
on or off, were users expect an instant reaction, this is a good sign.

53

6 Evaluation

int64_t begin = esp_timer_get_time();
IoT device publishes a new value
Client receives the new value
Client publishes a new value as well
IoT device receives the new value
double rtt_ms = double(esp_timer_get_time()- begin)/ 1000;

Figure 6.3: Measuring the RTT

40

50

60

70

80

90

100

110

120

130

140

150

Milliseconds

RTT/2

××
×
×

×
×
××××
××
×

×
×
×
××
×
×
×
×

×
××××
××××
×××
××
×

×
××××××

×
×
×××
×

×

×

×
××××
×
×××
××××

××
××
××

×
×××××××

×
××
××

×
×××

×
×
×××
×
××
×
×
××

×

×

×

×
××
××××××××

××

×
××
×

×

×
××
×××

××××
×
×××

×
××

×
Average

Figure 6.4: RTT/2 of a value published to a public XMPP server

54

6 Evaluation

We conducted the same test for a network where all three devices were connected
to the same network. Figure 6.5 shows the test setup where all devices except the IoT
devices had a wired connection to the local modem. The IoT device was connected
wirelessly to the modem using an access point. The results of this experiment can be
found in Figure 6.6.

2/3

Modem/Gateway4

Client IoT Device

XMPP Server 1

Figure 6.5: Round trip time (RTT) test setup with a private XMPP server

Here, we definitely see a lower mean travel time with a minimum of 0.926 millisec-
onds and a mean of 13.12, variance of 15.3 and a standard deviation of 3.91 milliseconds
delay. Although the mean results are better, we see spikes up to 21.298 milliseconds.
Those spikes are probably caused by the unpredictable nature of the wireless connection
used for connecting the IoT device to the access point.

55

6 Evaluation

0

5

10

15

20

25

Milliseconds

RTT/2

×
×
××

×

×

×
×

×

××

×

×

×

××

×
×

×
××

×

×

×

×

×
×

×

×

×

×
×

×

×

×
×
×

×

×
×

×

×

×××

×
××

×

×

××

×

×

××

×

×

××

××

×

×

×
×

×
×××

×

×
×

××××

×

×

×

×

×
×

×
×

××

××
×

×

××

×
×

×

×
×

×

×

×

×

×

×

×

×

×

×

×

××

×

×

××
×

×

×

×
×

×

×
×

×
××
×

×

×

×

×
×
×
×
×

×

×

××

×

×

×

×
×

×
×

×

×

×

×
Average

Figure 6.6: RTT/2 of a value published to a private XMPP server

56

7 Conclusion

To sum up we can say, with this thesis we started the first step into the direction of an
open standard for connecting and controlling IoT devices using XMPP based clients.

While we have a functioning prototype with a working reference implementation, this
is by no means the end of this project. Currently, our protocol only supports features
like registering new IoT devices in combination with subscribing and publishing new
values for sensors and actuators. It still misses features like access control or transfer
of ownership, which would allow for example, other family members to access the
same IoT device using their XMPP accounts (JIDs) at the same time. To go even further
integration with other services like IFTTT, Alexa and Google Assistant are also possible
future ways in how this protocol can be expanded.

Nevertheless, with our approach of reusing existing extensions like Publish-Subscribe
(XEP-0060) for publishing and subscribing new values, features like access control need
a little bit more work to be usable. All in all, we can say we created a sturdy base for
later extensions and changes to our protocol.

57

List of Figures

2.1 Format of a full/bare JID . 5
2.2 Valid XML at the end of an XMPP session 6

3.1 System Design . 12
3.2 Device Registration . 18
3.3 Active Data Access . 19
3.4 Passive Data Access . 20

4.1 Device Registration QR Code . 27
4.2 Registration process for new IoT devices 28
4.3 XEP-0060 Publish-Subscribe node structure 32

5.1 Reference IoT device hardware . 42
5.2 ESP32 LED status colors . 42
5.3 Selecting either a Standalone or Hub-Based device. 45
5.4 Scanning the device QR Code. 45
5.5 UWPX connects to the IoT device using BLE. 46
5.6 UWPX showing device information and configuration options. 47
5.7 UWPX sends all the configuration options to the IoT device. 47
5.8 Setup was successful. 48
5.9 Sensor and actuator view with empty values. 49

6.1 Time in minutes for registration per test persons 51
6.2 Round trip time (RTT) test setup with a public XMPP server 53
6.3 Measuring the RTT . 54
6.4 RTT/2 of a value published to a public XMPP server 54
6.5 Round trip time (RTT) test setup with a private XMPP server 55
6.6 RTT/2 of a value published to a private XMPP server 56

58

List of Tables

4.1 Minimum Required Set of Bluetooth Characteristics 29

59

Bibliography

[404] 404.city. Open list of public XMPP servers. url: https://xmpp-servers.404.
city/ (visited on 10/01/2019).

[AA19] A. Albataineh and I. Alsmadi. IoT and the Risk of Internet Exposure: Risk
Assessment Using Shodan Queries. IEEE. Aug. 2019.

[AVM] AVM. Smart Home. url: https://avm.de/ratgeber/smart-home/ (visited
on 12/07/2019).

[BFM05] T. Berners-Lee, R. T. Fielding, and L. Masinter. Uniform Resource Identifier
(URI): Generic Syntax. STD 66. http://www.rfc-editor.org/rfc/rfc3986.
txt. RFC Editor, Jan. 2005.

[Blua] Bluetooth Special Interest Group (Bluetooth SIG). Radio Versions. url: https:
//www.bluetooth.com/bluetooth-technology/radio-versions/ (visited
on 10/29/2019).

[Blub] Bluetooth Special Interest Group (Bluetooth SIG). Specification GATT Char-
acteristics. url: https : / / www . bluetooth . com / specifications / gatt /
characteristics/ (visited on 10/28/2019).

[Bluc] Bluetooth Special Interest Group (Bluetooth SIG). Specification GATT Services.
url: https : / / www . bluetooth . com / specifications / gatt / services/
(visited on 10/28/2019).

[Blud] Bluetooth Special Interest Group (Bluetooth SIG). Understanding Bluetooth
Range. url: https://www.bluetooth.com/bluetooth-technology/bluetooth-
range/ (visited on 10/29/2019).

[BMS] R. Blackman, P. Millard, and P. Saint-Andre. Bookmarks. XEP 0048. Version:
1.1 (2007-11-07).

[Bos] Bosch. Bosch Smart Home. url: https://www.bosch-smarthome.com/ (vis-
ited on 12/07/2019).

[CZN] CZ.NIC. More than just a router. The open source center of your home. url:
https://www.turris.cz/en/omnia/ (visited on 10/15/2019).

[DA] B. Dawes and D. Abrahams. boost C++ libraries. url: https://www.boost.
org/ (visited on 12/06/2019).

60

https://xmpp-servers.404.city/
https://xmpp-servers.404.city/
https://avm.de/ratgeber/smart-home/
http://www.rfc-editor.org/rfc/rfc3986.txt
http://www.rfc-editor.org/rfc/rfc3986.txt
https://www.bluetooth.com/bluetooth-technology/radio-versions/
https://www.bluetooth.com/bluetooth-technology/radio-versions/
https://www.bluetooth.com/specifications/gatt/characteristics/
https://www.bluetooth.com/specifications/gatt/characteristics/
https://www.bluetooth.com/specifications/gatt/services/
https://www.bluetooth.com/bluetooth-technology/bluetooth-range/
https://www.bluetooth.com/bluetooth-technology/bluetooth-range/
https://www.bosch-smarthome.com/
https://www.turris.cz/en/omnia/
https://www.boost.org/
https://www.boost.org/

Bibliography

[Eat+] R. Eatmon, J. Hildebrand, J. Miller, T. Muldowney, and P. Saint-Andre. Data
Forms. XEP 0004. Version: 2.9 (2007-08-13).

[Espa] Espressif Systems. ESP32 Overview. url: https://www.espressif.com/en/
products/hardware/esp32/overview (visited on 09/17/2019).

[Espb] Espressif Systems. ESP32 Series Datasheet Version 3.1. url: https://www.
espressif.com/sites/default/files/documentation/esp32_datasheet_
en.pdf (visited on 09/17/2019).

[Espc] Espressif Systems. Espressif IoT Development Framework (ESP-IDF). url:
https://github.com/espressif/esp-idf (visited on 12/06/2019).

[HG18] C. Huynh and A. Galishnikov. Method and apparatus for virtually writing to a
nfc chip. Patent US20190122010A1. 2018.

[IEEa] IEEE. What is a Working Group. url: https : / / standards . ieee . org /
develop/mobilizing-working-group/wg.html (visited on 12/06/2019).

[IEEb] IEEE. XMPP Interface Working Group. url: https://standards.ieee.org/
develop/wg/XMPPI.html (visited on 10/22/2019).

[Kap] A. Kapoulkine. pugixml. url: https://github.com/zeux/pugixml (visited
on 12/06/2019).

[Kol] N. Kolban. ESP32 Snippets. url: https : / / github . com / COM8 / esp32 -
snippets (visited on 12/06/2019).

[lou] louiz’(louiz). libcouplet. url: https://github.com/louiz/libcouplet
(visited on 12/06/2019).

[Mal] P. Malmberg. Smooth. url: https://github.com/PerMalmberg/Smooth
(visited on 12/06/2019).

[Mal+18] M. I. Malik, I. N. McAteer, P. Hannay, S. N. Firdous, and Z. Baig. “XMPP
architecture and security challenges in an IoT ecosystem.” In: Proceedings of
the 16th Australian Information Security Management Conference. 2018, p. 62.

[Mar] Marvell. Highly scalable, multi-core SoC. url: https://www.marvell.com/
embedded-processors/armada/armada-38x/ (visited on 10/15/2019).

[Mic] Microsoft Corporation. What’s a Universal Windows Platform (UWP) app?
url: https://docs.microsoft.com/de-de/windows/uwp/get-started/
universal-application-platform-guide (visited on 09/23/2019).

[MIT] MITRE Corporation. Process-one : Ejabberd : Security Vulnerabilities. url:
https://www.cvedetails.com/vulnerability-list/vendor_id-4455/
product_id-7709/Process-one-Ejabberd.html (visited on 10/24/2019).

61

https://www.espressif.com/en/products/hardware/esp32/overview
https://www.espressif.com/en/products/hardware/esp32/overview
https://www.espressif.com/sites/default/files/documentation/esp32_datasheet_en.pdf
https://www.espressif.com/sites/default/files/documentation/esp32_datasheet_en.pdf
https://www.espressif.com/sites/default/files/documentation/esp32_datasheet_en.pdf
https://github.com/espressif/esp-idf
https://standards.ieee.org/develop/mobilizing-working-group/wg.html
https://standards.ieee.org/develop/mobilizing-working-group/wg.html
https://standards.ieee.org/develop/wg/XMPPI.html
https://standards.ieee.org/develop/wg/XMPPI.html
https://github.com/zeux/pugixml
https://github.com/COM8/esp32-snippets
https://github.com/COM8/esp32-snippets
https://github.com/louiz/libcouplet
https://github.com/PerMalmberg/Smooth
https://www.marvell.com/embedded-processors/armada/armada-38x/
https://www.marvell.com/embedded-processors/armada/armada-38x/
https://docs.microsoft.com/de-de/windows/uwp/get-started/universal-application-platform-guide
https://docs.microsoft.com/de-de/windows/uwp/get-started/universal-application-platform-guide
https://www.cvedetails.com/vulnerability-list/vendor_id-4455/product_id-7709/Process-one-Ejabberd.html
https://www.cvedetails.com/vulnerability-list/vendor_id-4455/product_id-7709/Process-one-Ejabberd.html

Bibliography

[Mof] J. Moffitt. libstrophe. url: https://github.com/strophe/libstrophe (vis-
ited on 12/06/2019).

[MSM] P. Millard, P. Saint-Andre, and R. Meijer. Publish-Subscribe. XEP 0060. Ver-
sion: 1.16.0 (2019-09-11).

[NIS] NIST National Instiute of Standards and Technology. Recommendation for Key
Management. url: https://nvlpubs.nist.gov/nistpubs/SpecialPublications/
NIST.SP.800-57pt1r4.pdf (visited on 11/23/2019).

[Opea] OpenWrt. url: https://openwrt.org/ (visited on 10/15/2019).

[Opeb] OpenWrt. Exceeding transmit power limits. url: https://openwrt.org/
docs/guide- user/network/wifi/transmit.power.limits (visited on
11/05/2019).

[Opec] OpenWrt. TP-Link. url: https://www.tp-link.com/en/home-networking/
dsl-modem-router/ (visited on 12/11/2019).

[Ric+06] V. Ricquebourg, D. Menga, D. Durand, B. Marhic, L. Delahoche, and C.
Logé. The Smart Home Concept : our immediate future. IEEE. Dec. 2006.

[Saia] P. Saint-Andre. Best Practices to Discourage Denial of Service Attacks. XEP 0205.
Version: 1.0.1 (2018-11-21).

[Saib] P. Saint-Andre. In-Band Registration. XEP 0077. Version: 2.4 (2012-01-25).

[Saic] P. Saint-Andre. Multi-User Chat. XEP 0045. Version: 1.32.0 (2019-05-15).

[Sai11a] P. Saint-Andre. Extensible Messaging and Presence Protocol (XMPP): Core. RFC
6120. http://www.rfc-editor.org/rfc/rfc6120.txt. RFC Editor, Mar.
2011.

[Sai11b] P. Saint-Andre. Extensible Messaging and Presence Protocol (XMPP): Instant
Messaging and Presence. RFC 6121. http://www.rfc- editor.org/rfc/
rfc6121.txt. RFC Editor, Mar. 2011.

[Sai15] P. Saint-Andre. Extensible Messaging and Presence Protocol (XMPP): Address
Format. RFC 7622. RFC Editor, Sept. 2015.

[Saua] F. Sauter. url: https://uwpx.org/ (visited on 09/23/2019).

[Saub] F. Sauter. url: https : / / github . com / UWPX / UWPX - Client (visited on
09/23/2019).

[Sch] T. Schlüter. Sicherheitsmechanismen von Bluetooth Low Energy. url: https:
//return-false.de/archive/1098 (visited on 10/29/2019).

[SCM] P. Saint-Andre, D. Cridland, and R. Meijer. XMPP Extension Protocols. XEP
0001. Version: 1.23.0 (2019-01-17).

62

https://github.com/strophe/libstrophe
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-57pt1r4.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-57pt1r4.pdf
https://openwrt.org/
https://openwrt.org/docs/guide-user/network/wifi/transmit.power.limits
https://openwrt.org/docs/guide-user/network/wifi/transmit.power.limits
https://www.tp-link.com/en/home-networking/dsl-modem-router/
https://www.tp-link.com/en/home-networking/dsl-modem-router/
http://www.rfc-editor.org/rfc/rfc6120.txt
http://www.rfc-editor.org/rfc/rfc6121.txt
http://www.rfc-editor.org/rfc/rfc6121.txt
https://uwpx.org/
https://github.com/UWPX/UWPX-Client
https://return-false.de/archive/1098
https://return-false.de/archive/1098

Bibliography

[Spe] Specifications - XMPP. url: https://xmpp.org/extensions/ (visited on
09/17/2019).

[ste] stefan (stefandxm). DXMPP - Deus ex Machinae XMPP framework. url:
https://github.com/stefandxm/dxmpp (visited on 12/06/2019).

[Tho] L. Thomason. TinyXML-2. url: https : / / github . com / leethomason /
tinyxml2 (visited on 12/06/2019).

[TP-] TP-Link. DSL Modems & Routers. url: https://openwrt.org/toh/hwdata/
tp-link/start (visited on 12/11/2019).

[TSM] TSMC (Taiwan Semiconductor Manufacturing Company). url: https://
www.tsmc.com (visited on 09/17/2019).

[Waha] P. Waher. Internet of Things - Control. XEP 0325. Version: 0.5 (2017-05-20).

[Wahb] P. Waher. Internet of Things - Sensor Data. XEP 0323. Version: 0.6 (2017-05-20).

[Wahc] P. Waher. IoTGateway. url: https://github.com/PeterWaher/IoTGateway
(visited on 10/24/2019).

[Wi-a] Wi-Fi Alliance. Overview. url: https : / / www . wi - fi . org/ (visited on
10/29/2019).

[Wi-b] Wi-Fi Alliance. Wi-Fi CERTIFIED 6™Highlights. url: https://www.wi-
fi.org/file/wi-fi-certified-6-highlights (visited on 10/29/2019).

[Wur+16] J. Wurm, K. Hoang, O. Arias, A.-R. Sadeghi, and Y. Jin. Security analysis on
consumer and industrial IoT devices. IEEE. Mar. 2016.

[XMPa] XMPP (Extensible Messaging and Presence Protocol). url: https://xmpp.
org/ (visited on 09/17/2019).

[XMPb] XMPP (Extensible Messaging and Presence Protocol). Instant Messaging.
url: https : / / xmpp . org / uses / instant - messaging . html (visited on
10/01/2019).

[XMPc] XMPP (Extensible Messaging and Presence Protocol). Online Gaming. url:
https://xmpp.org/uses/gaming.html (visited on 10/01/2019).

[XMPd] XMPP (Extensible Messaging and Presence Protocol). Social. url: https:
//xmpp.org/uses/social.html (visited on 10/01/2019).

[XMPe] XMPP Interface Working Group. Discovery. url: https://gitlab.com/
IEEE-SA/XMPPI/IoT/blob/master/Discovery.md#installation (visited
on 10/22/2019).

[XMPf] XMPP Interface Working Group. IoT. url: https://gitlab.com/IEEE-
SA/XMPPI/IoT (visited on 10/22/2019).

63

https://xmpp.org/extensions/
https://github.com/stefandxm/dxmpp
https://github.com/leethomason/tinyxml2
https://github.com/leethomason/tinyxml2
https://openwrt.org/toh/hwdata/tp-link/start
https://openwrt.org/toh/hwdata/tp-link/start
https://www.tsmc.com
https://www.tsmc.com
https://github.com/PeterWaher/IoTGateway
https://www.wi-fi.org/
https://www.wi-fi.org/file/wi-fi-certified-6-highlights
https://www.wi-fi.org/file/wi-fi-certified-6-highlights
https://xmpp.org/
https://xmpp.org/
https://xmpp.org/uses/instant-messaging.html
https://xmpp.org/uses/gaming.html
https://xmpp.org/uses/social.html
https://xmpp.org/uses/social.html
https://gitlab.com/IEEE-SA/XMPPI/IoT/blob/master/Discovery.md#installation
https://gitlab.com/IEEE-SA/XMPPI/IoT/blob/master/Discovery.md#installation
https://gitlab.com/IEEE-SA/XMPPI/IoT
https://gitlab.com/IEEE-SA/XMPPI/IoT

Bibliography

[XMPg] XMPP Interface Working Group. Provisioning. url: https : / / gitlab .
com/IEEE- SA/XMPPI/IoT/blob/master/Provisioning.md (visited on
10/22/2019).

[XMPh] XMPP Interface Working Group. Smart Contracts. url: https://gitlab.
com/IEEE-SA/XMPPI/IoT/blob/master/SmartContracts.md (visited on
10/22/2019).

[Ziga] ZigBee Alliance. Overview. url: https://zigbee.org/ (visited on 10/29/2019).

[Zigb] ZigBee Alliance. ZigBee For Developers. url: https://zigbee.org/zigbee-
for-developers/zigbee-3-0/ (visited on 10/29/2019).

64

https://gitlab.com/IEEE-SA/XMPPI/IoT/blob/master/Provisioning.md
https://gitlab.com/IEEE-SA/XMPPI/IoT/blob/master/Provisioning.md
https://gitlab.com/IEEE-SA/XMPPI/IoT/blob/master/SmartContracts.md
https://gitlab.com/IEEE-SA/XMPPI/IoT/blob/master/SmartContracts.md
https://zigbee.org/
https://zigbee.org/zigbee-for-developers/zigbee-3-0/
https://zigbee.org/zigbee-for-developers/zigbee-3-0/

	Abstract
	Contents
	Introduction
	Background
	Internet of Things
	Smart Home
	Data Processing

	XMPP
	Jabber-ID
	XMPP Sessions

	Wireless Technologies
	Bluetooth Low Energy
	Wi-Fi
	ZigBee

	System Design
	Application Area
	Hub-Based Devices
	Standalone Devices

	XMPP Server
	Public XMPP Server
	Private XMPP Server
	Registration
	Data Access

	Summary

	Protocol Design
	Existing Solutions
	Building Blocks
	XEP-0077: In-Band Registration
	XEP-0004: Data Forms
	XEP-0336: Data Forms - Dynamic Forms
	XEP-0060: Publish-Subscribe
	XEP-0223: Persistent Storage of Private Data via PubSub

	Registration
	Data Access
	Publishing Data from an IoT Device
	Subscribing to Data from a Client
	Text Based Data Access
	The UI node
	Publishing Updated Values

	Summary

	Implementation
	The IoT Device
	The ESP32
	Hardware
	The Development Framework
	XMPP and the ESP32

	The XMPP Client
	UWPX
	Registering IoT Devices

	Summary

	Evaluation
	Use Case
	The Setup Process
	Reuse of Existing Protocol Mechanisms

	Performance

	Conclusion
	List of Figures
	List of Tables
	Bibliography

