
DEPARTMENT OF INFORMATICS
TECHNISCHE UNIVERSITÄT MÜNCHEN

Bachelor‘s Thesis in Informatics

Web Based Visualization and Analysis
Platform for Sensor Data from

Mobile Devices

Tim Pfeifle

DEPARTMENT OF INFORMATICS
TECHNISCHE UNIVERSITÄT MÜNCHEN

Bachelor‘s Thesis in Informatics

Web Based Visualization and Analysis
Platform for Sensor Data from

Mobile Devices

Webbasierte Visualisierungs- und
Analyseplattform für Sensordaten von

Mobilen Endgeräten

Author: Tim Pfeifle
Supervisor: Prof. Dr.-Ing. Jörg Ott
Advisor: M.Sc. Teemu Kärkkäinen
Submission Date: 16. May 2019

I confirm that this bachelor‘s thesis in informatics is my own work and I have docu-
mented all sources and material used.

Munich, 16. May 2019 Tim Pfeifle

Abstract

With the number of sensing devices growing fast over the last years designing data
pipelines to collect, store and process their data is of utter importance for many
applications. The sensed data often arrives in bursts so the data ingestion has to be
able to scale on demand. Due to its time series nature the data has the characteristic
of piling up over time, which requires the data store and all other components to be
highly scalable as well. Manually analyzing this data is infeasible. Because of the wide
diversity of data formats and communication standards a flexible pipeline is needed.
While there exist solutions for all steps of the pipeline integrating and maintaining
them requires a lot of resources and is no option for small teams or for creating a proof
of concept. In this thesis we provide a simple solution that is flexible enough to deal
with the variety of use cases, integrates all steps from data collection to data exploration
and is modular enough to allow the integration of external solutions. It enables the
user to correlate different data by time and location for data exploration or data driven
decision-making.

iii

Contents

Abstract iii

1 Introduction 1

2 Background 4
2.1 The Nature of Data . 4

2.1.1 Spatio-Temporal Data . 5
2.1.2 Paradigms and Scale . 6
2.1.3 Security, Privacy and Trust . 6

2.2 Existing Data Analytics Platforms . 8
2.3 Use Cases . 9
2.4 Summary . 10

3 Design 11
3.1 Pipeline . 11
3.2 Data Ingestion . 14

3.2.1 Sensor Interface . 14
3.3 Processing Scripts . 16

3.3.1 Data Store Interface . 20
3.4 Data Storage . 20

3.4.1 Distributed Storage . 22
3.4.2 Database Comparison . 22
3.4.3 Choosing the Time Series Database 23
3.4.4 Data Queries . 25

3.5 Visualization . 26
3.5.1 Map Visualization . 27
3.5.2 Visualization Components . 28

3.6 Summary . 29

4 Implementation 30
4.1 Data Ingestion . 32

4.1.1 Pub/Sub-Service . 32
4.1.2 Data Format . 32

iv

Contents

4.2 REST-API . 33
4.2.1 Framework . 33
4.2.2 Parser . 34
4.2.3 Processing-Unit . 35

4.3 Visualization . 36
4.3.1 Applied Programming Paradigms 36
4.3.2 Web-UI . 37

4.4 Infrastructure . 40
4.4.1 Data Storage . 40
4.4.2 Tile Server . 40

4.5 Code Design . 40
4.6 Deployment . 42
4.7 Summary . 42

5 Evaluation 43
5.1 Workplace . 43
5.2 Taxi Mobility . 48
5.3 Quantitative Evaluation . 52
5.4 Summary . 53

List of Figures 54

List of Tables 56

Bibliography 57

v

1 Introduction

The number of devices sensing their environment is growing fast, ranging from beacons
to embedded devices such as the Raspberry Pi. Gartner forecasts that by 2020 more
than 20 million IoT devices will be installed [1]. Those devices can be, e.g., in the case of
a smart factory machines and production parts that send status updates continuously
to controllers, or in the case of e-mobility providers like Uber cars equipped with GPS
that send real-time updates of their position.

Problem Description

This continuous stream of data, puts a great strain on existing data pipelines. Exploring
this large amount of data to gain usable insights is of great interest in commercial as
well as in scientific applications.

Data Collection The devices communication protocols range from Bluetooth used
for beacons to Wi-Fi. Depending on the network connectivity and the use case they
either send the data in batches, consisting of a group of data entries, when they have
network access, or produce a real-time stream of event data. While data uploads in
batches require the data pipeline to handle large amounts of data at once, continuous
data streams and the request for real-time output require low latency.

Data Type and Size The data that the sensors produce differs vastly between each
device type. While a common data type in smart factories is event data, e.g., a machine
sending an event every time it finishes a working step, Uber‘s cars produce trajectory
data describing the movement of the car. And even data for the same data type can
come in different formats, depending on how the respective sensor transmits it. The
devices also sense their surroundings not only at one specific point in time, but instead
produce a stream of data. This time series data has the nature of piling up over time
and as we add more sensors we have to handle this large amount of data.

Data Processing Manually analyzing the diverse sensor data is infeasible. Because
the sensing devices collect data in different formats we have to parse the data from

1

1 Introduction

each specific format into a structured general form. To better capture the context of
the sensors many devices additionally send location information like GPS coordinates.
By adding this second dimension to the data we now have to analyze spatio-temporal
data, which is difficult to visualize and to query. We therefore have to be able to write
highly customizable transformation scripts to process it and explore it.

While the data pipeline itself is very similar for all kinds of sensors, the range of
communication protocols, data types and data formats makes it difficult to abstract
from them in a flexible way. It is difficult to integrate the different pipeline steps with
each other. There do exist solutions like AWS IoT [2] that integrate all pipeline steps
seamlessly, but most of them are not open-source, expensive and highly complex to set
up and maintain.

Importance of the Problem

The increasing number of distributed sensors sending spatio-temporal data create op-
portunities for many mobile crowd sensing applications. Those range from monitoring
traffic to predicting forest fires. Currently many steps of the sensor analysis process
are done manually and separate for the different sensor types. Providing a pipeline
that is flexible enough to integrate all those different use cases would highly reduce
the effort in gaining knowledge from the sensor data. While it is reasonable for large
companies to set up and configure a highly complex and scalable pipeline, there are
many cases in which sensor data is produced by users with limited resources to analyze
it. Providing an easy to use end-to-end solution for gaining knowledge from sensors
would be incredibly valuable for small teams or to provide a proof of concept without
investing a lot of time and resources upfront. Making the data visually explorable and
exportable to share the gained knowledge with others in the form of research papers
or in internal company meetings is of utter importance to enable teams with limited
resources to step in the area of data driven decision-making.

Proposed Solution

The topic of this thesis is the design of a platform covering the complete sensor analysis
pipeline. It includes an interface for the sensors to connect and upload the senor data
to, a data store containing the data set, a processing unit to transform the data set and
a user interface (UI) to visualize the spatio-temporal data. The services are accessible
by an application programming interface (API) to easily integrate it with external
solutions.

2

1 Introduction

Sensor Interface We propose a single interface, decoupled from the sensors, to which
the sensors can publish their data. It does not restrict the data type or data format
used by the sensors and uses a communication protocol that is understandable by all
devices.

Data Store To store the piling up time-series data we propose a scalable data store
that integrates easily with the other pipeline components. It allows access to the data
over an API and easily integrates with external services, like other visualization tools
or processing units. It is optimized for a large number of concurrent inserts.

Processing Unit This unit allows the user to run generic transformation scripts with
external dependencies. To cover all the different use cases it restricts him as little as
possible. Therefore the user is personally responsible to optimize his data queries and
transformations for good performance.

User Interface For data exploration purposes we propose to integrate a visualization
user interface in the data pipeline that minimizes the effort to explore the transformed
data.

Summary

The proposed solution will not and can not cover all possible-edge cases, but we want to
keep the solution as modular as possible to make it easy to integrate existing solutions
and to extend the platform further in later developments. The platform therefore has to
provide flexible interfaces and should restrict the different use cases as little as possible.
It is simple to setup the full pipeline for new sensors, from collecting the data to the
final visualization of the data.

3

2 Background

Before we get into the design of the pipeline we give an overview of the kind of data
common in mobile sensing applications, how it is collected as well as over existing data
analytics solutions.

2.1 The Nature of Data

For the last decade most mobile crowd sensing (MCS) applications used specific
wearable devices for e.g. embedded activity recognition or environmental monitoring.
One prominent example of such a device is the "Mobile Sensing Platform" (MSP)
[3] which contains on-body sensors like microphones and accelerometers. With the
enormous distribution of smartphones and their network and compute capacities they
are a scalable alternative and are used in many MCS applications. [4] They contain
many embedded sensors like the following:

Smartphone Embedded Sensors

• Digital compass

• GPS

• Camera

• Microphone

• Gyroscope: direction & orientation

• Accelerometer

• Proximity sensors

With this sensor data we can perform classification of activities and contexts. Additional
sensors for, e.g., temperature or air quality can be connected via Bluetooth. While
smartphones are used for many applications other sources such as e.g. sensor networks,
drones, smart home sensors or connected cars are also part of the wide range of
devices used for mobile sensing. Sensing devices in general, whether smartphones or
other devices, often contain multiple different sensors and have at least some form

4

2 Background

of networking capabilities. The processing capabilities range from small embededd
micro-controllers to octa-core processors like the Snapdragon 855 used in modern
smartphones.

2.1.1 Spatio-Temporal Data

We refer to data with coordinates in time and space as spatio-temporal data. The major
portion of data generated by mobile devices is of this nature. When analyzing this kind
of data we have to extract the spatial relations, e.g., distance or direction, as well as the
temporal relations, e.g., duration or occurrence time, from the raw data. Many sensing
applications collect the data unbounded over time and it therefore does not have a
fixed end time. While it has a defined sequential order, we often can not assume that it
arrives in this specific order, because of, e.g., latencies in the network. The spatial aspect
often reveals relationships based on proximity. Typical use cases for spatio-temporal
data are traffic analysis and weather prediction. Because of the popularity of mobile
phones and other GPS capable devices, spatio-temporal data mining and analysis have
become increasingly important.

Auto-Correlation Unique to spatio-temporal data is the presence of dependencies be-
tween different measurements. Many other data mining methods assume independent
and identically distributed (i.i.d) data [5]. In the case of spatio-temporal data, measure-
ments are related in the context of space and time, which should not be ignored during
data analysis [6]. Observations at close locations and timestamps are not independent
but instead are correlated.

Data Types The data can be of different types, with the following most common ones:

1. Event data: discrete events with time and a point location (e.g. car accident events)

2. Trajectory data: the movement of an object is measured (e.g. route of a car)

3. Raster data: observations are measured for a fixed cell in a spatio-temporal grid
(e.g. calls per cellular network cell).

Event data can be described by a list of (li, ti) tuples with li representing the location
and ti representing the time point of an event. Additionally, each event can contain
marked variables, providing additional information, e.g., speed and numberplate of
a car. Trajectory data is often collected by mounting a sensor to a moving object and
sending the location over time. It can also contain additional marked variables, but
always needs to have a reference to the moving object. Raster data records measurements

5

2 Background

in fixed time intervals and fixed locations. The locations and time intervals can be
regularly or irregularly distributed. This data is common in weather sensing where
fixed stations measure in fixed time intervals.

2.1.2 Paradigms and Scale

Sensors have different paradigms for how they sense their environment and depending
on the scale of the application this information is combined. Based on the term edge
computing, which refers to distributed computing on distributed device nodes, we will
use the term edge to denote the set of distributed sensor devices.

Sensing Paradigms Continuously sensing and sending the sensory data called contin-
uous sensing consumes power and therefore drains the battery. This is a big problem for
sensing applications that run on smartphones, as battery power is limited on wearable
devices. Alternatively one can collect and store the data on the device and upload it
in batches (e.g. once a day) [4]. Especially if devices have limited connectivity it is a
common approach to upload them in batches later when network access is available.
This unavoidably leads to latencies between sensing and processing.

Sensing Scale The differentiation between applications designed for an individual
called personal sensing and applications designed for multiple users called group sensing
is common. An important benefit of using group sensing is the ability to validate the
quality and correctness of the sensor data. On the other hand in the case of personal
sensing one does not have to combine sensory data from multiple devices and it is
therefore easier to move parts of the data pipeline towards the edge.

2.1.3 Security, Privacy and Trust

Many MCS applications deal with private and sensible data that has to be protected
against malicious intend.

Security Because MCS allows potentially malicious mobile users to participate in the
sensing we have to be prepared for attacks. Those range from tampered data uploads
where a user uploads intentionally wrong data, to Dos/DDoS Attacks where an attacker
tries to make the application unavailable to the users by e.g. intentionally flooding the
application with traffic from many different sources [7]. If the devices are controlled
and deployed by the platform owner those internal attacks are a less important issue,
because we can assume them to be non-malicious. In those cases we have to focus on

6

2 Background

external security threats. For example wireless channels make it easy to eavesdrop and
monitor traffic, therefore connections should e.g. be encrypted.

Data Trust & Quality of Information We need to assess the Quality of Information
(QoI) to deal with potentially unreliable devices. We also can not assume steady flow of
information because the devices are not guaranteed to have consistent network access.
So how do we deal with information from the same area and same time, but conflicting
content, for example due to noise or network delay? Trust is the likelihood that a
participant will submit reliable information based on his past behavior. Therefore it is
mandatory to collect objective measurements (evidence) to determine the participants
reliability. [8]

Different schemes were proposed on how to deal with false reporting. The simple
scheme “voting-based truth discovery” for example assumes that the most often ob-
served result is the truth. More advanced schemes use one of the following exemplary
techniques to determine the trustworthiness of a result:

• Contextual information to infer the suitability of a participant to monitor a specific
event

• Outliers detection and similarity

• Ground-truth data in form of a limited number of mobile trusted participants (MTPs)
to “bootstrap" trust in the system

Privacy and Anonymization Techniques Anonymizing the data, either already on
the sensing device or later in the data pipeline is essential for many applications. It is
not limited to deleting information. Instead of deleting e.g. a name we can replace it with
an id. The data is then only identifying if one knows the mapping between name and
id, or if one is able to infer the name from the context. Sweeney e.g. demonstrated how
easy it is to identify a person uniquely with their demographics [9]. She discovered, that
53% of the U.S. population were likely to be uniquely identified by only their residing
city, their gender and their data of birth. In a different study researches collected
anonymized mobility traces and were able to identify 95% of the individuals from only
four locations [10]. To make this more difficult a common technique is to generalize. For
instance the birth date of a person can be generalized by replacing it with the birth year.
When dealing with large data sets we can also introduce random changes in the data
with a zero-mean noise to every data point. This does not change the aggregate but
the individual data entries are no longer identifying. Some schemes try to preserve
privacy while aggregating the data using homomorphic encryption [11]. They therefore
allow the service provider to aggregate the data without knowing its content, but while
this preserves the privacy it makes it difficult to transform the data.

7

2 Background

2.2 Existing Data Analytics Platforms

Other MCS platforms like Hive [12] and Medusa [13] focus on the data collection process
close to the sensors and assume untrustworthy or unwilling users. Our platform‘s
focus lies on the data processing and analysis after the edge. Therefore solutions closer
related to our platform are Data Analytics Platforms. We will use the definition of
Data Analytics Platforms as platforms that join different tools to provide a contextual
analyzed data providing solution for all the steps in the OSEMN-Pipeline:

• Obtaining data: Identify all of your available data sets and extract them into a
usable format

• Scrubbing / Cleaning data: Highly application dependent and should be highly
customizable

• Exploring / Visualizing the data

• Modeling the data: Write data analysis scripts and create predictions

• INterpreting data

They therefore have to provide means for data ingestion, data storage and data
analysis, as well as some form of visualization solutions to interpret the data.

There are countless different Data Analytics Platforms so our overview in this chapter
will only cover the most prominent and feature rich solutions. Our choice is based
on Gartner‘s leaders in the "Magic Quadrant for Analytics and Business Intelligence
Platfoms" 2019 [14].

Most of those solution focus on providing the user with real-time information for
business decisions. They are designed for users with minimal programming skills
and therefore have countless ways of visually exploring the data as well as visually
creating database queries using query-builders. Their focus is on data visualization
and exploration, but they often require other tools to handle more advanced data
preparation and data modeling tasks, because they do not allow to write generic
transformation scripts.

In the following we will adopt the term augmented analytics to denote the analytics
paradigm that uses machine learning to discover data insights and helps in the data
preparation.

Tableau [15] Tableau started to incorporate visualization features into databases to
make them interactive and understandable. As a result it became one of the leaders in
visualization techniques for data exploration. It offers an intuitive, interactive way for
data exploration requiring no technical skills or coding. While providing unparalleled

8

2 Background

visualization options it misses some data integration capabilities. For example, it does
not support the querying of multiple fact tables in a single data source. Apparent from
customer responses [14] it also has problems handling large data volumes.

Qlik [16] Qlik’s data discovery product, Qlik Sense, is built around the API of
the Qlik Analytics Platform. The platform is powered by an in-memory database
engine. They have added many augmented features with its so called Cognitive Engine,
which suggests most relevant insights, visualization types and much more. While
this works pretty well for standardized sales-processes it is probably quite difficult to
work on sensor data with uninformative data fields. Part of their platform is also Qlik
GeoAnalytics, a tool for geo-spatial data.

Microsoft Power BI [17] Power BI is a powerful solution for data shaping and visual
data discovery. Microsoft has started to integrate Power BI with many other Microsoft
products. Therefore Power BI is able to use the augmented analytics capabilities of
Azure Machine Learning such as text and sentiment analytics. It also integrates easily
with other Microsoft tools like Excel. One should be cautious to not get vendor-locked-in
by this approach.

2.3 Use Cases

The possible use cases for Mobile Crowd Sensing are limited mostly by the available
sensors. With the availability of capable sensors, ranging from smartphones to IoT
devices and connected cars, MCS‘s use cases now span many fields. There are countless
applications as a recent survey paper shows [11], so we will present only a few to
highlight some use cases in different fields.

Healthcare Biosensors that measure heart rate or blood pressure can be used to
monitor diabetes or seizures. A popular example in the field of healthcare is the MCS
application TrackYourTinnitus [18] that tries to reveal new medical aspects on tinnitus
and its treatment. They collect large data sets consisting of the patients demographic
and clinical characteristics as well as their response to treatments to suggest evidence-
based treatments.

Environmental Physical, chemical and biological sensors help to collect raster data
enabling, e.g., forest fire detection systems where smoke and temperature sensors allow
monitoring of forest fire to react in time [19].

9

2 Background

Smart City & Infrastructure In smart cities MCS applications are significant to mon-
itor the services the city provides. Those applications monitor city noise [20], traffic
congestion [21] and emergency incidents [22]. Structure health monitoring applications
like CrowdMonitor [22] help to assess physical and digital activities of citizens during
emergencies after natural disasters or terrorist attacks.

Social Sensing Social sensing applications collect data from personal activities. An
example is the group-aware MCS system MobiGroup [23] that supports group activity
organization by e.g. suggesting ongoing events based on the user‘s activity and
interaction dynamics in a community.

2.4 Summary

Many MCS applications use smartphones because of their wide distribution and their
available sensors as well as because of their compute and network capabilities. The
major portion of the generated data is spatio-temporal, ranging in type from event
data to trajectory data. Observations of close data entries are therefore correlated.
The devices can either continuously sense their environment or upload their data in
batches. Because the sensed data is often sensible, especially in the field of healthcare
and social sensing, we have to protect it against external attacks and use anonymization
techniques to protect the user‘s privacy. A common pipeline for end-to-end data
analytics platforms is the OSEMN-pipeline (Section 2.2) that contains the whole process
from ingesting the data to the visualization and interpretation.

10

3 Design

We will first give an overview of the platform in general and the platform’s Pipeline. In
the following sections we will focus on the different Interfaces and the Data Storage. The
last section will then focus on the Visualization of the data.

Platform The platform receives spatio-temporal sensor data from different types of
sensing devices and should allow the visualization and exploration of the data. The
spatio-temporal data is, as described in the Background section, unbounded and might
have large and inconsistent differences between the event time, the time at which the
sensing took place, and the processing time, the time it arrives at the platform. This
difference might be further increased by the varying network connectivity of the devices.
Some of them therefore have to send their data in batches with a large difference in
event and processing time. The received data then has to be parsed and transformed.
Those steps have to be highly customizable for the different applications and should
restrict the user of the platform as little as possible. Because of the spatio-temporal
nature of the data we need to be able to visualize location data with e.g. maps. To
provide those transformation and visualization services the platform also needs to store
the data.

3.1 Pipeline

The pipeline processes the raw sensory data for analysis and visualization in the
platform. The use cases differ quite drastically. Some are compute focused because they
have computationally expensive transformations of the sensor data, others are storage
focused because they produce large amounts of data and others are integration focused
because they need to integrate easily with external services. Consequently, the pipeline
has to be flexible enough to deal with this great variety. The main design principle of
it is to enable an easy and flexible access to the collected data. As the data is already
partly accumulated and filtered on the edge before arriving at this platform the pipeline
represents only the last steps in a full MCS-Pipeline. We are therefore not dealing with
the steps that highly depend on the network-architecture, communication-protocols and
sensor-devices and will abstract from them in the following using a Pub/Sub interface.

11

3 Design

Hence we will not compare the platform to existing MCS-Frameworks like Medusa [13]
or Hive [12]. The pipeline more closely follows the steps of a Data Analysis Platform,
specifically the OSEMN-Pipeline (Section 2.2):
We will 1) Obtain the sensor data from the Pub/Sub interface and parse it into structured
Data, which we then 2) Scrub using custom processing scripts. Those results are then
available for 3) Exploring through visualization components. Analysis scripts can run
on the processed data for 4) Modeling and allow the user to easily 5) Interpret the sensor
data, as shown in Figure 3.1.

Figure 3.1: OSEMN-Pipeline: 1) Obtaining 2) Scrubbing 3) Exploring 4) Modeling

Stream Processing vs. Batch Processing We will follow Tyler Akidau [24] in using
the terminology “streaming” only to describe the execution engines designed to deal
with infinite data sets and use the specific terms “unbounded data” and “unbounded
data processing” to relate to other concepts often also grouped under the “streaming
umbrella”. Unbounded data, e.g., simply relates to infinite data in contrast to finite data.
It can be processed by all kinds of execution engines, but using the term “streaming”
implies the usage of a streaming engine. “Unbounded data processing” can still be
done with a batch engine.
As already described, the received unbounded sensor data might have large and
inconsistent differences between the event time and the processing time. Because this
difference is not static we can not easily map between event time and processing time.
To process our data one usually applies windowing based on the processing time, but
with this difference we can not assume to receive our events in the context in which
they occurred (event time), because the difference would result in events ending up in
windows that do not represent their event context. We can also not simply window
by event time, because we do not know whether we already received all events for a
specific window or if there is still one with a large difference in event and processing
time waiting to be delivered. There is no way for us to guarantee this completeness [24].

12

3 Design

Many processing engines therefore use some notion of completeness, e.g. by defining a
maximum-difference.
Batch engines often use either fixed windows or sessions to process unbounded data.
With fixed windows the engine splits the data by their processing time into windows
with a fixed duration, as shown in Figure 3.2a. To have a higher probability of
completeness the processing is often simply delayed. With sessions the fixed windows
are subdivided into sessions that represent e.g. a period of activity on a web page.
Those sessions can potentially span multiple windows which requires to stitch those
back together, as can be seen in Figure 3.2b.

(a) Fixed windows (b) Session windows

Figure 3.2: Batch processing approaches for unbounded data [24]

Because we mostly need to process our sensor data in batches and do not require
real-time information we will focus on the simpler batch systems and will not go
into details how streaming engines approach unbounded data. Because it is difficult
to reason about time and to guarantee correctness streaming engines are often more
complex to design.

As batch- and stream-processing pipelines are fundamentally different, changing the
architecture to a stream-processing pipeline is not an easy task. One approach is to
follow the Lambda-Architecture [25] as depicted in Figure 3.3 taking advantage of both
our already designed batch processing, here called “batch layer” and stream processing,
here called “speed layer”. The goal of this architecture is to use batch processing to
provide accurate views of the batch data and to use the real-time information from
the stream processing in parallel for online data. The results of both paths are then
combined before presentation. An alternative approach is to replace the batch engine
with a stream engine and only use this one path. As streaming solutions mature this
approach is preferred as it simplifies the pipeline compared to the Lambda-Architecture.

13

3 Design

Figure 3.3: Lambda-Architecture: separate batch and speed layer which are merged
when querying (adapted from [26])

3.2 Data Ingestion

The data is collected from sensors of varying types and our data ingestion has to
be able to receive the data from them, working on an abstract of the different types.
The number of sensors is not constant and might change so the receivers should be
decoupled from the explicit sensors.

3.2.1 Sensor Interface

Xiao et al [27] write that “scale is the key to success of crowdsensing applications”,
because the users/sensor-devices are unreliable compared to classic sensor-sensing
approaches and to get an acceptable accuracy therefore requires a larger user base.
Handling that many data-streams requires that the different services in the pipeline
are able to scale not only vertically but also horizontally. Decoupling the different
services as well as reducing the state each of the services contains are important to
scale seamlessly. It also means that we will have many devices with potentially all sorts
of different communication protocols. The goal of the platform is to enable the use of
all those devices as well as to reduce the complexity of adding new types.

Decoupling from Sensors The first interface (in the left of Figure 3.1) of the pipeline
therefore decouples the platform from the sensors, which is a common approach in
MCS-Frameworks as well as IoT-Platforms. Often the Publish-subscribe pattern [28] is
used. It does not let so called publishers send their messages directly to the receivers,

14

3 Design

here called subscribers, but instead categorizes the messages into different classes
and lets the subscribers express their interest in receiving a specific class of messages.
Consequently, the publishers and the subscribers do not have explicit knowledge of
each other. In our use case the sensors and sensor-gateways act as publishers and the
platform subscribes to the different classes of messages. This paradigm also enables
other applications or services to subscribe to the message classes. For example might
it be useful to keep the raw sensor-data to debug potential problems and to validate
results which can simply be done by creating a subscriber that dumps all message
classes into a data store. An alternative paradigm called Message Queuing receives the
incoming messages and makes sure that each message is processed by exactly one
consumer by deleting the message from the queue after consumption. It is allowed, e.g.
in the case of network failures, to resend messages and therefore process them out of
order.
Many technological solutions support both paradigms. For example a Message Queue
can support multiple consumers by replicating the queue for each of them. We will
follow the Pub-Sub paradigm and use the terminology Publisher and Subscriber instead
of Producer and Consumer.

Data Format After decoupling the sensors we would like to abstract from the different
communication protocols and their data structures. One can either require the data
to be structured in some predefined way on the sensor-devices or structure the data on
the platform. As seen in Figure 3.1, the advantage of already inferring the structure on
the devices is that all applications that subscribe to the Pub/Sub-Service will receive
messages following the same structure. On the other hand it requires the sensors to
encode their messages following some predefined standard, e.g. as JavaScript Object
Notation (JSON) strings. This makes it difficult to add existing sensors, because they
might encode their messages already differently. If one structures the messages on the
platform itself, then one is flexible to subscribe to all kinds of different sensors, as long
as one makes sure to synchronize/configure a parser for each message data format. If
need be we could still impose a single format by only having one parser and requiring
all sensors to comply.

We will choose to structure the messages on the platform as the filtering already takes
place on the edge and the goal is to work with arbitrary types of sensors. Therefore we
accept all message-formats which we will abstract from with simple byte arrays.

Parsing Messages Subscribers will subscribe to the different classes of messages and
to determine the structure they are required to first parse the byte arrays. This parsing
should be highly customizable for each type of sensor and therefore the subscriber will

15

3 Design

Structure on Devices Structure on Platform
Pro Pro
The data arrives structured at the
sensor-interface and therefore all
subscribers receive already struc-
tured data which makes it easy for
them to filter depending on the con-
tent of the messages

It is easy to add new sensors and
existing sensors that might encode
their messages already differently

Contra Contra
Structuring on the devices makes it
complicated to add new sensors as
they first have to comply with the
platform structure

The inferred structure on the plat-
form has to be synchronized/con-
figured to allow the message to be
parsed

Table 3.1: Comparison of where to infer the structure of the sensor-data

inject a different parser for each type of sensor. In the Evaluation section we will give
two different examples of such parsers (see Section 5)

3.3 Processing Scripts

These scripts transform the sensor-data and output the data models that will be
visualized in the platform. This is Step 2 in Figure 3.1.

Flexibility The script-interface needs to generalize for many different use cases of the
users and therefore must be highly expressive and flexible. The limitation in flexibility
is a huge drawback of using existing solutions like Tableau which only enable the
users to write data-store queries and not generic code. As this system is designed
for non-malicious users with a background in Informatics we can give the user the
flexibility to write generic code transforming the stored data. This freedom has many
implications. Generic code is Turing complete which means that the scripts in theory
are able to perform any calculation that a programmable computer could do. Turing
completeness makes it impossible to compute whether a program would ever halt on a
given input. Therefore the downside of writing these flexible scripts is that we have
to assume that the user is writing computationally efficient scripts. What we can do
is to isolate the different scripts from each other and give each one a limited amount
of processing resources and time. This sandboxing makes sure that the scripts do not
interfere with each other and provide an interface to manage the running scripts as
well as to cancel them if need be.

16

3 Design

The option to write generic code raises the obvious question in which programming
language they have to be written. Our design allows any language, but each script
language requires a script-interface in that language, containing data-storage connectors,
as well as all the overhead that is required to run those scripts as processes in the
backend. A python-script for example needs a python-runtime and a Java-script would
instead need the JVM. Both would need custom python/JAVA data-storage connectors
for reading the sensor data and writing the output.

External Dependencies In many programming languages it is common to specify
external dependencies instead of packaging everything together into e.g. a binary.
Those dependencies then have to be resolved using a dependency manager e.g. pip
for python or npm for node.js. While this simplifies the development of processing
scripts we have to provide a way to resolve those dependencies as well as to avoid
conflicts between them. If script A e.g. requires version <1.0 of dependency X and
script B requires version >1.0 of the same dependency we need a way to serve the
specified versions to both of them. One common way is to run the scripts in separate
environments. In those environments the respective dependencies are resolved and
only available inside them, making sure that different version requirements do not
conflict.

Communication The scripts will need to access the collected sensor data to scrub and
prepare it for exploration. Apart from this access the required communication with the
scripts is for debugging and execution purposes. The most straightforward approach
therefore is to create a process in the backend application every time we need to run
a script. This makes the communication simple as we do not need anything apart
from the already existing inter-process-communication of child to parent processes.
Unfortunately this approach is not scalable: If the spawned processes consume large
parts of the existing resources those resources are not available to serve for, e.g., web
requests of the backend. The alternative service oriented architecture [29] approach is
scalable and would allow the processes to be run on a remote machine as well as
to communicate with the backend using TCP sockets. Both approaches enable us to
monitor the execution of the scripts. To access the sensor data (Structured Data in Figure
3.1 after being parsed) from the scripts and to also not restrict the scripts in any way we
propose to pass a database-connection as an interface to the script as well as a method
to write the resulting processed data to our Processed Data Store.

17

3 Design

Scheduling To automate the execution of the scripts we want to be able to schedule
them. Because the scripts can be dependent on the results of other scripts we also have
to make sure to execute them in a specific order. In the case of manual runs, the user
is responsible to execute them in the required order. The script dependencies can be
depicted using a directed acyclic graph (DAG) where children depend on the execution
of their parent. Apart from that the scripts can be run in arbitrary order which allows
us to run scripts on the same level in the tree in parallel. The actual execution order is
typically determined by running a topological search on the DAG.

Figure 3.4: Execution tree of scripts: Children depend on the results of their parents,
each node represents a script

A special case worth mentioning is that if we schedule e.g. one job to be run daily
and one to be run weekly, then once a week we will run both jobs which begs the
question of which job to be run first or whether to combine both execution trees into
one. This could prevent running scripts more often than required. If e.g. scripts in
both jobs depend on the same script we should not execute it twice but instead should
merge their execution trees.
One can also define the dependencies of the scripts using a priority queue of script-lists.
Each element (here a list of scripts) in the queue represents a priority and they will
be executed in ascending order one after the other. In contrast to Figure 3.4 with a
priority queue we can not simply run script 3 before script 2 completes, if script 12 and
1 already finished. A priority queue is simply not as expressive as a tree structure, but
therefore also simpler to implement.

[12]→ [1, 2]→ [3, 4, 5]

Figure 3.5: Priority queue: each number represents a script and each group represents
a priority-group

18

3 Design

On the lower level of scheduling the processes we let the processor handle everything.
One could for example run scripts only if there is an idle process available instead
of running scripts independent of that. This would restrict the user from starting
numerous scripts at the same time, between which the CPU would have to split its
computation time and therefore would result in many long-running scripts. Instead,
we could make sure that they all run one after the other.

Debugging One important interface, especially during the development of the scripts,
is the debug interface. Depending on the use case this can range from simply returning
the exit code of the script, over returning the output from the stderr and stdout streams,
to being able to halt the execution of the script and to access the state of the script at
specific break-points. To find out whether a script is working as designed we would
like to run the scripts in a context matching the production-context as close as possible.
This makes it a lot easier to reproduce problems. But running the script directly in
the production-context can be risky and can result in crashing the production system.
Nonetheless, some problems are very hard to find and therefore the use of so called
Remote Debugging can help in those cases. During debugging it is common to make
rapid changes to the source code to simplify the code and to find the root of the
problem. The process of deploying those changed scripts should therefore also be as
fast as possible. Running software locally reduces this latency enormously and makes
it easier to integrate interactive debuggers. Being able to run the processing scripts
locally would therefore enable the users to use the feature-rich debuggers of their IDEs.
To debug problems after our data and scripts already have changed it would make
sense to keep a log of important events and states.

Monitoring Because we allow generic scripts, monitoring their execution is important
to detect non-terminating processes and other anomalies. Common tools to monitor
processes are Linux command-line tools like htop, iotop. They display information
as CPU/Memory-usage, disk I/O stats or how long the process is already running.
One can compare those values with previous runs of the same process to detect
anomalies automatically or simply display them to give the user the ability to make
informed decisions whether or not to terminate a process. It can also help to detect if a
process is generally not running as expected, e.g., if the I/O statistics do not match the
expectations or the execution time is too long/short.

Terminating If the user decides to terminate a script we have to inform the process
using the so called kill command. This commands triggers the operating system to
send a signal to the program and depending on the implementation of the program it

19

3 Design

does or does not listen to it. Listening to those signals allows the program to gracefully
terminate by, e.g., saving not saved states. A common approach, especially in the world
of data-stores and databases, is to use transactions which are single units of work that
must be either completed in its entirety or to have no effect at all. This "all-or-nothing"
approach results in a consistent state of work. In the case of the termination of a
program, the program has to rollback all steps of the transaction it could not finish
before being terminated. To terminate programs that do not listen to those signals or
do not terminate after receiving them there exists the SIGKILL signal which triggers the
operating system to kill the process without giving it the choice to shutdown gracefully.

3.3.1 Data Store Interface

To access the stored data we need to write queries against the data store. The query
language has to be powerful and expressive in our case. Adding an Object-Relational
Mapping (ORM) on top would abstract from the data store and would make it easier
to replace it if the requirements change, but would also require the users to learn the
ORM-language.
Because we designed a batch-processing pipeline the scripts will be run in specific
intervals/after specific triggers and store their results again in the data store. The
data store interface allows the user therefore to access all of the structured data and
transform it. To limit the side effects between the scripts, the structured-data is read
only and all transformations have to be stored in a data-store which is only editable
from the script which created it.

3.4 Data Storage

In the following we will relate to the sensor data in the received byte array format as
Raw Data, the structured data after running through the parser as Structured Data
and the data after being processed by custom scripts as Processed Data as seen in
Figure 3.6.
The main questions for each of those data sets before deciding which data store to use
are the following:

• What kind of data are we expecting?

• What amounts of data are we expecting?

• What operations do we need to run on the data?

20

3 Design

Figure 3.6: Optional data store for the raw sensor data before parsing

Raw Data Store We assume only limited network access for the sensors and therefore
will only transfer their data in batches. Each data entry is assumed to be less than 10KB,
but the size highly depends on the different sensors. Filtering the data will be done on
the edge reducing the network and storage requirements. The data will be received
over the Pub/Sub-Interface described in Data store interface. Storing the raw sensor data
instead of only passing it on to the next step in the pipeline increases the used storage,
but enables debugging and is fault-tolerant to faulty parsers. In our design we will give
the option to store the raw sensor data, but we will run this optional step not as part
of the main pipeline. By adding a new subscriber to the sensor data we can run this
parallel to our main pipeline and therefore do not increase the latency of the main path
(see Figure 3.6). The raw data store mostly inserts time series data and is only read
in sequential order. It should be able to deal with large amounts of data and should
be optimized for fast INSERTs. Our operations will be approximately one READ and
WRITE operation per data point, therefore a space-efficient data store should be a good
fit.

Structured Data Store The data will still be time series because it is only parsed but
not yet transformed into data models. We will therefore have potentially large amounts
of data and our operations are mostly INSERT and simple READ operations. Because
this is our main storage of the sensor data, we potentially want to query this store also
with external tools (e.g. Tableau).

Processed Data Store As the output from the processing scripts this data set is
assumed to be by far the smallest, we will have much more READ than WRITE
operations and should optimize for that. To explore the data we want to have a large
set of available operators to query and transform it.

21

3 Design

3.4.1 Distributed Storage

When the data sets become to large for a single machine we have to distribute the
database. This brings many challenges with it including the CAP theorem which states
that distributed systems can only provide two of the following three guarantees:

• Consistency

• Availability

• Partition tolerance

Therefore a common approach for large systems, called Polyglot Persistence, is to use
multiple databases and to leverage each specialty for the respective use case increasing
the overall performance over using a “one type fits all”. We assume that the data fits
onto a single machine and therefore can guarantee all three CAP properties.

3.4.2 Database Comparison

Time series data represents how data changes over time and therefore keeps not only
the last state, but also all of the intermediate states. To analyze e.g. how the temperature
in a specific area changed we require to keep all those intermediate states as well. For
storing the sensor data we therefore need to perform many INSERT operations instead
of many UPDATE operations. This leads to an ever-increasing amount of stored data.
In the following we will compare the pros and cons of using a time series database
instead of a classic relational database for this type of data. Figure 3.2 summarizes the
following comparison.

Time Series Databases (TSDB) vs. Relational Databases (RDB) Generally speaking,
RDBs are designed to store relational data and TSDBs to index data primarily by
its timestamps. As time series data is piling up, the data pages of RDBs do not fit
into memory anymore and they have to swap the pages between memory and disk.
Especially if the data indices (B-Trees [30]) do not fit into memory anymore this becomes
very costly. We need to use efficiencies that are specific for time series data to handle
those steadily increasing data sets. Because time series workloads are mostly append
operations we can use specific index-structures to improve the database performance
when scaling-up. TimescaleDB [31] e.g. splits the data according to the time and
primary key dimension building distinct tables called chunks. With appropriate sized
chunks we can then fit the latest chunk and its respective B-Tree completely in memory
as seen in Figure 3.7. For append operations we therefore avoid the swap-to-disk
problem while maintaining support for multiple indices.

22

3 Design

Figure 3.7: TimescaleDB : Split each table into chunks and store them in an internal
table. The chunk can then fit into memory, which avoids the swap-to-disk
problem [32]

Operation Properties Both ACID and BASE relate to a set of properties of database
operations. ACID stands for Atomicity, Consistency, Isolation and Durability and op-
erations that fulfill all those criteria are called transactions. Fulfilling these criteria
guarantees validity for database operations, even in the case of system failures, but also
restrict the database and reduces availability and performance in large systems. This is
why databases like InfluxDB relax these criteria and only guarantee Basic Availability,
Soft-state and Eventual consistency. Results to queries therefore might be only approx-
imately correct. Many NoSQL databases give guarantees in the continuum between
ACID and BASE. The closer to BASE the easier it is to scale a database, but also the
weaker are the guarantees. TSDBs can be based on SQL/NoSQL and allow to join time
series data based on overlapping areas of time. TSDBs based on SQL, like TimescaleDB
are basically a RDB with additional features specific for handling time series data. Other
TSDBs like InfluxDB deviate further away by relaxing the ACID consistency constrains
to BASE constrains. Because we assume that the database should not be distributed
and we do not need to weaken the database guarantees to increase scalability.

3.4.3 Choosing the Time Series Database

Two of the most widely used and most different TSDBs are TimescaleDB and InfluxDB
which we will compare in the following. Figure 3.3 summarizes the comparison.

Data Model TimescaleDB follows the wide-table model, where the user stores meta-data
in separate tables and relates to it using foreign keys. It models data in rows consisting

23

3 Design

Time Series DB Relational DB

• Mostly INSERT, rare UPDATE oper-
ations

• Optimized for data organized by
time

• Optimized for a large number of
small records

• Typically with schema and conform-
ing to ACID model → strong con-
sistency guarantees

• Uses SQL

• Does not easily scale horizontally

Table 3.2: Comparison of different database types

of a time field and an arbitrary number of other fields. Those fixed models enable it
to validate input against constraints of uniqueness or not-null values. As with other
schema-based models we have to choose this schema beforehand. Similar to other SQL
databases it supports composite indices.
InfluxDB uses a narrow-table model where each data entry consists of a time value and a
list of tags and fields. The tags represent the metadata and the fields contain the actual
content. Indices are automatically created on all the tags and not on the fields, which
limits its flexibility. It also does not provide data validation, because it does not know
the “valid” schema.

Query Language TSDBs often introduce new query languages like Flux [33] with the
goal in mind to make it easier for developers to work with time series data. While this
is a reasonable idea one can perform, at least in theory, better query optimization with
SQL and it requires the developers to learn a new query language.

Reliability InfluxDB implemented most fault-tolerance mechanisms from replication
over restore-mechanisms whereas TimescaleDB relies for that on PostgreSQL. In the
past InfluxDB instances have often been unreliable and lost or corrupted data.

Performance InfluxDB‘s storage engine is like many other NoSQL databases very
similar to log structured merge (LSM) trees [34]. To circumvent the “swap-to-disk”
problem of classic B-Trees which perform updates “in-place” on the data pages, LSM
trees instead queue up several updates into the write ahead log (WAL) segments and
write them as one batch to disk. Therefore, writes are first performed in memory
and only merged back in disk when the queue segment is full. This leads to faster
sequential writes. The downside of LSM trees is that they do not have a global index

24

3 Design

. InfluxDB TimescaleDB
Data scheme No Yes
Query-Language Flux or SQL-Like SQL
Consistency Raft ACID
Scaling Horizontal Master-slave
Other Integrated TICK stack Directly tied to PostgreSQL

Table 3.3: Comparison of time series databases

to give a sorted order over all keys. Therefore, looking up data entries for a specific
key can take longer and read performance suffers. TimescaleDB uses B-Trees but by
splitting them into chunks circumvents the “swap-to-disk” problem as well. InfluxDB’s
performance leads for low cardinality INSERTs but drops for larger cardinality (» 2000
rows per second), which results in TimeScaleDB outperforming it for larger cardinality
[35]. Many non-production scale applications do not need to perform more than 2000
INSERTs per second and for them both databases perform similar.

Integration Important for the choice of the database is also how easy it is to integrate
the data store into other parts of our pipeline. If we want to replace e.g. our visualization
Step with a Data-Analysis Platform like Tableau we need data store integrators. All
platforms introduced in Section 2.2 have connectors for PostgreSQL and while InfluxDB
is less popular many platforms support it as well by now.

3.4.4 Data Queries

“One could argue that the choice of query language is the most important criteria for
choosing a database” [36]. While clearly the performance of a database is important we
should also make sure that the method to access the data is compatible with the needs
of the application.

Limiting Data Entries

Requesting data from the processed data store over a long time range can result in
large amounts of data. Sometimes we do not require to get every single data entry
because we e.g. can not visualize them in higher resolution than our monitor outputs,
or we want to reduce the latency when querying the data. A straightforward approach
is to set a limit to the data entries we return. But which data entries do we return if
our data set exceeds that limit? Given a table of sales it would make sense to return
only every n-th entry and to set its profit to the sum of all n entries. If we are interested

25

3 Design

in the response times of emergency agencies we would probably prefer to average the
response time. So we would like to declare which data field we want to consolidate by
and using which aggregation function (e.g. sum, average, min, max). It is important to
transparently show which aggregation function is used, because they produce vastly
different outputs.

3.5 Visualization

To easily analyze and visualize the data we require a user interface that connects
visualization components with the processed data and lets the user explore the data
sets.

Storing the Query Results for Visualization On the client-side in the browser we
have multiple different options for caching the query results. In many cases we want to
share the queried data for multiple visualizations and because the processed data is
not changing frequently we should think about ways to store the query results on the
client. This reduces latency and saves bandwidth as seen in Figure 3.8.

• No caching: This requires the application to request the data for all changes in the
query resulting in bigger latency till the data can be displayed. This approach is
still common in many applications but the loading times are a drawback for the
usability especially if dealing with real-time data and frequent data changes.

• Caching on the server: If many clients often request the same data and the latency
between the server and client is negligible, in contrast to the time the query takes
to finish, this improves the usability a lot through shorter loading times.

• Caching on the client: Recently the trend is to push the data model to the clients
as well, by using a data store on the client side that can answer cached queries
nearly without latency.

Figure 3.8: Caching: the closer to the client the results are cached, the smaller is the
latency for requesting them

26

3 Design

3.5.1 Map Visualization

To visualize the spatial component of our data we need a server providing map data. A
common source for the map data is the open data source OpenStreetMap [37]. This
data is then served with a map server.

Tiles Because serving a map as one large image takes to much bandwidth one instead
splits the map into a pyramid of images for different zoom levels, so called tiles. Each
covers a fixed geographic area and is assigned with a scale. When zooming in we will
request the next scale layer of tiles in the pyramid as visualized in Figure 3.9. One can
either serve those tiles rendered or as vectors. Vectors have the advantage of reducing
the size by more than 50% and allow to change the map style without redownloading
them again. But raster tiles can still make sense if the client has limited resources to
render them or if the latency of rendering them on each client is an issue.
Depending on the map server in use one can request the tiles e.g. following the popular
Tile Map Service (TMS) specification or the more complex Web Map Service (WMS)
standard which is often used for enterprise applications.

Figure 3.9: Pyramid for loading the tiles depending on the zoom-level [38]

Map Styles When using vector tiles it is common to style them before rendering.
Styling can range from deciding what of the data to draw, over the order in which
to draw it, to the style in which to draw it. A style can e.g. reduce a vector tile to a
visualization of the highways or into a rendering of hiking tracks. Many visualization
frameworks follow the common Mapbox GL style specification which defines a style
through a custom JSON-file.

27

3 Design

Map Projections To transform the latitudes and longitudes of locations of a sphere
into points on a plane one necessarily has to introduce some form of distortion. The
“best” projection always depends on the use case which determines what form of
distortion is least problematic. Common for web maps is the spherical Web Mercator
projection which preserves shape and angles. Almost all map APIs use this projection,
making it easy to exchange tiles between them. It is based on the standard Mercator
projection, but uses the spherical transformation for all scales from small to large. While
this reduces the computational complexity and preserves angles the disadvantage is
that the areas close to the poles are greatly exaggerated as seen in Figure 3.10.

Figure 3.10: Left: Mercator projection, Right: True size of each country [39]

3.5.2 Visualization Components

For different tasks we need different types of visualizations. Because there are countless
types of charts we will here list only the most common ones and for which cases they
are particularly useful.

Bar Chart This chart type helps to visualize differences between categories, e.g. sales per
market or rainfall per region. We group the data entries by their categories and then
aggregate the entries with an aggregate function like sum or average.

Line Chart To connect distinct data points the line charts represents them as a contin-
uous evolution. This visualization helps to display value changes relative to each other.
Especially for the temporal component in the spatio-temporal data this is useful to
visualize changes over time, e.g. the speed of a car or the temperature of a sensor.

Scatter Plot This chart is useful to detect outliers and to get an overview of the
distribution of the data. It is very similar to the line chart, but because it does not
connect the plotted data points it is often used to investigate the relationship between

28

3 Design

two variables. By displaying the density distributions as histograms on each axis we
can even easier get a feeling for the type of data distribution.

Map Maps are the most common visualization type for the spatial component in the
spatio-temporal data. Depending on how we plot our data on the map chart we can
highlight different aspects. E.g. by connecting points we can visualize trajectories or by
plotting each location with less than full opacity we can create heat-maps to visualize
the density distribution.

3.6 Summary

We designed a pipeline that obtains the sensor data from a Pub/Sub interface, parses
it into a structured format, transforms it with processing scripts and then visualizes
them in a UI containing charts. The Pub/Sub interface decouples from the sensors and
collects the data in arbitrary formats. For each format we can define a parser to parse
it into the required structure. The transformations on the data are then executed by
the processing scripts, to which we provide only a data store interface and apart from
that allow them to be completely generic. We schedule their execution, create for each
a separate environment including its required dependencies and provide an API to
monitor and terminate them. We compared different data stores and their guarantees
as well as their performance for time series data. For the visualization we proposed a
set of common chart types and how to provide a map visualization for the spatial data.

29

4 Implementation

As outlined in the Design our data analysis solution consists of 4 steps (see Figure 3.1):

1. The Pub/Sub-Interface to collect the data

2. The Parser to structure the data

3. The Processing scripts to transform it

4. The Visualization to display the results

To allow the user to execute generic parsers and processing scripts (simply called scripts
in Figure 4.1) we have implemented interfaces for them. The provided services are
accessible through a web interface and a REST-API. Supported are the services through
our infrastructure that consists of the mentioned Pub/Sub-Service, a Data Store and a
Map-Tiles Server (see Figure 4.1).

Before getting into their specifics we will highlight our data interface paradigm and
introduce Typescript, the programming language used for most of the implementation.

Data Interface Paradigm The data between all our services is passed in tables. The
services access the input data through a table and output it again in a table. The only
exception are the interfaces outside of the pipeline, namely the parser that accesses the
input data from the Pub/Sub-Service and the visualization that outputs the data to
the web application (seen in Figure 3.1). Depending on the data store those tables can
be simple PostgreSQL tables or TimescaleDB tables, a superset of PostgreSQL tables
optimized for time series data, but the interface language for all tables is PostgreSQL.
Because of the wide availability of integrations for Relational Databases this makes it
easy to integrate external services in this pipeline.

Typescript We programmed the Web-UI as well as the REST-API using the JavaScript
superset Typescript. It adds planned features from future JavaScript editions to current
JavaScript engines. Because of such features Typescript is known as an object oriented
programming language combined with many functional programming features like
lambda syntax, generators and iterators and the spread operator. But more importantly
it adds a typing system, enabling static code analysis with the added annotations and

30

4 Implementation

Figure 4.1: Components overview of the platform

31

4 Implementation

Typescript‘s type inference abilities. This reduces bugs due to type mismatches during
deployment and can increase development speed due to the autocompletion features
IDEs provide based on the added types. Typescript‘s descriptiveness also improves
readability and code maintainability. Because Typescript compiles to JavaScript, the
“lingua franca” of the web, the produced code is executable by the Chrome-V8 JavaScript
[40] engine and we can use much of the available tooling. It also allows our application
to run on all browsers that support a recent JavaScript standard.

4.1 Data Ingestion

The sensor devices publish their data in an arbitrary encoding to our Pub/Sub-Service,
where it is parsed by the user defined Parsers and stored in the “SensorDB”.

4.1.1 Pub/Sub-Service

We run the MQTT-Broker mosquitto [41] behind a firewall. Therefore the broker itself
does not handle the authentication of clients. Those are assumed to be already autho-
rized if they are able to access the broker. We use the Quality-of-Service (QoS) level 2
to guarantee that the subscribers receive the messages each exactly once.

4.1.2 Data Format

We do not restrict the data format in which the sensors publish and only require that
they publish to an MQTT-topic in the form /<device_id>/<sensor_id>. The published
data can be any byte array. Two very common data formats for IoT and sensor data are
protocol buffers and JSON strings. Protocol buffers provide structure while minimizing
the format-overhead, but also require the sensor and server to have a synchronized
protocol buffer message type in form of a compiled .proto-File. Because of this required
compilation step the resulting messages are not human-readible. The alternative JSON-
Format has a larger format overhead, but does not require the sensor and server to
be synchronized. This makes sense if the data-structure often changes, especially if
sensors regularly add fields that do not need to be known for the filtering step. In the
Evaluation section we provide examples using both formats.

32

4 Implementation

4.2 REST-API

This is the central piece of the platform and manages the parsers, scripts and visualiza-
tions. It provides an interface for those services as a REST API.

4.2.1 Framework

With the asynchronous event driven JavaScript runtime Node.js [42] it is easy to build
scalable network applications. Node.js does not use threads but instead a so called
event-loop runtime construct and callbacks. We therefore do not have to worry about
deadlocks because Node.js does not have the concept of locks. We can still fork child
processes to perform other tasks of e.g. the processing-unit, in parallel. Specifically we
use the Node.js web application framework Nest.js [43], which is scalable and loosely
coupled and most importantly provides many features to help structure the application
and to provide HTTP utilities and middlewares.

Object Relation Mapper (ORM) For the platform itself we use a simple PostgreSQL
database (Platform DB in Figure 4.1) and the object relation mapper (ORM) TypeORM
[44] on top of it. TypeORM is highly influenced by Doctrine [45] and similarly stores
each entity in a file, specifying e.g. relations simply by annotations. We use an
ORM here, because only the platform developer has to learn the ORM‘s syntax and
it simplifies the queries. We use the DataMapper pattern [46], because it allows great
flexibility between the domain and the database.

Automatic Documentation We use Swagger UI [47] to visualize our API‘s resources.
It is automatically generated from our module‘s controllers and is therefore not prone
to be out of date. The REST-API serves it per default on port 3001.

Logging We log all errors to a file called error.txt to track possible errors during
production and store actions and important events in a file called log.txt to support
the debugging of the production system and to keep track of the actions users take.

Configuration To easily deploy the API on different platforms, e.g. switching between
the production and the development environment, one only has to set the environment
variable NODE_ENV to "production" or "development". It is possible to add other envi-
ronments by adding a new <environment_name>.env file to the folder environments.
There one can specify all the variables to fit the requirements and then activate it by
setting the variable NODE_ENV to <environment_name>. Subsequently, when building
the API the specified configuration will be used.

33

4 Implementation

4.2.2 Parser

The parsers can be uploaded over the RESTful API and subscribe to the Pub/Sub-
Service. They have to consist of a main.py file that implements three required methods
(init, on_message, clear), and have to specify a title and a topic to subscribe to.

Once uploaded the parsers will always be started with the REST-API. Because
they should not override their past state, every time they get restarted, they have to
implement separate init and on_message methods. The init method is only run
directly after the parser is uploaded and should be used to instantiate the table it
needs or other setup it requires. The on_message method is called every time data
is published to the specified topic and the clear method can be manually triggered
with the UI-button “Clear data”. This is useful in the case one wants to delete all the
previously collected data, but one can use this method also for arbitrary other tasks.
The passed parameters of the methods (seen in Figure 4.2) are the following:

• parser_db_connection: A psycopg2 connection to the parser database.

• parser_db_cursor: A psycopg2 cursor for the parser database connection. It can
be used to write the parsed data to the database.

• msg: The published message object. Depending on the publisher this can be
encoded as e.g. protocol buffer or a JSON-string

def init(parser_db_connection, parser_db_cursor):
[...]

def on_message(msg, parser_db_connection, parser_db_cursor):
[...]

def clear(parser_db_connection, parser_db_cursor):
[...]

Figure 4.2: Signatures of the methods that need to be implemented in the main.py file
of the parser

Handling Parser Dependencies Optionally one can provide other python files to e.g.
specify a protocol buffer object required by the parser. We also allow the user to upload
a list of packages to be installed by the python package manager pip. They will then be
installed for each parser in a separate conda-environment. By default, we install the
conda packages pip and psycopg2 and the pip packages python-dotenv, paho-mqtt
and protobuf.

34

4 Implementation

4.2.3 Processing-Unit

Processing scripts transform the parsed data for later visualization and exploration
and are called from the REST-API application. The platform includes a script-interface
that connects to the database and then calls the processing scripts, passing them the
database connection similar to the parser. While the platform itself allows generic
scripts we will in the following focus only on python-scripts. Those processing scripts
have to implement a method with the following signature, which will be called by the
script-interface:

def run(cursor, create_table, writer)

The passed parameters are the following:

• cursor: A psycopg2 cursor for the sensor database connection. This can be used
to query for the structured sensor data or the output of other scripts.

• create_table: This function has to be called with the sql-string of the required table
fields (e.g. id serial PRIMARY KEY, timestamp bigint) to create the output
table.

• writer: This function is used to write the transformed results back to the database
in batches. Its parameters are:

1.The table fields as list of strings

2. A list of a list of values

The user can create new processing-units by uploading the scripts through the Web-
Interface. The Web-UI and the API then enable the user to run those scripts, to terminate
them or to monitor the output. To support other programming languages one needs to
implement a matching script- and parser-interface.

Handling Script Dependencies Most scripts have external dependencies. Those
dependencies can be conflicting between different scripts for example if two scripts
require other versions of a package. Therefore we decided to run each script in a virtual
environment and let it pass a list of required packages. We allow the user to upload
a list of packages to be installed by the python package manager pip. They will then
be installed for each script in a separate conda-environment. By default, we install the
conda packages pip and psycopg2 and the pip package python-dotenv.

Debugging The code of the script-interface is open-source with the rest of the plat-
form and can be run locally, allowing the user to use his favorite debugging tools. To
debug errors that only arise while deployed to the production system, the platform
displays the error-output from the scripts in the Web-UI.

35

4 Implementation

Scheduling Scripts The user can schedule the execution of scripts by defining cron
[48] jobs. By passing a priority queue of the scripts the user can specify in which order
scripts should be run. If a script fails, then all scripts that follow in the priority queue
will not be run. The time-intervals have to be specified following the syntax of cronjobs
(reference). The REST-API passes those cronjobs then to the crontab command. They
will therefore run independently of the REST-API on the platform server.

4.3 Visualization

To provide a simple visualization that is open-source, free to use and contains the
required charts for spatio-temporal data we have implemented a visualization UI. This
gives the user a dashboard for each project in which he can create sheets, containing
the charts. The UI also provides interactive access to manage the parsers and the
scripts. Before going into their details we will present the framework we used and the
programming paradigms that are common for them all.

Angular Angular [49] is a platform to build Typescript-based client applications.
Specifically for interactive single page applications (SPAs) Angular brings many useful
features. Those range from utilities for client side routing, over dependency injection to
keep the code lean, to templates that combine HTML with Angular markup to modify
the HTML elements before being displayed. This binding between the Angular markup
and HTML elements is at the core of the Angular architecture and helps to circumvent
many pitfalls of highly interactive applications like unsynchronized Views and Models.
It is easy to integrate the following paradigms into Angular and to write clean and
modular code.

4.3.1 Applied Programming Paradigms

Model to View Transformation Before we can display, e.g., our Model from the
database, we have to transform it to the form we want to display it in. Because we
want an interactive UI we have moved the Model to View transformation to the client.
Angular provides many useful features for this transformation, most importantly data
bindings and change detection. Data bindings define the communication between the
Model in Angular and the View of the Document Object Model (DOM). The DOM
is a programming interface representing the HTML document as a tree where each
node relates to an object in that document. Change detection detects when the Model
has changed since it was rendered the last time and updates the View. Because these

36

4 Implementation

DOM updates are expensive Angular provides many techniques to trigger them only if
needed.

State Management We use a centralized store architecture, similar to an in-memory
database. This store is used for the application state and for client side caching.
Instead of storing our data in each Angular-Component we move it all into this store.
Conceptually we therefore also move the“Model to View Model Mapping” from the
backend to the client. Instead of storing a representation of the data in each chart that
needs it we store it in the store service and inject it into all the charts that need the data.
If a component wants to modify the data it sends an “Action object" to the store service.
The components are therefore not tightly coupled. The store service then uses the
“Action objects" information to create an updated version of the state and broadcasts it
to all interested components. This makes sure that all View Models are in sync with
the data model. In our implementation we use reactive programming and the reactive
programming, state management library ngxs [50] to handle the state.

Reactive Programming In reactive programming everything from a variable to a
http-request can be a data stream. The library ngxs provides observables and operators
to transform, filter and select data from the event streams. It combines the Observer
and Iterator pattern [51] and blends them with functional programming. This makes it
easy to handle asynchronous streams of data. Because our interactive UI creates many
events that we have to handle in an asynchronous way we can simplify our code by
using the reactive programming paradigm and the ngxs operators.

Client Side Routing We dynamically rewrite our current page instead of loading new
pages from the server. Such applications are called Single Page Applications (SPAs)
and are common for dashboards and interactive web applications. The server serves
for all URLs the same index.html that bootstraps the application. The routing is fully
done on the client side.

4.3.2 Web-UI

The Web-UI allows the user to interactively access information from the REST-API
and execute commands. There he can create projects, each encapsulating its own
scripts, parser and dashboard. In each dashboard he can create the visualization sheets
containing the charts (see Figure 4.3 for structure).

37

4 Implementation

Figure 4.3: Structure of the projects

Dashboards They allow the visualization and exploration of the processed data. Each
project’s dashboard can have multiple sheets to separate different topics in each project.
Each sheet can contain multiple charts. Charts have a specific type which can range
from a classic Line-Chart to charts for spatial data like a Heatmap-Chart.

Chart Editor To select what data to visualize we can use the chart editor. We have
to specify from which processed table we want to display data. We can not display
data from multiple tables. Merging multiple data sets has to be part of the data
transformation step. Each chart type then has a list of input fields. For example a
Line-Chart needs to know which data to plot on the x- and the y-Axis and a Bar-Chart
needs to know which fields to cluster by. These fields can than be selected in the chart
editor from the list of available fields in the selected data-store table. The selections are
then stored in the Platform DB.

Charts They contain the graphs visualizing the data. We read the selected fields to
display from the platform‘s database as specified using the chart editor or the REST-API.
The component then independently selects the data from the store. Currently supported
charting libraries are plotly [52] for simple graphs and mapboxGL [53] for maps. Each
chart is associated with a chart-type and each chart-type with a charting-library. Adding
new charting libraries does not break existing charts. Currently supported chart-types
are the following:

• Line-Chart + Bar-Chart

• Route-Map: Displaying the trajectory a list of coordinates represent

38

4 Implementation

Figure 4.4: User interface to create scripts and cronjobs and display the status of script
executions

• Heat-Map

• Density-Chart

Examples for each type are provided in the Evaluation Section.

Script-Manager This provides a UI to execute, terminate, delete and create scripts,
as well as a history of the script-runs. Creating cronjobs is also possible from this
component, as shown in Figure 4.4.

Parser-Manager This provides a UI to create, delete and list existing parsers. It also
provides for each parser a button to call its “clear” method that depending on the
parser can be used to e.g. clear the already collected data. Deleting a parser does not
remove the collected data (no cascading).

39

4 Implementation

4.4 Infrastructure

We run the platform on two virtual machines (VMs). On the Infrastructure-VM we run
the databases, the tile-server and the Pub/Sub-Service and on the Platform-VM we
run the backend (Parser, Scripts, REST-API) and the frontend (Visualizations, UI) as
depicted in the component diagram (Figure 4.1).

4.4.1 Data Storage

We chose TimescaleDB because it provides a pure SQL interface, the stability of
PostgreSQL and outperforms in many benchmarks other common TSDBs like InfluxDB.
We use it for all our data stores, from the structured to the processed data. We have
split the data store in a database containing all the platform related data (Platform DB),
e.g., projects and list of charts and a database to store the structured and processed
data (Sensor DB). We decided against using two separate databases for structured
and processed data to simplify the data access for the user. Because by using the
same data store we allow the scripts to access results from other scripts, which is
useful for scripts that depend on each other. The structured and processed tables are
transformed to TimescaleDB tables. Those tables will automatically be split into chunks
by TimescaleDB with their own index trees to circumvent the “swap-to-disk” problem
of large index trees.

4.4.2 Tile Server

We are running an openmaptiles-server [54] using docker [55] on the infrastructure
server and serve the “whole planet” data set from openstreetmap [37] with the style
klokantech-basic. The docker container is configured with the restart policy “always”
to automatically restart after a server restart.

4.5 Code Design

The code is open-source and publicly available1. As this thesis will serve as the
documentation of the current state of the software we will discuss the code structure
and code design here as well.

1https://github.com/tpfeifle/STAV

40

4 Implementation

REST-API The Node.js API is structured into modules representing functional units.
We implemented the following utility modules that are used in multiple other modules:

• Config: Loads the configuration as specified in the NODE_ENV environment
variable (default: development)

• Logger: Logs errors and user actions to the log.txt and error.txt files.

The following modules expose functionality for the REST-API.

• Chart: CRUD2 operations for charts

• Parser Manager: CRUD2 operations for the parser and starting of the parser with
the system

• Project: CRUD2 operations for projects

• Script Manager: CRUD2 operations, starting/stopping of scripts

• Sensor Table: Querying of the sensor data store

• Sheet: CRUD2 operations for sheets

Each module consists of a module declaration, a controller, a service and optional entity
definitions. The module declaration defines the dependencies to other modules. The
controller defines the routes of the REST-API and extracts the HTTP parameters and
data. It then calls the module‘s service which contains the database queries e.g. calls
to manage the parsers and scripts. The uploaded parser are stored each in a separate
directory under /parser/<parser_id> and the scripts under /data-processing/<
↪→ script_id>. In their parent directory lies the respective interface which executes
them. The project dependencies are handled with the Node Package Manager (npm)
and we adhere to the style guidelines defined in the tslint.json.

User Interface The components are structured in hierarchical order, e.g., the project
contains the dashboard, parser and scripts. Each component contains its Model View
transformation code in its Typescript file, its styling in the Sassy CSS (SCSS) file and its
layout in its HTML file. Apart from those we also have guard files that are executed
before the client router navigates to the page and make sure that e.g. the required data
is already loaded and else waits till it is loaded. The shared folder contains the state
management of ngxs. There we have the Model Views that represent the types we
store in our client-side store and we have the store itself. The store is our global state
container and we have split it into separate functional units. Each of them has a set of
actions to mutate the store. All the aforementioned components select the subset of

2 Create, Read, Update, Delete

41

4 Implementation

the store they need and are injected the updated content after each update. Actions
describe the action to take and contain meta-data which the store uses to execute those
actions. Similar to the REST-API we use npm to handle the dependencies and adhere
to the style guidelines defined in the tslint.json.

4.6 Deployment

The platform services and the infrastructure services are deployed on separate virtual
machines with the specifications of Table 4.1.

Infrastructure-VM Platform-VM
CPU 1 core 1 core

Memory 8GB 6 GB
Storage 200GB 20GB

Table 4.1: Specifications of the deployed virtual machines, that run on a Xeon E5-
2630v4@2.2GHz with 768GB RAM

For deployment we have to compile the Typescript code. For the REST-API we can do
this by executing the command npm run start which starts the Typescript-Compiler
configured for the REST-API and serves the result with Node.js. We compile and
minify the Web-UI with the Angular command line interface (CLI) ng build --prod
to minimize loading times and save bandwidth. The result can be served using a web
server.

4.7 Summary

We have implemented a solution consisting of a Parser to ingest sensor data from the
Pub/Sub-Service, a Processing-Unit to execute generic scripts for data transformation
and a Visualization interface for data exploration. We use data store tables as the
common interface between the different pipeline steps and provide a REST-API for
all of the mentioned services, as well as to query data from the data store. The user
interface is build with the framework Angular and the REST-API with the Node.js
framework Nest.js. For the data store we use a time series database build on PostgreSQL,
called TimescaleDB.

42

5 Evaluation

Based on the problem statement set out to address in the Introduction, we will evaluate
the platform with two different use cases, representative for real-world applications.

Representative Use Cases The following use cases make use of all the pipeline steps,
from ingesting the sensor data to the final data visualization. We test the platform
first on artificial data with a use case we call Workplace. In our second use case Taxi
Mobility we evaluate our platform‘s map visualization and analysis capabilities by
visualizing trajectories of taxis in Beijing. The workplace data set is with 4,000 data
entries comparatively small compared to the taxi data set with ~790,000 data entries
(see Table 5.1). In the first use case we highlight specifically the data ingestion and in
the second use case the data processing.

5.1 Workplace

We simulate devices sensing their surrounding temperature, noise volume and CO2

level. They send the data in batches in intervals of 40 seconds to the Pub/Sub-Service
of our platform. In this artificial use case we assume that those devices are placed at
different workplaces ranging from a production hall with many loud machines to an
office at a university. We want to measure the relation between the hour of day and the
sound volume for each location as well as patterns in the sensor data that might help
us to discover if, e.g., someone opened a window or a machine stopped working.

1assuming the following data type sizes: integer: 4 Byte, datetime: 8 Byte, float: 4 Byte, string: 4 Byte per
character (max. 5 characters)

Workplace Sensors Taxi Mobility
Size per data entry 1 32 Byte 20 Byte
Number of data entries 4,000 787,754

Table 5.1: Comparison of the data-sets used in the two use cases

43

5 Evaluation

Data Format The devices sense with specific sensors the temperature, CO2 level and
noise volume. We identify the different workplaces by attaching a user name. To keep
track of the changes over time we add a timestamp. Here is an example data entry:

temperature: 24.26634795194493
co2_level: 456.46546478476034
noise_volume: 50.95365834607114
name: "Franz"
timestamp: 1557461540

We minimize the required bandwidth by using protocol buffers to serialize the sensed
data to byte arrays. Therefore we have to specify how our information is structured by
defining a protocol buffer message type, as shown in Figure 5.1.

syntax = "proto3";
package sensing;

message WorkplaceSensor {
double temperature = 1;
double co2 = 2;
double noise_volume = 3;
string name = 4;
int32 timestamp = 5;

}

Figure 5.1: workplace.proto: Example of a protocol buffer message type for the work-
place sensor

We compile this message type to get a python file to serialize and deserialize our
data entries. For comparison, we also created a JSON formatted string from the same
data resulting in the following:

[{"timestamp": 1557461540, "temperature": 24.26634795194493, "co2":
↪→ 456.46546478476034, "noise": 50.95365834607114, "name": "Franz"}]

By sending the data as a protocol buffer instead of as a JSON string we reduced the size
of our data entries from an average 133.4 Bytes (JSON) to 40 Bytes (protobuf) by 70%.
After serializing the data each device publishes the information to our Pub/Sub-Service
with a topic in the format /<device_id>/workplace_sensor.

Parser To receive and parse the data we need to upload a parser to the platform.
By specifying our subscription topic as /+/workplace_sensor, where “+” is a MQTT

44

5 Evaluation

wildcard matching all strings at its level, we are able to subscribe to all devices of type
“workplace_sensor”. The parser for this use case is defined in the main.py listed in
Figure 5.2. The init method creates the table to store the information in and is executed
after uploading the parser. The on_message method uses the compiled message type
as defined above to extract the data. We then anonymize it by replacing the user name
with the respective sha-224 hash and then write it to the structured data store. We also
need to upload the compiled message type for the parser. The provided clear method
allows the user to clear the whole table if needed. This is useful to reset the parsed
data if our sensors produced data that we are no longer interested in.

To evaluate the performance of our data ingestion we ingested 4,000 data entries
encoded with protobuf and measured the execution time over 5 separate runs. We used
a single parser without threading and published the data entries one after the other
similar to the case of batch uploads for devices with limited network connectivity. As
can be seen in Table 5.2, it took on average 13.39 seconds from publishing the data till
all of it was parsed and stored in the data store.

Processing Scripts After arbitrary transformation code we then write the result back
to the data store. Because we focus in this use case on the data ingestion we only copied
the data from the structured data store to the processed data store. For the full data set
this took on average over 5 runs 0.24 seconds (see Table 5.2). In the next use case we
focus on the data processing and provide an example script (see Figure 5.5).

Visualization To plot the processed data we use the chart editor to select for each
chart from which script result we want to display which fields (as shown on the right
side in Figure 5.3). Depending on the chart type the required parameters change. For a
line chart we can select which fields to display on the x- and y-axis. The same is true
for the density chart. For the bar chart we can select the field over which we want to
cluster and which entry we want to sum up (y-axis).
We visualized the temperature, CO2 levels and noise volume for the two different work
places (represented by the field name in our data set). In Figure 5.3 we visualize the data
for the workplace office and can see two spikes in the noise volume (the third chart):
One at 5:30 AM and one around 6:30 PM. In the first chart we see that the temperature
rose during the day but had a drop around 2 PM, which might be due to e.g. somebody
opening a window. In the second chart we see the distribution of CO2 levels and the
temperature and could investigate whether or not they are correlated.

45

5 Evaluation

from .workplace_sensor_pb2 import WorkplaceSensor
import hashlib
import datetime as dt

def init(parser_db_connection, parser_db_cursor):
parser_db_cursor.execute("DROP␣TABLE␣IF␣EXISTS␣workplace_sensors;"
"CREATE␣TABLE␣workplace_sensors␣"
"(id␣serial,␣timestamp␣TIMESTAMP␣PRIMARY␣KEY,␣temperature␣float,␣"
"co2_level␣float,␣noise_volume␣float,␣user_hash␣varchar(100));"
"SELECT␣create_hypertable(’workplace_sensors’,␣’timestamp’);")
parser_db_connection.commit()

def on_message(msg, parser_db_connection, parser_db_cursor):
workplace_sensor_data = WorkplaceSensor()
workplace_sensor_data.ParseFromString(msg.payload)
user_hash = int(hashlib.sha224(bytes(workplace_sensor_data.name, "

↪→ utf-8")).hexdigest(), 16)
parser_db_cursor.execute(’INSERT␣INTO␣workplace_sensors␣’

’(timestamp,␣temperature,␣co2_level,␣noise_volume,␣
↪→ user_hash)␣’

’VALUES␣(%s,␣%s,␣%s,␣%s,␣%s)’,
(dt.datetime.utcfromtimestamp(workplace_sensor_data.

↪→ timestamp).strftime(’%Y-%m-%dT%H:%M:%S.%f’),
workplace_sensor_data.temperature,
workplace_sensor_data.co2_level,
workplace_sensor_data.noise_volume,
user_hash))

parser_db_connection.commit()

def clear(parser_db_connection, parser_db_cursor):
parser_db_cursor.execute(’DELETE␣FROM␣workplace_sensors’)
parser_db_connection.commit()

Figure 5.2: main.py - Parser for the workplace sensors

46

5 Evaluation

Figure 5.3: Visualization charts for the office sensor in the workplace data set

In Figure 5.4 we see the exemplary sensor output from a workplace at a production
line. The temperature and CO2 level distribution show that they are in this interval not
correlated and from the third chart we see regular jumps in the noise volume. Those
might be a machine producing parts in a fixed interval. We could then see from this
sensor output, that it ran from 5 AM till 5 PM, but stopped between 12 PM and 2 PM.
By exploring this data further one might be able to predict shift changes or machine
malfunctions. To explore the data in more details e.g. at a specific time interval, the
components allow us to zoom in. They can also be directly exported as images for use
in papers or reports.

Figure 5.4: Visualization charts for the production sensor in the workplace data set

47

5 Evaluation

5.2 Taxi Mobility

In this use case we evaluate our data pipeline on the T-Drive trajectory data sample [56]
prominently used in [57] and [58]. The data sample contains GPS trajectories of taxis in
Beijing from February 2 to February 8, 2008. We use a subset of 500 taxis totaling in
787,754 data points, which is therefore more than two orders of magnitude larger than
in the previous use case. With this data set we evaluate the platform‘s visualization
capabilities for spatio-temporal data. While we highlighted the data ingestion in the last
use case we here highlight the processing scripts and how to use external dependencies.

Data Format The data set consists of spatio-temporal data where each data entry
contains the date time without time zone, the taxi id and the spatial coordinate in
form of longitude and latitude. The data entries have the format (taxi_id,timestamp
↪→ ,longitude,latitude) and the fields are separated by commas, as shown in the
example below:

1,2008-02-02 15:36:08,116.51172,39.92123
1,2008-02-02 15:46:08,116.51135,39.93883
1,2008-02-02 15:46:08,116.51135,39.93883
...

We ingest the data directly to the data store and skip the Pub/Sub-Service for this
use case. This took us 11 minutes with a single process and without threading.

Processing Scripts The visualizations do not allow us to combine results from differ-
ent scripts in a single chart. Therefore we have to do the data modeling completely
in the processing step. To discover mobility patterns in the data we run the following
scripts on the same parsed data set:

1. Calculating the jump sizes

2. Estimating the probability density of the jump sizes

3. Calculating the center of mass and gyration radius

The jump sizes are defined as the distances between consecutive trajectory positions.
We calculate them in kilometers and additionally extract the hour from the timestamp
to later group the data points by it.

To estimate the probability density of the jump sizes we use the kernel density
estimate from the external library scipy, as shown in Figure 5.5. We install scipy by
adding the line scipy=1.2.1 to our pip requirements and upload this file together with

48

5 Evaluation

import numpy as np
from scipy.stats.kde import gaussian_kde

def run(cursor, create_table, writer):
create_table(’id␣serial␣PRIMARY␣KEY,␣xvalue␣float,␣probability␣

↪→ float’)
cursor.execute(’SELECT␣jump_size␣FROM␣script_1’)
records = cursor.fetchall()

jumps = np.array(list(map(lambda record: record[0], records)))
kernel_density_estimate = gaussian_kde(jumps)
x = np.linspace(0, np.max(jumps), 100)
pdf_histogram = list(map(lambda xValue: {’xValue’: xValue, ’

↪→ probability’: kernel_density_estimate(xValue)[0]}, x))
writer([’xvalue’, ’probability’], pdf_histogram)

Figure 5.5: Estimating probability density of jump sizes using external libraries

our script. Because we do not want to calculate the jump sizes again, we instead use the
result from our previous script (called here script_1, in general it is script_<script_id>)
for our SQL query. To automatically execute the scripts in the required order we create
a cronjob and assign the jump size script a higher priority in our priority queue (see
Figure 4.4).

With our third script we calculate the center of mass for each taxi as well as its
gyration radius. The gyration radius represents the linear size occupied by each taxi‘s
trajectory up to the time t [59] and the center of mass is simply the average location of
the taxi.

Visualization As a first step we visualize the data points. As can be seen in Figure
5.6 we plotted the trajectories, each colored by taxi. Because this plot is quite noisy and
to further explore the data we decided to plot the data points, colored again by taxi,
without the connecting paths between them.

49

5 Evaluation

Figure 5.6: Left: Taxi trajectory map, Right: Taxi point map

This gives us a good overview over the data set. To answer the question during
which times the taxis are driving the most we added the plots of Figure 5.7. In the right
chart we use the Bar-Chart to group the extracted jump sizes by hour and sum them
up. We can tell that the hours when the taxis traveled the most total distance during
this week were 12 PM and from 5 PM to 6 PM. In combination with the Heat-Map on
the left we can get a fast overview which regions head a high taxi density during a
specific hour. A limitation is that we are not able to animate the Heat-Map over time
with a time slider, but can only visualize it for specific hours.

Figure 5.7: Left: Taxi heat map, Right: Summed jump sizes by hour of day

50

5 Evaluation

As a next step we grouped the jump sizes by taxi instead of by hour to determine
which taxis drove the longest total distances (seen on the left side in Figure 5.8). This is
in our case clearly taxi number 313. Following the paper [59] we used the right chart to
display the estimated probability density of the jump sizes (see script in Figure 5.5).

We can see a large number of small jump sizes and a small number of larger jump
sizes, which confirms the findings of [59] that most people travel only over short
distances and only a few regularly move farther away.

Figure 5.8: Left: Summed jump sizes by taxi, Right: Pdf estimate for jump sizes

For our last visualization we plotted the calculated center of mass locations and their
radius of gyration for each taxi (see Figure 5.9). The size and color of each circle is
determined by its gyration radius. By clicking on a point we can display the associated
taxi id. This chart shows that taxis traveling to the regions in the north-east and south-
west of Beijing traveled more often for larger distances outside of their center of mass
then taxis in the center of Beijing, because their circles are larger and darker. Therefore
those taxis are probably not regularly driving only in those regions, but instead had
customers that wanted to travel so far out of Beijing. In the north-east where many
customers want to travel to is the airport of Beijing, which corresponds to the pattern
we discovered.

51

5 Evaluation

Figure 5.9: Gyration radius and center of mass for each taxi

5.3 Quantitative Evaluation

For the quantitative evaluation we ran the mentioned scripts and in some cases changed
the input size to better compare their performance (details in Figure 5.2). The perfor-
mance evaluations were run on a MacBook Pro 2016 for better control of the execution
context. We did not parallelize the parser, scripts or database and did run all of them
on a single CPU. We averaged each execution time over 5 runs and reported the sample
standard deviation (denoted as s).

Speed of Inserts During the evaluation we discovered that the performance for
large cardinality of inserts was far below the reported performance benchmarks of
TimescaleDB. This was due to executing the inserts one at a time instead of using batch
inserts, therefore requiring a full client to database round trip for every insert. After
using the batch insert functionality of the psycopg2 module the insertion time for the
Taxi Mobility data dropped by 96% from 11 minutes to 26.62 seconds. Because the
parser inserts each data point on its own the performance is far below this rate. This is
the reason it took more than 13 seconds to parse the 4,000 published data points. In
general the bottleneck for the scripts is the insert performance of the database. While
we were able to insert more than 20,000 rows per second we have not yet evaluated if
the performance could be further increased with multiple database clients inserting in
parallel.

52

5 Evaluation

Speed of Transformations For the calculation of the jump sizes we transform the
around 790,000 data points in less than 3 seconds and even for the more complex
calculation of the gyration radii we take less than 30 seconds (see Figure 5.2). The data
querying scales to large data sets very well and at least in our use cases was not the
limiting factor. Because the data ingestion and data processing are the main limiting
factors the “PDF Jump Size” script outperformed the “Workplace” processing script
even though it queries and processes more than 100x times the amount of data.

Workplace Jump Size PDF Jump Size Gyration Radius
Data points 2

Input 4,000 787,754 787,254 787,754
Output 4,000 787,254 100 500
Durations 3

Parsing 13.39 (s=0.133) 26.62 (s=5.017) 4 26.62 (s=5.017) 4 26.62 (s=5.017) 4

Processing 5.45 (s=0.179) 33.96 (s=0.963) 2.83 (s=0.106) 29.02 (s=0.675)

Table 5.2: Comparison of the different scripts regarding execution time and amount of
processed data points.

5.4 Summary

The presented solution integrates all steps from the OSEMN-Pipeline, from obtaining
the data to interpreting the data, in one platform. While there are more powerful
solutions for the different steps in the pipeline, e.g., Apache Airflow for the transfor-
mations, Kafka for data ingestion or Tableau for visualization, this solution makes it
really easy for the users to perform highly custom data modeling and easily access
the sensor-data as well as quickly create visualizations. It is still modular enough to
replace every part by one of the more powerful solutions with the disadvantage of
increasing the complexity. This becomes increasingly useful as one has more complex
requirements, but always adds a lot of complexity on the platform side as well as for
the user who writes the transformation-scripts to integrate them with their API. Further
work could focus on improving the performance of batch inserts into the data store,
adding a stream processing engine or more visualization features.

3number of data points in rows
4in seconds
5the time it took to write the entries from disk to the database

53

List of Figures

3.1 OSEMN-Pipeline: 1) Obtaining 2) Scrubbing 3) Exploring 4) Modeling . 12
3.2 Batch processing approaches for unbounded data [24] 13
3.3 Lambda-Architecture: separate batch and speed layer which are merged

when querying (adapted from [26]) . 14
3.4 Execution tree of scripts: Children depend on the results of their parents,

each node represents a script . 18
3.5 Priority queue: each number represents a script and each group repre-

sents a priority-group . 18
3.6 Optional data store for the raw sensor data before parsing 21
3.7 TimescaleDB : Split each table into chunks and store them in an internal

table. The chunk can then fit into memory, which avoids the swap-to-disk
problem [32] . 23

3.8 Caching: the closer to the client the results are cached, the smaller is the
latency for requesting them . 26

3.9 Pyramid for loading the tiles depending on the zoom-level [38] 27
3.10 Left: Mercator projection, Right: True size of each country [39] 28

4.1 Components overview of the platform . 31
4.2 Signatures of the methods that need to be implemented in the main.py

file of the parser . 34
4.3 Structure of the projects . 38
4.4 User interface to create scripts and cronjobs and display the status of

script executions . 39

5.1 workplace.proto: Example of a protocol buffer message type for the
workplace sensor . 44

5.2 main.py - Parser for the workplace sensors 46
5.3 Visualization charts for the office sensor in the workplace data set 47
5.4 Visualization charts for the production sensor in the workplace data set . 47
5.5 Estimating probability density of jump sizes using external libraries . . 49
5.6 Left: Taxi trajectory map, Right: Taxi point map 50
5.7 Left: Taxi heat map, Right: Summed jump sizes by hour of day 50
5.8 Left: Summed jump sizes by taxi, Right: Pdf estimate for jump sizes . . 51

54

List of Figures

5.9 Gyration radius and center of mass for each taxi 52

55

List of Tables

3.1 Comparison of where to infer the structure of the sensor-data 16
3.2 Comparison of different database types 24
3.3 Comparison of time series databases . 25

4.1 Specifications of the deployed virtual machines, that run on a Xeon
E5-2630v4@2.2GHz with 768GB RAM . 42

5.1 Comparison of the data-sets used in the two use cases 43
5.2 Comparison of the different scripts regarding execution time and amount

of processed data points. 53

56

Bibliography

[1] I. Gartner. Gartner Says 8.4 Billion Connected "Things" Will Be in Use in 2017, Up
31 Percent From 2016. 2017. url: https://www.gartner.com/en/newsroom/press-
releases/2017-02-07-gartner-says-8-billion-connected-things-will-be-
in-use-in-2017-up-31-percent-from-2016 (visited on 05/08/2019).

[2] A. W. Services. AWS IoT. url: https://aws.amazon.com/de/iot/ (visited on
05/13/2019).

[3] T. Choudhury, G. Borriello, S. Consolvo, D. Haehnel, B. Harrison, B. Hemingway,
J. Hightower, K. Koscher, A. LaMarca, J. A. Landay, et al. “The mobile sensing
platform: An embedded activity recognition system.” In: IEEE Pervasive Computing
7.2 (2008), pp. 32–41.

[4] N. D. Lane, E. Miluzzo, H. Lu, D. Peebles, T. Choudhury, and A. T. Campbell. “A
survey of mobile phone sensing.” In: IEEE Communications magazine 48.9 (2010).

[5] G. Atluri, A. Karpatne, and V. Kumar. “Spatio-temporal data mining: A survey
of problems and methods.” In: ACM Computing Surveys (CSUR) 51.4 (2018), p. 83.

[6] A. Eklund, T. E. Nichols, and H. Knutsson. “Cluster failure: Why fMRI inferences
for spatial extent have inflated false-positive rates.” In: Proceedings of the national
academy of sciences 113.28 (2016), pp. 7900–7905.

[7] W. Feng, Z. Yan, H. Zhang, K. Zeng, Y. Xiao, and Y. T. Hou. “A Survey on Security,
Privacy, and Trust in Mobile Crowdsourcing.” In: IEEE Internet of Things Journal
5.4 (2018), pp. 2971–2992.

[8] F. Restuccia, N. Ghosh, S. Bhattacharjee, S. K. Das, and T. Melodia. “Quality of
information in mobile crowdsensing: Survey and research challenges.” In: ACM
Transactions on Sensor Networks (TOSN) 13.4 (2017), p. 34.

[9] L. Sweeney. “Simple demographics often identify people uniquely.” In: Health
(San Francisco) 671 (2000), pp. 1–34.

[10] Y.-A. De Montjoye, C. A. Hidalgo, M. Verleysen, and V. D. Blondel. “Unique in
the crowd: The privacy bounds of human mobility.” In: Scientific reports 3 (2013),
p. 1376.

57

https://www.gartner.com/en/newsroom/press-releases/2017-02-07-gartner-says-8-billion-connected-things-will-be-in-use-in-2017-up-31-percent-from-2016
https://www.gartner.com/en/newsroom/press-releases/2017-02-07-gartner-says-8-billion-connected-things-will-be-in-use-in-2017-up-31-percent-from-2016
https://www.gartner.com/en/newsroom/press-releases/2017-02-07-gartner-says-8-billion-connected-things-will-be-in-use-in-2017-up-31-percent-from-2016
https://aws.amazon.com/de/iot/

Bibliography

[11] K. Abualsaud, T. M. Elfouly, T. Khattab, E. Yaacoub, L. S. Ismail, M. H. Ahmed,
and M. Guizani. “A Survey on Mobile Crowd-Sensing and Its Applications in the
IoT Era.” In: IEEE Access 7 (2019), pp. 3855–3881.

[12] D. V. Pavlov. “Hive: An extensible and scalable framework for mobile crowd-
sourcing.” In: Diss. Imperial College London (2013).

[13] M.-R. Ra, B. Liu, T. F. La Porta, and R. Govindan. “Medusa: A programming
framework for crowd-sensing applications.” In: Proceedings of the 10th international
conference on Mobile systems, applications, and services. ACM. 2012, pp. 337–350.

[14] C. Howson, R. L. Sallam, J. L. Richardson, J. Tapadinhas, C. J. Idoine, and A.
Woodward. “Magic quadrant for analytics and business intelligence platforms.”
In: Retrieved Aug 16 (2018), p. 2018.

[15] T. Software. Tableau. url: https://www.tableau.com/ (visited on 05/08/2019).

[16] Qlik. Qlik. url: https://www.qlik.com/ (visited on 05/08/2019).

[17] M. Corporation. Power BI. url: https://powerbi.microsoft.com/ (visited on
05/08/2019).

[18] W. Schlee, R. C. Pryss, T. Probst, J. Schobel, A. Bachmeier, M. Reichert, and
B. Langguth. “Measuring the moment-to-moment variability of tinnitus: the
TrackYourTinnitus smart phone app.” In: Frontiers in aging neuroscience 8 (2016),
p. 294.

[19] A. K. Sharma, M. F. R. Ansari, M. F. Siddiqui, and M. A. Baig. “IOT enabled
forest fire detection and online monitoring system.” In: Int J Curr Trends Eng Res
(IJCTER) 3.5 (2017), pp. 50–54.

[20] N. Maisonneuve, M. Stevens, and B. Ochab. “Participatory noise pollution moni-
toring using mobile phones.” In: Information Polity 15.1, 2 (2010), pp. 51–71.

[21] B. Pan, Y. Zheng, D. Wilkie, and C. Shahabi. “Crowd sensing of traffic anomalies
based on human mobility and social media.” In: Proceedings of the 21st ACM
SIGSPATIAL International Conference on Advances in Geographic Information Systems.
ACM. 2013, pp. 344–353.

[22] T. Ludwig, C. Reuter, T. Siebigteroth, and V. Pipek. “CrowdMonitor: Mobile
crowd sensing for assessing physical and digital activities of citizens during
emergencies.” In: Proceedings of the 33rd Annual ACM Conference on Human Factors
in Computing Systems. ACM. 2015, pp. 4083–4092.

[23] B. Guo, Z. Yu, L. Chen, X. Zhou, and X. Ma. “MobiGroup: Enabling lifecycle sup-
port to social activity organization and suggestion with mobile crowd sensing.”
In: IEEE Transactions on Human-Machine Systems 46.3 (2016), pp. 390–402.

58

https://www.tableau.com/
https://www.qlik.com/
https://powerbi.microsoft.com/

Bibliography

[24] T. Akidau. “The world beyond batch: Streaming 101.” In: oreilly. com 20 (2016).

[25] N. Marz and J. Warren. Big Data: Principles and best practices of scalable real-time
data systems. New York; Manning Publications Co., 2015.

[26] M. Hausenblas. Lambda architecture. 2014. url: https://berlinbuzzwords.de/
sites/berlinbuzzwords.de/files/media/documents/michael_hausenblas_-
_lambda_architecture.pdf (visited on 05/08/2019).

[27] Y. Xiao, P. Simoens, P. Pillai, K. Ha, and M. Satyanarayanan. “Lowering the
barriers to large-scale mobile crowdsensing.” In: Proceedings of the 14th Workshop
on Mobile Computing Systems and Applications. ACM. 2013, p. 9.

[28] K. Birman and T. Joseph. Exploiting virtual synchrony in distributed systems. Vol. 21.
5. ACM, 1987.

[29] D. Krafzig, K. Banke, and D. Slama. Enterprise SOA: service-oriented architecture
best practices. Prentice Hall Professional, 2005.

[30] R. Bayer and E. McCreight. “Organization and maintenance of large ordered
indexes.” In: Software pioneers. Springer, 2002, pp. 245–262.

[31] M. A. Mike Freedman. TimescaleDB. https://github.com/timescale/timescaledb.
2019.

[32] I. Timescale. Time-series data: Why (and how) to use a relational database instead of
NoSQL. 2017. url: https://blog.timescale.com/time- series- data- why-
and-how-to-use-a-relational-database-instead-of-nosql-d0cd6975e87c/
(visited on 05/08/2019).

[33] Influxdata. Flux - Influx data language. url: https://github.com/influxdata/
flux (visited on 05/08/2019).

[34] P. O’Neil, E. Cheng, D. Gawlick, and E. O’Neil. “The log-structured merge-tree
(LSM-tree).” In: Acta Informatica 33.4 (1996), pp. 351–385.

[35] I. Timescale. TimescaleDB vs. InfluxDB: Purpose built differently for time-series data.
2018. url: https://blog.timescale.com/timescaledb- vs- influxdb- for-
time-series-data-timescale-influx-sql-nosql-36489299877/ (visited on
05/13/2019).

[36] M. Arye. SQL vs. Flux: Choosing the right query language for time-series data. 2018.
url: https://blog.timescale.com/sql-vs-flux-influxdb-query-language-
time-series-database-290977a01a8a/ (visited on 05/12/2019).

[37] OpenStreetMap. url: https://www.openstreetmap.org/ (visited on 05/08/2019).

[38] M. Corporation. Bing Maps Tile System. 2018. url: https://docs.microsoft.com/
en-us/bingmaps/articles/bing-maps-tile-system (visited on 05/08/2019).

59

https://berlinbuzzwords.de/sites/berlinbuzzwords.de/files/media/documents/michael_hausenblas_-_lambda_architecture.pdf
https://berlinbuzzwords.de/sites/berlinbuzzwords.de/files/media/documents/michael_hausenblas_-_lambda_architecture.pdf
https://berlinbuzzwords.de/sites/berlinbuzzwords.de/files/media/documents/michael_hausenblas_-_lambda_architecture.pdf
https://github.com/timescale/timescaledb
https://blog.timescale.com/time-series-data-why-and-how-to-use-a-relational-database-instead-of-nosql-d0cd6975e87c/
https://blog.timescale.com/time-series-data-why-and-how-to-use-a-relational-database-instead-of-nosql-d0cd6975e87c/
https://github.com/influxdata/flux
https://github.com/influxdata/flux
https://blog.timescale.com/timescaledb-vs-influxdb-for-time-series-data-timescale-influx-sql-nosql-36489299877/
https://blog.timescale.com/timescaledb-vs-influxdb-for-time-series-data-timescale-influx-sql-nosql-36489299877/
https://blog.timescale.com/sql-vs-flux-influxdb-query-language-time-series-database-290977a01a8a/
https://blog.timescale.com/sql-vs-flux-influxdb-query-language-time-series-database-290977a01a8a/
https://www.openstreetmap.org/
https://docs.microsoft.com/en-us/bingmaps/articles/bing-maps-tile-system
https://docs.microsoft.com/en-us/bingmaps/articles/bing-maps-tile-system

Bibliography

[39] J. Nowosad. A relation between the Mercator projection and the true size of each country.
2018. url: https://upload.wikimedia.org/wikipedia/commons/e/ee/Worlds_
animate.gif (visited on 05/13/2019).

[40] T. C. Project. Chrome V8. url: https://v8.dev/ (visited on 05/08/2019).

[41] E. Foundation. Eclipse Mosquitto: An open source MQTT broker. url: https://
mosquitto.org/ (visited on 05/08/2019).

[42] Node.js. url: https://nodejs.org/ (visited on 05/08/2019).

[43] Nest.js. url: https://nestjs.com/ (visited on 05/08/2019).

[44] typeORM. url: https://typeorm.io (visited on 05/08/2019).

[45] Doctrine Project. url: https://www.doctrine-project.org/ (visited on 05/08/2019).

[46] M. Fowler. Patterns of enterprise application architecture. Addison-Wesley Longman
Publishing Co., Inc., 2002.

[47] S. Software. Swagger. url: https://swagger.io/tools/swagger-ui/ (visited on
05/08/2019).

[48] SQL vs. Flux: Choosing the right query language for time-series data. 2008. url: http:
//pubs.opengroup.org/onlinepubs/9699919799/utilities/crontab.html
(visited on 05/13/2019).

[49] Google. Angular. url: https://angular.io (visited on 05/08/2019).

[50] ngxs. url: https://ngxs.gitbook.io/ngxs/ (visited on 05/08/2019).

[51] E. Gamma. Design patterns: elements of reusable object-oriented software. Pearson
Education India, 1995.

[52] Plotly. Plotly. url: https://plot.ly/ (visited on 05/08/2019).

[53] Mapbox. Mapbox GL JS. url: https://docs.mapbox.com/mapbox-gl-js/api/
(visited on 05/08/2019).

[54] MapTiler. OpenMapTiles Map Server. url: https://openmaptiles.com/server/
(visited on 05/08/2019).

[55] I. Docker. Docker. url: https://www.docker.com/ (visited on 05/08/2019).

[56] Y. Zheng. T-Drive trajectory data sample. T-Drive sample dataset. Aug. 2011.

[57] J. Yuan, Y. Zheng, X. Xie, and G. Sun. “Driving with knowledge from the phys-
ical world.” In: Proceedings of the 17th ACM SIGKDD international conference on
Knowledge discovery and data mining. ACM. 2011, pp. 316–324.

60

https://upload.wikimedia.org/wikipedia/commons/e/ee/Worlds_animate.gif
https://upload.wikimedia.org/wikipedia/commons/e/ee/Worlds_animate.gif
https://v8.dev/
https://mosquitto.org/
https://mosquitto.org/
https://nodejs.org/
https://nestjs.com/
https://typeorm.io
https://www.doctrine-project.org/
https://swagger.io/tools/swagger-ui/
http://pubs.opengroup.org/onlinepubs/9699919799/utilities/crontab.html
http://pubs.opengroup.org/onlinepubs/9699919799/utilities/crontab.html
https://angular.io
https://ngxs.gitbook.io/ngxs/
https://plot.ly/
https://docs.mapbox.com/mapbox-gl-js/api/
https://openmaptiles.com/server/
https://www.docker.com/

Bibliography

[58] J. Yuan, Y. Zheng, C. Zhang, W. Xie, X. Xie, G. Sun, and Y. Huang. “T-drive: driving
directions based on taxi trajectories.” In: Proceedings of the 18th SIGSPATIAL
International conference on advances in geographic information systems. ACM. 2010,
pp. 99–108.

[59] M. C. Gonzalez, C. A. Hidalgo, and A.-L. Barabasi. “Understanding individual
human mobility patterns.” In: nature 453.7196 (2008), p. 779.

61

	Abstract
	Contents
	Introduction
	Background
	The Nature of Data
	Spatio-Temporal Data
	Paradigms and Scale
	Security, Privacy and Trust

	Existing Data Analytics Platforms
	Use Cases
	Summary

	Design
	Pipeline
	Data Ingestion
	Sensor Interface

	Processing Scripts
	Data Store Interface

	Data Storage
	Distributed Storage
	Database Comparison
	Choosing the Time Series Database
	Data Queries

	Visualization
	Map Visualization
	Visualization Components

	Summary

	Implementation
	Data Ingestion
	Pub/Sub-Service
	Data Format

	REST-API
	Framework
	Parser
	Processing-Unit

	Visualization
	Applied Programming Paradigms
	Web-UI

	Infrastructure
	Data Storage
	Tile Server

	Code Design
	Deployment
	Summary

	Evaluation
	Workplace
	Taxi Mobility
	Quantitative Evaluation
	Summary

	List of Figures
	List of Tables
	Bibliography

