
Technische Universität
München

Fakultät für Informatik

Master’s Thesis in Informatik

An Architecture for Composable Distributed Applications and
Services in Disconnected Information-centric Networks

Chrysa Papadaki

Technische Universität
München

Fakultät für Informatik

Master’s Thesis in Informatik

An Architecture for Composable Distributed Applications and
Services in Disconnected Information-centric Networks.

Eine Architektur für modulare verteilte mobile Anwendungen und
Dienste in unterbrechungstoleranten inhaltsorientierten Netzen

Author: Chrysa Papadaki

Supervisor: Prof. Dr.-Ing. Jörg Ott

Advisor: M.Sc. Teemu Kärkkäinen

Submission: 05.08.2016

I assure the single handed composition of this master’s thesis only supported by declared
resources.

München, 05.08.2016

(Chrysa Papadaki)

Abstract

Even though, nowadays, there is a tremendous increase in the usage of powerful mobile

consumer devices, most of the application frameworks support the development of

standard client/server mobile applications in infrastructure networks (Internet), without

making use of the capabilities of the consumer devices. The majority of the modern

mobile devices is equipped with a large variety of sensors and networking capabilities.

Considering those resources that such devices can provide, their increased number and

the large amount of user-generated content, we envision a wide variety of localized

networking scenarios in various contexts, e.g., social networking, location-based services,

navigation services, urban orientation systems, real-time streaming and others. This can

be realized without employing a central system entity similar to content-servers used in

standard web-based applications. This is feasible by leveraging peer-wise contacts using

the networking capabilities of the devices. The actual question that comes at this point

is how these scenarios can be realized considering that the probability of the occurrence

of a peer-wise contact is unknown.

To answer this question, in this work we propose an architecture that enables applications

and services to run on top of opportunistic networks. This is achieved by leveraging

the following: (i) the composability principle to enable modular systems and reduce

complexity, (ii) the publish-subscribe interaction model to decouple senders and receivers

and enable efficient coordination among the subsystems without the need of central

entities and, at last (iii) the story-carry-forward paradigm to enable the storing and

dissemination of the system state. The fundamental concept of this work is the Composable

Component, i.e., a simple, self-contained unit that can communicate opportunistically with

other local and remote components and provide a UI to the users.

Initially, given concrete scenarios, we provide the fundamental requirements analysis

for enabling opportunistic communication and structuring the system in a manner that

allows efficient interactions among application-level processes without using centralized

infrastructure. Subsequently, we discuss the architecture based on those requirements and

present a framework that enables these features. In order to prove the viability of this

solution, we evaluate the architecture by providing a set of application designs of various

context built up using the discussed framework, the implementation of the framework for

both Java and Android and the implementation of the one of the application designs,

i.e., polling application. At last, we carry out a set of experiments by deploying the

implementations on real devices and examining the system interactions in detail.

Contents

Contents i

List of Figures iv

List of Tables vi

1 Introduction 1
1.1 Scope and Goals . 2
1.2 Structure of the Thesis . 3

2 Background and Related Work 4
2.1 Information Centric Networking . 6
2.2 Delay Tolerant Networking . 8
2.3 SCAMPI Opportunistic Router . 9
2.4 Composability . 11

2.4.1 Modularity . 11
2.4.2 Microservices Architecture . 14

2.4.2.1 Pattern Description . 15
2.4.2.2 Key Benefits . 16
2.4.2.3 Considerations . 18

2.4.3 Containerization using Docker and Kubernetes 18
2.5 Summary . 21

3 An Architecture for Composable Opportunistic Applications 22
3.1 Intent and Motivation . 22

3.1.1 Scenarios . 23
3.1.1.1 Polling Application . 23
3.1.1.2 Course Rating System . 23
3.1.1.3 Event Registration and Check-in Application 24

3.1.2 Requirements . 24
3.2 Key Concepts . 26

3.2.1 Neighborhood Networks . 26
3.2.2 Composable Component . 27

i

CONTENTS ii

3.2.3 Decentralized Event-based Orchestration 28
3.2.4 Decentralized Data Management 30

3.3 Framework . 31
3.3.1 Service Tag and Event Message . 33
3.3.2 Service Component . 33
3.3.3 Widget Component . 34
3.3.4 Remote Bus . 35
3.3.5 Local Bus . 36
3.3.6 Component Registry . 37
3.3.7 Component Controller . 38

3.4 Security . 38
3.5 Summary . 39

4 Designing Composable Opportunistic Applications 40
4.1 Polling Application . 41
4.2 Course Rating System . 42
4.3 Event Registration and Check-in Application 44
4.4 Summary . 47

5 Implementation 48
5.1 Framework . 48

5.1.1 Common Library . 49
5.1.1.1 Service Composable Component and Remote Bus 49
5.1.1.2 Local Bus . 51
5.1.1.3 Component Registry . 52
5.1.1.4 Component Storage . 53
5.1.1.5 Component Model . 55

5.1.2 Java-based Implementation . 56
5.1.3 Android-based Implementation . 58

5.2 Polling Application . 59
5.2.1 Poll Creator Widget . 60
5.2.2 Poll Creator Service . 61
5.2.3 Poll Participant Widget . 62
5.2.4 Poll Participant Service . 63
5.2.5 Poll Management Service . 63
5.2.6 Poll Results Widget . 64
5.2.7 User Interface . 65

5.3 Summary . 66

6 Implementation Evaluation 68
6.1 Evaluation Testbed and Data Collection 68
6.2 Static Topology Test Cases . 70

6.2.1 Experiments Setup . 70

CONTENTS iii

6.2.2 Results and Analysis . 71
6.2.2.1 Service Instantiation Phase 72
6.2.2.2 Functional Phase . 73

6.3 Dynamic Behavior Test Cases . 77
6.3.1 Experiments Setup . 77
6.3.2 Results and Analysis . 78

6.3.2.1 Temporary Node Absence 78
6.3.2.2 Switching Framework Instance 80

6.4 Summary . 82

7 Conclusion 83

Bibliography 85

List of Figures

2.1 An information-centric internetworking architecture. Adopted from [Tros 10] 7
2.2 Delay Tolerant Networking Architecture. Adopted from [Dela] 9
2.3 API REST-based Microservices architecture pattern. Adopted from [Rich 15] 15
2.4 Messaging Broker Microservices topology. Adopted from [Rich 15] 17
2.5 Containerization versus hypervisor. Adopted from [Dock] 19
2.6 Kubernetes Architecture. Adopted from [Kube] 20

3.1 Neighborhood networks topologies . 26
3.2 Messaging models . 29
3.3 Composable System Architecture . 31
3.4 UML component diagram of the Opportunistic Application Framework . . 32
3.5 UML component diagram of stateful and stateless service components . . . 33
3.6 UML component diagram of widget components 35

4.1 UML component diagram of the polling application 42
4.2 UML component diagram of the course rating system 44
4.3 UML component diagram of the event registration and check-in application 46

5.1 UML class diagram of the abstract component in common library 50
5.2 UML class diagram of the local bus in common library 51
5.3 UML class diagram of the component registry in common library 52
5.4 UML class diagram of the component storage in common library 54
5.5 UML class diagram of the component model in common library 55
5.6 UML class diagram of the Java-based framework 56
5.7 UML class diagram of the remote events used in the polling application . . 60
5.8 UML class diagram of the local events used in the polling application . . . 60
5.9 UML class diagram of New Poll Service on the PollCreator node used in

the polling application . 62
5.10 UML class diagram of Poll Participant Service on the PollParticipant node

used in the polling application . 63
5.11 UML class diagram of Poll Management Service on the PollManager node

used in the polling application . 64

iv

LIST OF FIGURES v

5.12 UML class diagram of Poll Results Widget on PollManager node used in
the polling application . 65

5.13 Mobile user interface of polling application 66
5.14 User interface of Poll Results Widget on PollManager node 66

6.1 UML sequence diagram of instantiation phase for remote events
ConfigMessage and the respective delays. 73

6.2 UML sequence diagram of functional phase for remote events and the
respective delays. 74

6.3 UML sequence diagram of functional phase for local events on Client B and
the respective delays. 76

6.4 PollPublished remote event delivery delay in milliseconds on Client B in
function of NewPoll local event creation time in seconds on Client A 79

6.5 NewPoll remote event delivery delay in milliseconds on Liberouter in
function of NewPoll local event creation time in seconds on Client A 82

List of Tables

6.1 Evaluation Testbed . 69
6.2 Experiment Testbed - Static Topology . 71
6.3 The mean delays in milliseconds recorded for the instantiation remote

events and the confidence interval on each mean 72
6.4 The mean delays in milliseconds recorded in the functional phase for remote

events and the confidence interval on each mean 75
6.5 The mean delays in milliseconds recorded in the functional phase for local

events and the confidence interval on each mean 77
6.6 Experiment Testbed - Dynamic behavior 78
6.7 The mean delays in milliseconds recorded in the temporary node absence

scenario for remote events and the confidence interval on each mean 80
6.8 The mean delays in milliseconds recorded in switching framework instance

scenario for remote events delivered and published from framework instance
F on Liberouter as illustrated in Figure 6.2 and the confidence interval on
each mean . 81

6.9 The mean delays in milliseconds recorded in switching framework instance
scenario for remote events delivered and published from framework instance
F’ on Liberouter as illustrated in Figure 6.2 and the confidence interval on
each mean . 81

6.10 The mean delays in milliseconds recorded in the switching framework
instance scenario for remote events as illustrated in Figure 6.2 and the
confidence interval on each mean . 82

vi

Chapter 1

Introduction

Despite the intensive research work on opportunistic and delay tolerant networks that
has taken place in the recent years and the widespread use of powerful consumer mobile
devices, there is still lack of frameworks that support the development of opportunistic
mobile applications. Most of them focus on helping accessing web services hosted in remote
centralized infrastructure, and thus the peer-to-peer communication is non-existent even
though the hardware is capable and might be the case that the requested content is locally
relevant. Exploiting peer-wise contacts utilizing consumer mobile devices to dynamically
create applications and services, enabling interactions when fixed network infrastructures
may not be available is a challenging task, rather reasonable.

More specifically, it makes more sense to distribute locally relevant user generated content
through localized networks and services, rather than storing the content to remote
servers for supporting interactions needed to exchange content among co-located users.
This implies unnecessary traffic and energy consumption by resources used to provide
large scalable systems in order to enable this kind of services, when the necessary
hardware can be provided by the end users. This can be backed up by the fact that
the estimated number of mobile phone users is 3.3 billion worldwide, which is more
than half of the world population. Most of the mobile phones in the current era are
equipped with Wi-Fi, Bluetooth, cameras, sensors, and numerous other components.
Such an availability of mobile communication devices creates a huge number of contact
opportunities among humans, and become the key to establishing opportunistic mobile
social networks [Cont 10]. Furthermore, the use of Internet is still constrained by cost
(e.g., cellular data charges) and provisioning limitations (e.g., availability, capacity) in
many areas [Kark 14]. However, the fact that even standard web-based applications might
be characterized by increased complexity that decreases their scalability, maintainability
and makes it difficult to get rid of obsolete technologies, implies further effort on building
viable opportunistic applications capable of supporting functionalities resembling existing
modern web-based applications. The study of architectural patterns and design principles
that would not only enable the efficient design and implementation of applications of

1

CHAPTER 1. INTRODUCTION 2

similar complexity but also allow us to tackle with the absence of robust centralized
content-servers, is considered as necessary.

In this work, we introduce the Composable Component (CC), a self-contained unit
that encapsulates a single functionality and can communicate opportunistically with
other components with the purpose of providing a composable service. We present
an architecture for modeling content-centric services and applications suitable to run
in disconnected networks, out of autonomous, configurable CCes that are capable of
managing any type of content and interacting with the user and/or other components
dynamically. This is a novel approach for modeling systems that tends to reduce the
overall design and development effort and enable user to decide on the features of the
end-system. The following section presents the concrete goals of the thesis in detail.

1.1 Scope and Goals

In this work, we present a system architecture and a framework for building distributed
composable applications and services running on top of opportunistic networks utilizing
the in-network resources and enabling dynamic interactions by exploiting the random
presence of smartphone users in the network.

More specifically, the system is suitable for developing applications to exploit random
encounters between nearby nodes, utilizing the publish-subscribe interaction paradigm.
Those apps are composed of a set of autonomous components each one of them manages
different subset of the network content space, can cooperate with each other to provide
the network services and can be managed at runtime by the user. The dissemination
mechanism of the system relies on opportunistic content forwarding while the architecture
does not assume a traditional network layer.

The system by using publish-subscribe paradigm decouples the communicating entities
from the contents and thus it inherently allows for asynchronous communication and
leverages looser delay constraints. This approach is derived by the ICN where nodes receive
only the information which they have requested or subscribed to. The request model and
content transfer from sources to receivers is connectionless, hence, in cases of devices
reposition, re-issue of requests for information can be done and thus delay/disruption
tolerant operation in addition to mobility is supported without requiring cumbersome
solutions. In addition, in this work, we discuss the possibility of realizing synchronous
interactions on the top of opportunistic networks by introducing in the architecture design
an application-level bus abstraction that is responsible for taking care of the queries to
the CCs’ content.

We demonstrate the framework feasibility by implementing and evaluating an application
framework, designing three applications using the proposed architecture and implementing
and evaluating one of them, i.e., the polling application. To realize this architecture, the

CHAPTER 1. INTRODUCTION 3

framework implementation leverages the publish-subscribe interaction paradigm and the
SCAMPI opportunistic router [Kark 12]. The discussed applications comprise a set of
self-contained units that can communicate opportunistically and present a UI to the
user, out of which the user can compose an application or view that lets them access
meaningful information. In this sense, the system attempts to improve usability and user
experience. Due to time constraints, the evaluation of the user experience is out of scope.
The resulting system will (i) accelerate the design and implementation of content-centric
composable applications which enable opportunistic interactions and services when fixed
infrastructure is not available, (ii) expand the applications and services range over different
networks without using the Internet, (iii) provide a technology-agnostic framework that
enforces high level of modularity and allows the efficient design of complex applications,
and (iv) allow mobile users to interact with their surroundings by using location-relevant
applications that can be installed dynamically over an in-network distribution mechanism.

1.2 Structure of the Thesis

The structure of the thesis consists of three sections, i.e., (i) the introduction to the
discussed problem, the proposed solution and the goals of this work, (ii) elaboration on
the proposed solution and (iii) the evaluation of the solution. More specifically, Chapter
1 defines the scope and the goals of the thesis, which mainly focus on discussing a
system design that enables development of mobile opportunistic applications. Chapter
2 references significant concepts in the area of ICN, DTNs and system decomposition. In
Chapter 3, we present the main contribution of this work, which is an architecture for
building distributed, composable applications and services in disconnected ICNs. Chapter
4, 5 and 6 evaluate the proposed solution by designing applications and services of different
context with the same discussed architecture, presenting an application development
framework implementation and the implementation of a polling application developed
using the framework and finally demonstrating the viability of this system by presenting
the results of experiments on real devices. At last, Chapter 7 concludes this thesis by
summarizing its results.

Chapter 2

Background and Related Work

This chapter describes the ICN architecture and a strawman proposal by Dirk Trossen,
presents the Delay Tolerant Networking (DTN) and related work in mobile and
opportunistic networks as well as the SCAMPI opportunistic networking middleware that
is used in this work. In addition, it elaborates on the notion of composability from the
system design point of view and discusses existing composable architectures and industrial
services composition and management technologies.

Information Centric Networking (ICN) [Tros 12] is an alternative approach to the current
Internet architecture, where the focus is on the content, rather than the communication
between hosts. The main goal of ICN architecture is to decentralize content sharing
and offload traffic from the content-servers. To achieve this goal, the architecture takes
advantage of in-network caching, multiparty communication through replication, and
the publish-subscribe interaction model, that decouples senders and receivers. Any
content type is represented as an object which can be stored in different locations
in the network. In addition, not only servers but also consumer devices that are
capable of maintaining a copy of an object, can implement caching. In practice, once
a request is issued by a user, the network will locate the requested object in one of
the caches and return a copy to the requester. This architecture intends to be more
suitable for content distribution and mitigate the impact of communication disruptions.
There are four ICN approaches [Ahlg 11]; Data-Oriented Network Architecture (DONA),
Content-Centric Networking (CCN), Publish-Subscribe Internet Routing Paradigm
(PSIRP), and Network of Information (NetInf), that share common design concepts which
make them differentiate from the existing Internet host-centric architecture, focusing on
WHAT is exchanged rather than WHO exchanges data.

Those approaches, in contrast with this work, focus on well-connected networks. In
this thesis, we propose an architecture that addresses disconnected information-centric
networks, where there are limitations in connectivity due to nodes mobility and poor
infrastructure. Designing information-centric applications and services running on top of
such challenged networks, where there is no centralized infrastructure and the content

4

CHAPTER 2. BACKGROUND AND RELATED WORK 5

dissemination can be realized over opportunistic contacts, requires the employment of
different approaches and mechanisms than those considered in standard systems. One
of the concepts adopted in this work is the opportunistic content sharing, that is built
upon the ICN architectures and allows users in proximity, who request the same content
to retrieve it from each other, rather than from the original content-servers. The idea
of distributed dissemination of user-content is to make relevant content easily available
where it is most likely to be requested. In our work, we envision systems that run on top of
opportunistic networks (OppNets) and encourage frequent interactions in neighborhood
networks where location relevant data can be exchanged and eventually disseminated
not only locally but even further in distant networks by leveraging users’ mobility.
A neighborhood network is seen here as a set of two or more static and/or mobile
nodes in proximity, the mobile nodes move to nearby networks and offload the collected
information, doing so the neighborhood is being expanded.

Disruption Tolerant Networks (DTNs) [Neum 95] are designed to overcome limitations
in disconnected networks. DTNs rely on the inherent mobility in the network to deliver
packets using a store-carry-and-forward paradigm [Burg 06], [Burn 05]. In this work, we
utilize autonomous mobile and stationary store-carry-forward routers that use various
discovery mechanisms, including IP multicast/broadcast beaconing, to pass messages.
This approach is similar to the use of throwboxes [Zhao 06] and can enable multiple
scenarios such as contextual quiz games, polling applications, messaging applications,
newsfeed service or even an urban orientation system, that is based on the idea that an
user’s journey can be enriched by providing contextual information about points of interest
along their route. Users can drop and query information about the surroundings and
these queries can be satisfied with minimal energy consumption and memory occupation
by leveraging other consumer devices in proximity. More services can be built upon such
networks that are tolerant to modest delay is done such us social networking, local surveys,
services for students in campuses or local services for citizens and more.

Nevertheless, building such applications and services requires design decisions to support
features such as: (i) subsystems orchestration without the utilization of a central
coordinator, (ii) systems decoupling, (iii) client/server communication style realization
since this kind of applications and services might resemble the functionalities of standard
web-based applications, yet running on top of opportunistic networks, (iv) decentralized
application distribution mechanism and (v) ease of development and deployment. To
achieve the aforementioned, in this chapter we discuss the composability principle in
detail and elaborate on the system decomposition technique. Moreover, we provide an
overview of the Microservices Architecture and its commonly-used patterns and discuss
the containerization with Kubernetes, which provides management and administration of
large sets of systems which are partitioned into smaller reusable subsystems each of those
is isolated within a Docker container.

CHAPTER 2. BACKGROUND AND RELATED WORK 6

2.1 Information Centric Networking

Information-Centric Network architectures differentiate from the current Internet’s
host-centric end-to-end communication paradigm and instead adopt a content-centric
communication paradigm, where information, rather than hosts, are named. The main
research effort that has been made in this direction is by Dirk Trossen et al., who proposed
an information-centric internetworking architecture [Tros 10], an information-centric
internetworking architecture, with which they attempt to replace the current Internet
architecture. In the following section, we outline the architecture and introduce the
fundamental design elements of ICN architecture.

The architecture proposal focuses on the information that is being exchanged among
entities rather than on the entities themselves. To achieve that, the authors propose as
the underlying service model, the publish-subscribe model that decouples the senders and
the receivers. In their study, they identified four key challenges, that they believe that an
ICN architecture could tackle, i.e., (i) information-centrism of applications, (ii) supporting
and exposing tussles,(iii) increasing accountability, and (iv) addressing attention scarcity.
Their main attempt is to replace the interworking layer as a whole and contribute to
solving human-centric information problems rather than shifting the solution to the
application layer. The key design concepts of this proposal are summarized below:

• Everything is information: Trossen et al. define an information item as the simplest
unit of data transmitted through the network, for which a rendezvous identifier
(RId) is used for its localization. The RIds are unique global identifiers and assist
in composing more complex and larger information items out of other RIds. An
information item can also represent service information and other Rids. With this,
the authors introduced the concept of service metadata, which, as in the standard
Internet architecture, can be used for declaring access control policies or quality of
service parameters.

• Information is scoped: the authors introduced the concept of scope. From the
application’s perspective, a scope denotes a group of related data and hence, it is
considered as information itself and their RIds are the scope identifiers (SId). From
the network’s perspective, it represents the party being responsible for locating
a copy of the data in the network. This concept refers to information grouping
considering a particular application domain and that in turn reduces the space to
be searched for a RId. Therefore, it supports composition of information that allows
the mapping of application-level semantics to information items and scopes. The
underlying network is application-agnostic and in fact it provides an information
naming structure that allows the applications to create their own naming schemes
and ontologies.

• Equal control: the architecture provides a balance of power between publisher and
subscriber(s), offering a new set of network services that depart from the standard

CHAPTER 2. BACKGROUND AND RELATED WORK 7

send-receive communication between endpoints to a publish-subscribe model of
information. Endpoints do not require unique identifiers to be addressed. Instead,
it is the information itself that is being located in host endpoints.

Figure 2.1: An information-centric internetworking architecture. Adopted from [Tros 10]

The proposed conceptual architecture relies on the three above-mentioned design
concepts and aims at keeping the network architecture simple and yet enabling more
complex application-level naming structures. In Figure 2.1, the conceptual architecture
is presented. The pubs and subs implement applications based on pub/sub network
services, by enabling publications and subscriptions to specific information items within
a particular scope. The three main fucntions of the underlying network architecture are:

1. The Rendezvous function is responsible for logically linking the publishers and
subscribers of an information item using a RId. It provides a global rendezvous
system that defines the Rendezvous Points (RP) that are used to match the
subscriptions with the publications. More specifically, an information item should
be logically located in at least one scope and there should be one RP per scope, i.e.,
each RP subscribes to a SId. Thus, when a subscription to an information item is
being identified, the request is forward to the corresponding RPs.

2. The Inter-domain Topology Formation (ITF) function gets involved in the
forwarding topology formation for the RP. The formation is done based on the
location of the publishers and subscribers on the level of autonomous systems (ASes)
and the ITF information that includes the interconnections between the ASes. In
practice, it builds the inter-domain paths between the forwarding networks.

3. The Topology Management (TM) function exists in every AS and is responsible for
managing its forwarding nodes (FN) to serve as links between the ASes. In practice,

CHAPTER 2. BACKGROUND AND RELATED WORK 8

the locations of the subscribers and publishers are identified as local link identifiers
that require only local uniquess in the AS-level and thus, the inter-domain paths
assures the forwarding of information across the ASes.

Information-centrism is a main concept of this architecture. Information items and scopes
enable the mapping of the application-level structures to the information structures on
network level. In addition, the linking of information through metadata enables the
governance and provenance of information on low level. Location transparency is achieved,
since on the network level, the topology and forwarding functions determine the locations
of the endpoints without exposing this functionality to the applications.

With respect to the challenge of supporting and exposing tussles, the tussle of
economics is addressed by the provision of an efficient information delivery service,
while the inter-domain topology function constructs the path between the publisher and
subscriber(s) across domains give the policies that are specific to each scope. The concept
of metadata is utilized to facilitate a low level system of policies and the construction of
forwarding paths considering for instance security policies. The tussle of trust is addressed
in the rendezvous point by implementing authorization methods for the exchange of
information and thus, limiting the access rights of the endpoints. As far as the problem
of accountability is concerned, the proposed solution is to provide a network where
information itself as well as its structures are visible throughout the internetworking
infrastructure, without relying on certain application semantics. The scopes and the
ability of composition on low level enables the identification of single entities as well
as organizations.

2.2 Delay Tolerant Networking

In this work, we employ autonomous store-carry-forward routers for content
dissemination, by using the SCAMPI opportunistic networking middleware, as described
in the following section. SCAMPI is built on the Delay-Tolerant Networking (DTN)
protocols with the aim to enabling communication in challenged networking environments.
This section provides an overview of the DTN architecture developed by the
Delay-Tolerant Networking Research Group (DTNRG), as defined in RFC 4838 [Cerf 07].

The DTN architecture is an end-to-end message-oriented overlay network architecture that
aims at interconnecting highly heterogeneous networks together even if end-to-end linking
may never take place. It comprises DTN nodes deployed in a challenged network, which
have capabilities of storing and forwarding messages for an extended period of time. It
is an information-centric networking overlay that diverges from the existing host-centric
Internet infrastructure, i.e., DTN is message-switched instead of packet-switched and
it creates transport links on opportunistic contacts instead of forwarding packets over
persistent links.

CHAPTER 2. BACKGROUND AND RELATED WORK 9

Figure 2.2: Delay Tolerant Networking Architecture. Adopted from [Dela]

This architecture is enabled by the Bundle Protocol [Scot 07], a delay-tolerant protocol
stack to support intermittent connectivity. The destinations of messages, i.e., bundles,
are identified by endpoint identifiers. Nodes register in endpoint identifiers and these
registrations are exchanged when two devices meet. Thus, bundles are transmitted in
bursts and stored locally until the next forwarding opportunity arises.

More specifically, the DTN architecture is shown in Figure 2.2 and presents the overlay
layer implemented by the Bundle Protocol, the application layer (the BP Application layer
at the top of the figure) as well as the lower layers of convergence and the link transport
layers. In practice, the message passing is done as follows: the applications that are built
on top of DTN, communicate by exchanging large application data units (ADU). The
ADU is passed to the Bundle Protocol layer, which attaches control information to the
ADU by encapsulating it in a bundle. The bundle consists of blocks that apart from the
ADU, contain routing, security, caching information and other. Consequently, the bundle
is passed to the Convergence layer, the function of which is to break down the bundle
into smaller transmission units and pass them to the underlying link layers, i.e., transport
layer, network layer, data link layer and physical layer. The Covergence layer abstracts
the end-to-end delivery (bundles passed hop-by-hop between the DTN nodes) realized
through the lower layers from the higher layers.

A DTN endpoint is identified by a single EID and can be composed by one or more
nodes instead of being mapped one-to-one. In order to be a message delivery successful,
a message must reach a subset of the nodes, called minimum reception group (MRG)
that correspond to the endpoint. This allows the DTN architecture to support unicast,
broadcast, multicast and anycast.

2.3 SCAMPI Opportunistic Router

This section presents the SCAMPI opportunistic Router [Kark 12], a store-carry-forward
router that enables the opportunistic communication of the resulting system in this work.

CHAPTER 2. BACKGROUND AND RELATED WORK 10

SCAMPI platform [Pitk 12] is a service-oriented platform for mobile and pervasive
networks, which offers a middleware that hides routing and opportunistic networking
from the applications. It consists a communication subsystem, which is responsible for
detecting peers and exchanging messages. Direct peer sensing mechanisms are applied
to discover peers in proximity and services within communication range based on IP
multicast or static IP discovery. To discover remotely located nodes, the nodes exchange
information about other nodes they have discovered. The SCAMPI routing subsystem is
responsible for the routing of messages in the network based on the discovered peers.

The SCAMPI opportunistic router is developed based on the DTNRG architecture and
protocols. The router provides message caching, peer discovery and message routing
over multiple hops. The supported discovery mechanisms include IP multicast/broadcast
beaconing, TCP unicast discovery and subnet scanning for known ports. The combination
of different discovery mechanisms is supported and results in higher probability of
successful discovery. The SCAMPI Router opens links between the peers as soon as
they have been discovered and uses TCP Convergence Layer (TCPCL) for all message
transmissions in IP-based networks.

The router provides a native Application Programming Interface (API) over TCP
that can be used by native applications written in any language by implementing
the SCAMPI client. The exposed API operations are: publish/subscribe for messages,
automatic framing for structured messages, searching for content-based metadata, and
peer discovery of nearby nodes. The key entity in SCAMPI that allows the message passing
over the Bundle Protocol layer is the SCAMPIMessage, which is an application layer
object that provide a map structure where arbitrary string keys map to binary buffers,
strings, numbers or file pointers. In addition, there is no need of developers handling the
serialization and framing of the map, since it is taken over by the router. SCAMPI API
offers message versioning, automatic merging and cache management. SCAMPIMessage
can be tagged with namespaced metadata that describes the content, this allows search
queries against this metadata by any SCAMPI router. These messages can then be
published to services identified by opaque strings and any node subscribed to the service
will receive copies of the published messages. Floating content [Hyyt 11] style distribution
is supported for limiting the geographical spreading of the messages.

With respect to the router implementation, it has been developed in plain JavaSE,
allowing it to run on any platform with a Java Virtual Machine (JVM). Furthermore, the
authors developed an Android application that runs the router as a persistent background
process on Android devices. In this work, both the Android and Java version of the router
are utilized.

CHAPTER 2. BACKGROUND AND RELATED WORK 11

2.4 Composability

In this chapter, we discuss the composability design principle, which is the fundamental
concept of this thesis, and elaborate on its benefits and applicability in systems
architecture. Furthermore, in order to show how composability is essential in industrial
software engineering, with the aim to solving complexity in software systems, we present
the Microservices Architecture, Docker containers and Google’s Kubernetes container
management tool. In our work, we have taken the concepts and principles behind those
technologies into account, in order to achieve the proposed architecture.

Composability design principle refers to the inter-relationships of components given any
system granularity. By ensuring composability in a system design, the resulting system
comprises independent, self-contained components that can be assembled in various
combinations to satisfy specific requirements. Composability is beneficial at many layers of
abstraction, for components, subsystems, networked systems, and networks of networks.
A CC can be either stateless which means that it handles each request independently
from any previous requests, taking only the given parameters into account or stateful
being responsible for a subset of the state of the system and providing a service to other
components. Additionally, a CC is characterized by modularity, which means it can be
deployed independently, yet it can cooperate with other components.

Composable systems tend to be more inherently available, and reliable than
non-composable systems, since the evaluation of the individual parts is easier. However,
they tend to be more complex in order to achieve the proper component orchestration.
In this work, the developed framework structures the interactions among the CCes in a
manner that does not induce extra complexity and efficient coordination can be achieved.

Concerning statelessness, it is less likely that stateless system components have adverse
interactions when they are composed with other components, although it is always possible
that interoperability and compatibility among the systems and subsystems might not be
totally feasible. For instance, in the case of services composition, the Service Stateless
Principle [Powe] is applied with the purpose of designing scalable services that consume
a reduced amount of resources and thus, they increase their performance and act more
reliably. Furthermore, one of the key benefits of composability is the reusability of modules
and subsystems, which eventually increases maintainability, replaceability and reduces
the overall development effort. The resulted modularization in composable systems
allows work distribution, aims to increase understandability and reduces complexity. The
following section provides a detailed overview of the system decomposition technique.

2.4.1 Modularity

This section introduces the system decomposition and discusses the fundamental concepts
for designing a composable and modular system architecture.

CHAPTER 2. BACKGROUND AND RELATED WORK 12

The definition of decomposition stated by Jim Horning [Neum 95] is as follows:

Decomposition into smaller pieces is a fundamental approach to mastering
complexity. The trick is to decompose a system in such a way that the globally
important decisions can be made at the abstract level, and the pieces can be
implemented separately with confidence that they will collectively achieve the
intended result. (Much of the art of system design is captured by the bumper
sticker: Think globally, act locally.)

In practice, the decomposition of a system into modules (components) shows the extent
to which the systems modules can be separated and re-assembled again. The purposes of
that are (i) to reduce complexity (”divide and conquer”) by managing small pieces of work
independently and (ii) the ability to deal with changes on the systems behavior in the long
term by being able to modify or even replace a system component when it is required. In
a software system project, the need of modularity is beneficial across all stakeholders. For
instance, developers and testers require less coordination effort by working on separate
modules and intuitively gain more guidance from the systems structure. Architects can
easily adapt the system designs to meet new requirements, manage local changes more
efficiently and have the freedom to employ new technologies.

Decomposing a system includes analyzing of the dependencies between elements and
forming components out of a set of elements with strong dependencies. The dependencies
between the components are captured by well-defined interfaces, which enable information
hiding. In functional decomposition, the system is decomposed into modules and each
module is a major process step (function) in the application level. Those modules can be
decomposed into smaller modules. This kind of decomposition causes several other issues
that should be tackled i.e. the functionality is spread all over the system and thus, there
is need to understand the entire system in order to make a change. That leads to increase
of code complexity and hardens maintainability. An alternative approach is the modular
decomposition, where the system is decomposed into modules and each module represents
a major abstraction in the application domain. Each module can then be decomposed into
smaller submodules.

As a rule of thumb for landing system modularity, the following set of design principles
is recommended.

Low coupling and high cohesion

Before we continue with the definition of coupling and cohesion, lets formally define the
structure of a system according to [Vlie 08]. The system S is defined by the tuple:

S = (C, I, CON)

where C denotes the components, env ε C denotes the system environment, I denotes
the interfaces of the components and CON ⊆ I × I represents the connection between
interfaces.

CHAPTER 2. BACKGROUND AND RELATED WORK 13

Coupling of a system is the normalized number of connections between components at
the same hierarchical level. The formal definition is as follows [Vlie 08]:

coupling(S) = |conεS.CON |∃i,jεS.I:con=connected(i,j)∧parent(assigned(i))=parent(assigned(j))|
|S.C|

coupling : S → R, if a is a component and i its interface then assigned(i) = a

There are six types of coupling in a scale of high, loose and low values [Bria 97]. (i)
The content coupling (highest) occurs when a component directly affects the working of
another component. (ii) The common coupling occurs when two components have shared
data, there is lack of clear responsibility for the data, reduces readability, it is difficult to
reuse components. (iii) The external coupling refers to components that communicate via
an external medium such as file, device interface, protocol, data format. (iv) The control
coupling occurs when one component directs the execution of another component by
passing the necessary control information. (v) The stamp coupling refers to the common
property of the components that declares the precise format of the data structures passed
as a complete dataset from one component to the other and at last (vi) the low coupling,
called data coupling, occurs when a component passes only the needed data to other
components not entire data structures.

Cohesion describes how closely related are the different responsibilities of a component
and the level of interactions within that component. The aim in system design is to
achieve as high cohesion as possible. The types of cohesion are the following [Bria 97]:
(i) The coincidental cohesion (lowest) occurs when the elements of a component are
grouped accidentally and there is no significant relation between the elements. (ii) The
logical cohesion occurs when the elements of a component are grouped logically and not
functionally. (iii) The temporal cohesion takes place when the elements are independent
but initiated at about the same point in time. (iv) The procedural cohesion occurs when
elements of a component are related only to ensure a particular order of execution. (v)
The communicational cohesion refers to operations of component’s elements on the same
external data. (vi) The sequential cohesion occurs when the output of one part is the input
to another, this usually happens in functional programming languages. (vii) The functional
cohesion takes place in components that transform a single input into a sing output, only
the essential elements to a single computation are contained in the component. High
cohesion increases reusability, testability and understandability.

Single responsibility principle (SRP)

The SRP forces the assignment of a single responsibility, i.e., a set of functions that work
collectively for a single result, to a single class. A class should only have one reason to
change, if there are more then the functionality should be split into more classes.

Separation of concerns (SOC)

A key principle of software engineering which is closely related to SRP. The target of this
principle is to minimize responsibilities-per-component ratio. Each component must fulfill
its own concrete purpose and its functionalities are encapsulated within the component.

CHAPTER 2. BACKGROUND AND RELATED WORK 14

At an architectural level, SOC is the key to building layered applications, such layers
might be presentation, business logic, data layer. In addition, it is possible to separate
concerns along application feature sets, thus, it is easier to add or remove features in a
modular fashion.

Liskove substitution principle (LSP)

Let q(x) be a property provable about objects x of type T . Then q(y) should
be provable for objects y of type S where S is a subtype of T .

The LSP as stated by Barbara Liskov, forbids the child classes from breaking the parent
class’ type definitions. That means that child classes must not remove base class behavior
and violate base class invariants. This principle leads to creation of abstractions.

Don’t Repeat Yourself (DRY)

DRY refers to duplication (inadvertent or purposeful duplication) in architecture,
requirements, code or documentation. It leads to difficulties in maintenance, poor
factoring, and logical contradictions. In practice, that might cause mis-implemented code,
developer’s confusion or even complete system failure.

Applying the above-mentioned principles and practices leads to a modular design with
high level of composability, which improves maintainability, testability, scalability and
performance of the resulting system.

2.4.2 Microservices Architecture

In recent years, a new architectural pattern for designing applications out of autonomous
services has emerged, called Microservices Architecture Pattern [Rich 15]. This new
approach is not precisely defined and, in practice, derives from current trends in industry
such as domain-driven design, continuous delivery, small autonomous teams, intelligence
in the endpoints, and decentralized data management. In fact, before Microservices have
come to play, Alistair Cockburn’s concept of hexagonal architecture [Cock 05] drove the
organizations away from the traditional layered architectures by isolating the core domain
of the application from the technical infrastructure (databases, web services, message
queues e.t.c.) that enables it to communicate with the outside world. Large companies such
as Amazon and Google turn to small team project organization to encourage autonomy,
allow more efficient communication and thus, speed up development. A highlight of this
approach is the rule ”Two pizza team”, as stated by the founder and CEO of Amazon,
Jeff Bezos. Those trends triggered the solution of Microservices i.e. applications split
into a set of smaller, loosely-coupled services that can be developed, deployed and scaled
independently. The intent of this architecture is to enable organizations to deliver software
faster, integrate with new technologies and react faster to changes.

Microservices are small, autonomous services that work together to provide a scalable

CHAPTER 2. BACKGROUND AND RELATED WORK 15

system. The above-mentioned principles SRP and low coupling high cohesion (section
4.1.) are closely related to the nature of the microservice, in the sense that the boundaries
of the service must be explicitly defined and it must serve one single purpose. Following
this, we avoid to build large services and we keep the systems simple. understandable and
easily adaptable to changes. At this point, the question ”how small a microservice should
be?” comes to the front. The answer to this question depends on many factors, such as
the development team size suitable for managing the service’s codebase and the level of
intended complexity within the service.

2.4.2.1 Pattern Description

Microservices represent a distributed architecture that simplifies communication among
the remote subsystems and minimizes the orchestration needs. It enables a fully decoupled
system, where entities communicate via remote access protocols (e.g. REST, SOAP, JMS,
AMQP e.t.c.). This is the key characteristic behind the increase of system scalability and
faster deployment.

A microservice can be interpreted as a self-contained unit of functionality, part of the
entire application, that might be consisted of multiple subunits. In this sense, this kind
of service can be defined as a service component of various granularity that is part of
the system design. The subunits of the service component are one or more modules
that correspond to either a single-purpose functionality or even a complex subsystem.
The service component is independently deployable, which means easier deployment, high
scalability and component decoupling within the application. They offer well-defined APIs
(application programming interfaces) that allows simple interactions within the system.
This concept is illustrated in figure 2.3 [Rich 15], where the service components can be
plugged to the overall design without affecting the system and being accessed using a
REST-based interface implemented by a separately deployed API layer.

Figure 2.3: API REST-based Microservices architecture pattern. Adopted from [Rich 15]

CHAPTER 2. BACKGROUND AND RELATED WORK 16

The need of dealing with the increased complexity and inefficiency of monolithic
applications invoked the solution of Microservices. One of the key problems in monolithic
applications is reliability. When all modules are running within the same process, a
failure of any module can potentially shut down the entire process, and that might cause
the failure of entire system. Microservices provide module isolation that brings a layer
of security. Furthermore, in monolithic designs, embracing new technologies is difficult
since all modules are tightly coupled and reside on the same machine. By building
microservices, we increase the level of composability which makes our design modular
and allow developers to freely choose the technologies fit the most their own service and
manage to rewrite or replace it without requiring cumbersome solutions.

As mentioned in [Rich 15], besides the topology depicted in figure 2.3, where the
system consists of fine-grained, single-purposed services each one dedicated to a specific
business function accessed via an API layer, there are two more common-used approaches
to implement the microservices pattern i.e. Application REST-based topology and
centralized messaging topology. In the first approach, compared to API REST-based,
the system consists of coarse-grained service components responsible for a considerable
amount of the overall business functionality. Furthermore, instead of implementing a
simple API layer, a user-interface layer takes its place, so that the clients requests are
received through traditional fat-client screens. In this case, we distinguish the distributed
nature of the architecture, where the user-interface layer and the service components
are separately deployed and interact over REST-based interfaces. Concerning the latter
approach, as figure 2.4 illustrates, a messaging broker layer is introduced to impose
advanced control between the user interface and the service components. This is mostly
applied in larger business applications, where there is need of asynchronous messaging,
queuing mechanisms, load balancing and scalability. Broker clustering is implemented to
deal with the single point of failure on the broker layer.

2.4.2.2 Key Benefits

Microservices offer a plethora of advantages originating from the concepts of distributed
systems and service-oriented architecture. This section outlines the key benefits of this
architecture as follows:

Composability

The Microservices Architecture pattern enforces a level of modularity that in practice is
very difficult to achieve with monolithic applications. Consequently, individual services
are much faster to develop, and easier to understand, test and maintain. Microservices
lead to high level of reuseability, which means the ability of a piece of functionality being
consumed in different ways for different purposes.

Heterogeneity

A system architecture that comprises a set of multiple, collaborating services, offers the

CHAPTER 2. BACKGROUND AND RELATED WORK 17

Figure 2.4: Messaging Broker Microservices topology. Adopted from [Rich 15]

freedom of employing the best technology for each service, rather than opting for the
one-size-fits-all approach. If one part of the system needs to improve its performance, it
is much easier to use a different technology to speed up performance. Furthermore, when
it comes to the data storage, it is easier to support or interchange between traditional
relational and document-based database on the services that it is more reasonable for the
application. For instance, many e-commerce applications use a combination of MongoDB
and MySQL. The product catalog, which includes multiple products with different
attributes, is a good fit for MongoDB’s flexible data model. On the other hand, the
checkout system, which requires complex transactions, would likely be built on MySQL
or another relational technology.

Scalability

Monolithic applications require scaling of the entire system together, even if only one
part of the system needs performance improvement. With a large, monolithic service, we
have to scale everything together. With smaller services, we can just scale those services
that need scaling, allowing us to run other parts of the system on smaller, less powerful
hardware.

Faster Deployment

Microservices allows changes to a single service and independent deployment from the rest
of the system. Thus, the deployment accelerates. In case of a problem on the particular
deployment, it can be easily isolated and a roll back can be done at once. In addition,
that means the delivery to end-customers is much faster.

Replaceability

CHAPTER 2. BACKGROUND AND RELATED WORK 18

Building a system out of smaller, manageable services leads to easily upgrade a legacy
system. When the time comes for embracing new technologies, it is clearly less risky and
expensive to completely remove an small component and plug in a newly developed one,
rather than replacing a large codebase with one written in a new technology.

2.4.2.3 Considerations

One of the most significant decisions on building a system using Microservices architecture
is the correct level of granularity for the service components. There are cases where
coarse-grained services might not lead to fully taking advantage of the pattern in terms
of low coupling, scalability or testability. On the other hand, if the service components
are fine-grained, the need of orchestration arises and that means additional complexity
and overhead. In case the need of orchestrating within a user-interface or API layer of
the application, it is possible that the service components are too fine-grained. The same
applies, in the scenario, where inter-service communication between services is required
in order to handle one single client request. In such case, this could be tackled by using
a shared database. For example, if a service component handing Internet orders needs
customer information, it can go to the database to retrieve the necessary data as opposed
to invoking functionality within the customer-service component. Concerning the shared
functionality, If a service component needs functionality that resides within another service
component or common to all service components, developers violate the DRY principle
(see 4.1.) and copy the shared functionality in order to keep the services independent and
separate their deployment.

2.4.3 Containerization using Docker and Kubernetes

This section provides an overview of Docker system [Dock], discusses the differences
between virtual machines (VM) and containers to better understand the benefits of
containerization and describes Google’s Kubernetes [Kube] key concepts.

Docker system is an open-source application container engine that provides a platform that
allows to pack, ship and run an application as a container. The intent is to allow developers
to containerize any application and run it on any infrastructure. To gain an understanding
of this technology, we can think of a Docker container as a shipping container that provides
a standard, consistent way of shipping any kind of products. In the case of Docker the
products correspond to applications.

In order to better understand the benefits of containerization, we discuss containers versus
virtual machines, as illustrated in figure 2.5. A hypervisor or virtual machine monitor
(VMM) that works by having the host operating system emulate machine hardware and
then managing to host VMs as guest operating systems (OS) on top of the hardware.
That means that the communication between the guest and host OSes is done through

CHAPTER 2. BACKGROUND AND RELATED WORK 19

hardware. In the case of containers, the virtualization is realized at the OS level instead
of hardware. The benefits of that are: (i) each of guest OSes share the same kernel and
parts of the OS with the host, and, (ii) it is smaller than hypervisor guests. On the other
hand, with container virtualization, challenges in terms of isolation and security arise,
i.e., the isolation between the host and the container is not as strong as hypervisor-based
virtualization since all containers share the same kernel.

Figure 2.5: Containerization versus hypervisor. Adopted from [Dock]

Kubernetes [20] is an open-source platform for automating deployment, scaling, and
operations of application containers across clusters of hosts, providing container-centric
infrastructure. It essentially provides container management at scale and it is made to
manage applications and not machines. The main focus is the management of a cluster of
Linux containers as a single system to accelerate development and simplify operations. It
supports cloud and bare-metal deployments. Some of its characteristics are the automatic
restart feature and placement of containers similar to VMware DRS. In essense, with
Kubernetes, we can deploy applications quickly and predictably, scale the applications on
the fly, seamlessly roll out new features and optimize use of the hardware by using only
the resources needed.

More specifically, the key concepts of Kubernetes technology, as presented in figure 2.6
are the following:

• Minion: it is a physical or virtual machine that acts as a Kubernetes worker. Each
node runs the following key Kubernetes components: (i) Kubelet: is the primary node
agent, (ii) kube-proxy: used by Services to proxy connections to Pods, as explained
below, and, (iii) the container technology that Kubernetes use, i.e., Docker.

• Cluster : it represents a group of nodes that can be physical servers or virtual
machines that has the Kubernetes platform installed.

• Master : it is the controlling unit of the cluster, that provides a unified view into
the cluster and has a number of components such as the Kubernetes API Server,

CHAPTER 2. BACKGROUND AND RELATED WORK 20

Figure 2.6: Kubernetes Architecture. Adopted from [Kube]

that provides a REST endpoint that can be used to interact with the cluster. The
master also includes the Replication Controllers used to create and replicate Pods.

• Pods : small group of Docker containers that work together, which is the smallest
deployable unit that can be created, scheduled, and managed with Kubernetes. So,
Kubernetes will place that pod somewhere i.e. lab, cloud, dev environment, and run
its containers there.

• Replication Controller (RC): for running multiple instances of a container e.g. 4
copies of a web server. The RC ensures that a specified number of pods are running
at any given time. It creates or kills pods as required.

• Services : is an abstraction that defines a set of Pods that work together and a policy
to access them. Services find their group of Pods using Labels. The pod contains
a number of containers that cooperate and the services essential tie pods together.
For instance, a Kubernetes service can be a cluster of two nodes where, one of them
contains a backend system and a frontend system and the other a replica of the
backend system with the purpose of achieving load balancing. Thus, the service
defines the routing of the frontend requests to the backend systems.

• Labels : are used to organize a group of objects using key-value pairs. So, using those
labels it is easy to search for a specified collection of services, backends wherever
they are deployed to.

One significant key point of Kubernetes that fits our architecture is the focus on composing
applications that are consisted of loosely coupled and distributed microservices, which
in our work correspond to small, independent components that can be deployed and
managed independently, rather than using a fat monolithic stack running on one big
single-purpose machine. On the other hand, our work differs from Kubernetes on the

CHAPTER 2. BACKGROUND AND RELATED WORK 21

coordination and discovery of the composable parts of a system, in the sense that in
opportunistic networks it is not feasible to provide a centralized control component such
as the Master in Kubernetes. We discuss this further in Chapter 3.

2.5 Summary

This chapter provided an overview of the areas of ICN and DTN, and described the
SCAMPI opportunistic networking middleware, that has been used in this work. In
addition, it elaborated on the composability design principle, its benefits and applicability
in system designs by going over modularity and discussing all the design principles
that enable the design of modular architectures. Subsequently, we described in detail
the microservices architecture and common-used topologies in modern systems and we
provided an outline of containerization using Docker technology and the key concepts of
Kubernetes platform. The following chapter presents the contribution of this work, which
is an architecture for composable, opportunistic applications and services.

Chapter 3

An Architecture for Composable
Opportunistic Applications

This chapter presents an architecture for building composable and distributed applications
on top of OppNets. Initially, we discuss the motivation and intent of this work by providing
a set of real-world use cases for which those kind of applications could be developed, and
their requirement analysis. Subsequently, we elaborate on the key concepts that enable this
architecture and its structure. At last, we discuss important considerations and security
issues.

3.1 Intent and Motivation

The fact that modern mobile devices such as tablets, smartphones, smart watches and
others are equipped with powerful computing, storage and sensor capabilities (GPS,
camera, accelerometer and others), as well as multiple network interfaces, i.e., Wi-Fi,
4G, Bluetooth, NFC and others, empowers the idea of building application making use of
those resources by enabling peer-to-peer communications. Furthermore, in recent years,
social networking, proximity-based services and applications such as Nextdoor [Next],
Groupon [Grou] and Foursquare [Four], concentrating on meeting people, finding nearby
restaurants or special offers, have gained great popularity. However, in most cases, the
utilized infrastructure is Internet-based using centralized content-servers, even though the
content is ephemeral and locally relevant. There have been numerous cases where this kind
of centralized services, e.g. cloud service providers, that maintain important and sensitive
user data have been targets for attack, where data disclosures and malicious break-ins
have taken place. Let alone, cases of user traffic monitoring with the aim of collection and
analysis of user content in the shake of political and industrial interests. Considering the
above-mentioned as well as the indisputable fact that there are many areas outside the
developed world, where Internet provision is highly costly or even impossible, led us to

22

CHAPTER 3. AN ARCHITECTURE FOR COMPOSABLE OPPORTUNISTIC APPLICATIONS23

examine the feasibility of designing and implementing localized mobile applications and
services running on top of challenged networks by leveraging opportunistic contacts.

3.1.1 Scenarios

Below we present scenarios where this sort of opportunistic services could be developed
to overcome the above-mentioned issues.

3.1.1.1 Polling Application

In this scenario, we consider a dynamic environment of mobile device (i.e. laptop,
smartphone and tablet) users who are called at a random point of time to respond to a poll.
A talk is being held in a lecture hall at a university and the speaker wants to request the
opinion of the audience on a talk-relevant topic. However, there is no Wi-Fi access point
and thus, the speaker is not able to create a poll online and request the audience to access
it and respond to it. The speaker then takes advantage of an opportunistic poll creator
application that has installed on her smartphone and her laptop’s storage and computing
capabilities. She turns her laptop to an access point and asks from the audience to connect
to it, she also connects her smartphone. Then she opens the application, which starts
publishing all the essential poll service binaries to the network. Those files correspond to
different versions of a mobile poll participant application suitable to be run on different
devices and a poll service able to collect and process the user generated content in order
to provide the poll results. At the end, the speaker is able to create a poll with her
smartphone and the mobile device users can receive it on their device and respond to it.
The results are calculated and shown on the projector connected to the speaker’s laptop.
In addition, latecomers can also join the polling service and respond to the published poll.

3.1.1.2 Course Rating System

We envision a course rating system in a university setting that allows students to review
their courses, professors get feedback on their lectures and view the ranking of their
course at the end of each semester. A professor decides to request from the students
to provide their review on the course anonymously. In order to do that, the professor
distributes the questionnaires using a mobile application, like it was described in the
polling application scenario. The students connected to the class network receive the
questionnaire on their mobile devices and start filling it in. As soon as they finish, they
submit the questionnaire. The submitted questionnaires are now stored and processed
in an in-network throwbox-type node located in the university campus that collects the
reviews of courses during the academic year and calculates a ranking list based on the
students reviews and publishes it along with the reviews of each course at the end of
each semester. At that time, when mobile device users pass by the throwbox node, they

CHAPTER 3. AN ARCHITECTURE FOR COMPOSABLE OPPORTUNISTIC APPLICATIONS24

receive the ranking list and the reviews which are also shown on the monitor of the central
university hall.

3.1.1.3 Event Registration and Check-in Application

This scenario refers to a university event application that assists in notifying students and
the university staff about events, creating guests lists and checking in the event attendants.
One of the members of the event organization team is responsible for distributing the
event poster using the event-poster mobile application. The university is separated in
neighborhood networks where the access point is a throwbox-type node with storage and
computing capabilities. The event poster distributor, moves from one neighborhood to the
other and offloads the event poster on the throwbox node which publishes the event poster
in the network. In addition, on the way to a neighborhood network, the distributor can
turn the smartphone to an open access point and publish the event poster to the students
that get connected to it. The students who are connected to a neighborhood network or
the distributor’s device network receive the event poster and with it they can submit their
attendance to the event. Also, the students can also share the event poster to help in the
distribution. In case they join the event, their response is sent to the network node that
creates the guest list. The member who is responsible for holding the event guest list goes
to the neighborhood networks in the campus and collects the guest lists and merges them
with the event guest list application. At the entrance of the event building, the guest
list holder’s device is waiting to get a notification from the guests device that they have
arrived and checks them in.

3.1.2 Requirements

The goal of this work is to enable the design of complex mobile opportunistic applications
given that the employment of centralized infrastructure used in standard web applications
is not possible. This section enlists the main requirements that we derived from the
above-described scenarios:

1. Dynamic service instantiation: taking into consideration the absence of centralized
infrastructure in the given scenarios, the service instantiation must be done by
utilizing the temporary in-network resources of the mobile devices that happen to
be connected to a particular network. In all three scenarios, the systems employ
the end-users’ devices to instantiate the service by publishing executable files to the
network. There is no access to a centralized application distribution store. The users
happen to need a service at a certain point and they create it by using the available
resources.

2. Single-purpose, autonomous subsystems : in every scenario, the overall system is
partitioned into different subsystems with separate responsibilities. For instance, in

CHAPTER 3. AN ARCHITECTURE FOR COMPOSABLE OPPORTUNISTIC APPLICATIONS25

the case of the polling application, the subsystems are the following: an application
running on the speakers smartphone that creates the poll, a participant application
is running on the audience devices allows them to respond to the poll, an application
is running on the laptop and shows the poll results. In addition, there are subsystems
that do not offer any interaction with the user e.g. calculation of poll results.
All those subsystems have a particular functionality and operate independently
on different devices. In addition, in such challenged networks, the possibility of a
node to leave the network is high, therefore, the interaction model that should be
used must support loose coupling among those subsystems. Partitioning the system
into smaller subsystems, is a common technique to deal with complexity which is
crucial in this kind of scenarios where additional complexity might be induced, since
centralized content-servers and orchestration cannot be used.

3. No central controlling unit : utilizing a centralized coordinator to orchestrate the
various applications and services running on top of OppNets is difficult because at
any moment it can get out of direct contact with any other nodes, or it might leave
the network and never return. We need to employ a different approach that achieves
the applications synergy tolerating those kind of challenged communications.

4. Publish-Subscribe (PubSub) message delivery : in all scenarios, the main function is
publishing user-generated content to multiple recipients. This can be supported by
the publish-subscribe interaction paradigm.

5. Remote procedure call (RPC) messaging : there are cases where a subsystem requires
to perform request-response style communication with an other subsystem residing
on a different process on the same or a remote machine.

6. Supporting heterogeneous devices : we need to take advantage of the in-network
resources to the greatest extent. To achieve that the system should support the usage
and collaboration of heterogeneous devices. In all scenarios, mobile users might carry
smartphones, laptops, tablets or smart watches, thus, supporting multiple screens
is essential.

7. Security : in all scenarios, applications and content is shared with end-user devices
from unknown sources. We consider that the applications are set in a university
environment which means that those systems support proper authorization, however
such networks are often subject to different kinds of attacks by malicious nodes, thus,
an additional security layer is required to address threats such as injection attacks,
resource depletion, confidentiality disclosure and privacy invasion. The security layer
is out of the scope of the thesis and it is only discussed briefly later in this chapter.

CHAPTER 3. AN ARCHITECTURE FOR COMPOSABLE OPPORTUNISTIC APPLICATIONS26

3.2 Key Concepts

This section presents the key concepts adopted in this work to design systems that fulfill
the above requirements and enable opportunistic applications scenarios.

3.2.1 Neighborhood Networks

In the scenarios presented in the previous section, various network topologies and
interactions have been described. Figure 3.1 illustrates the opportunistic interactions
that occur in neighborhood networks, which are composed of small, wirelessly connected
static and/or mobile store-carry-forward nodes and are built and controlled by the users
themselves, and points out the occurrence of this kind of interactions in our university
scenarios.

Figure 3.1: Neighborhood networks topologies

More specifically, (i) in the top left figure, there is a mobile access point (green laptop) to
which the remaining devices are connected to, communication links are created directly
among the mobile nodes (dashed green lines) or through the access point node (black
lines). Such a topology is used in the scenario described in section 3.1.1.1, i.e., the speaker
turns the laptop connected to the projector to an access point and the audience mobile
devices connect to it to publish and receive content. In addition the speaker uses a
smartphone to directly interact with the audience devices. (ii) In the top right figure,

CHAPTER 3. AN ARCHITECTURE FOR COMPOSABLE OPPORTUNISTIC APPLICATIONS27

the mobile devices are connected to a stationary store-carry-forward node (green router)
that publishes content in the network. In scenario 3.1.1.2, the network is consisted of
a stationary node, called throwbox, able to persistently maintain content, and mobile
devices that connect to throwbox to publish and receive content i.e. course reviews and
final course rankings respectively. (iii) In the bottom left figure, a smartphone is turned
into an access point and publishes content to the devices connected to it. In 3.1.1.3, a
mobile device user turns a smartphone on-the-go to an access point and other passengers
connect their devices to it, (iv) In the bottom right figure, two separate networks created
by two stationary nodes (green routers) share a subset of their network content provided
by a mobile device (green smartphone) that moves from one network to the other. In
3.1.1.3, a mobile device user receives the poster event published in the network and by
moving to an other network spreads it further.

3.2.2 Composable Component

The fundamental key concept of the proposed architecture is the Composable Component
(CC), a simple, self-contained unit of functionality. The major goal of introducting
this concept is to enable system componentization in order to facilitate the design and
development of composable distributed applications, i.e., applications designed as a suite
of components that collaborate to provide the resulting system. The main benefits are (i)
the ability to build a system that fulfills the requirements described in section 3.1.2, (ii)
the reduced complexity and (iii) easy deployment in opportunistic topologies. A CC must
have the following characteristics:

1. small : it is a small manageable piece of work that provides a distinct, single-purpose
functionality, which is part of the overall system.

2. modular : it is self-contained and has well-defined APIs to communicate with other
CCes to provide the resulting system.

3. opportunistic: it communicates opportunistically with other CCes, which reside
on different processes on the same or a remote machine, using RPC or PubSub
communication style. The duration of the presence of the component in the network
is unknown.

4. independently deployeable: it comes in binary executable code, ideally with their
own runtime environment, if it is not supported by the platform.

5. indepentently pluggable and replaceable: a CC can be (un)plugged to the system
and operate without any manual administration. It can be replaced and upgraded
without affecting the other CCes.

6. stateful or stateless : it might be stateful by encapsulating a database layer or
stateless, in which case it interacts with a remote database to either transform
further the stored content and act as a service or display content to the end-user.

CHAPTER 3. AN ARCHITECTURE FOR COMPOSABLE OPPORTUNISTIC APPLICATIONS28

7. service or widget : the CC can take two forms; (i) the service component (stateful or
stateless), which contains business logic and its client might be an other service or a
view and (ii) the widget component (stateless), which is the application the provides
a UI to the end-users. We can match those two terms to the commonly-used terms
backend and frontend system respectively. A set of service components compose the
system’s backend and a set of widget components compose the system’s frontend.
We elaborate further on the CC’s forms in the following section.

3.2.3 Decentralized Event-based Orchestration

One of the most significant design decisions, we had to take, is how to coordinate the CCes
to efficiently work together and provide the desirable result. Considering the distributed
nature of the neighborhood network scenarios, we decided to employ a choreography
technique rather than centralized orchestration.

There are three different approaches to enable the system processes work together: (i)
when calling multiple services to support a given requirement, we need to introduce
a gateway layer which orchestrates the service calls to the required services and
aggregates the final response and sends it back to the original consumer. The gateway
layer should only have orchestration logic. Since we target OppNets, it is impossible
to have a central node because at any moment it can loose direct contact with
any other node, or it might leave the network and never return. (ii) Point-to-Point
interaction is a commonly-used integration model, where services call directly other
services asynchronously or synchronously. This approach introduces a great level of
complexity and makes the system hard to change and maintain. (iii) A more appropriate
mechanism is to use an asynchronous messaging style and an event stream to choreograph
the services. By employing the PubSub interaction paradigm, this approach ensures that
there are no bottlenecks in the final application-system since the communication protocol
is based on non-blocking asynchronous calls and the services are completely decoupled
since they publish events without the need of directly connecting to the recipients. The
recipients are smart enough to process the request when they can and return a response
without blocking the sender. In this case there is no central entity that takes care of the
services interactions and the services coordinate by themselves.

In our design, we adopted an event-driven approach. A CC publishes an event for content
dissemination, database operations, or other requests and the interested CCes subscribe
to those events. When the CCes receive the events, they process them and perform the
required tasks, if the event represented a request, and publish a new event that is the
response or use the encapsulated event data to display information to the user. The CCes
can store the events and thus keep track of the state of other CCes and still be completely
decoupled.

More specifically, in this work we applied the PubSub and RPC messaging models using

CHAPTER 3. AN ARCHITECTURE FOR COMPOSABLE OPPORTUNISTIC APPLICATIONS29

Figure 3.2: Messaging models

intermediary bus abstractions to decouple the components. In this section, we discuss
the models and in section 3.3, we present the bus abstractions in detail. Concerning the
PubSub model applied in this work, the main high-level elements are the producer and
consumer of the event, the event tag and a bus with routing logic that is consisted of
a message queue for storing the events with additional information e.g. the event tag,
and a filtering module that assists in filtering the events at the consumers end. Given the
challenge of the opportunistic communication links, in practice, the bus consists of a queue
on each producer and consumer that buffers all the events to be sent and the received
ones respectively. Once producers and consumers meet the message exchange occurs. A
CC might act as both consumer and producer. In the top of the Figure 3.2, an abstract
representation of this model, called in this work Remote PubSub, is illustrated in the
context of CCes communicating opportunistically. In the bottom figure of 3.2, the Local
PubSub is shown. This kind of messaging model is used among CCes that communicate
using an event bus (see 3.3.5) and exchange messages based on the stored state of the
system. It enables pull-style communication among CCes exchanging content previously
received with the Remote PubSub. These interactions are realized at a higher layer than

CHAPTER 3. AN ARCHITECTURE FOR COMPOSABLE OPPORTUNISTIC APPLICATIONS30

the interactions with Remote PubSub. We discuss about it more in the section 3.3. At
the middle of Figure 3.2, the Local RPC is presented. This messaging model, as with the
Local RPC, occurs at a higher level utilizing an event bus. The Client publishes a query
using a query id and the query parameters to the event bus and the bus notifies the server
who has subscribed to those queries. Server processes the request and publishes a response
event to the bus. The client has subscribed to those events and receives the response.

3.2.4 Decentralized Data Management

In the discussed design, we assume that a CC can be stateful and encapsulate its own
database with which shares data only through push and pull-style subscriptions to content
tags. To realize that, we need to properly decompose the system into smaller CCes that
can be developed and deployed independently, select the CCes that act as services and
decide which should be responsible for what data models. This contrasts with the classical
three-tier architecture which leverages one central database, that makes deployment and
development harder. Realizing this kind of design has the following benefits: (i) no
implementation dependencies among the CCes, for each one a different technology for
particular purposes (e.g. MongoDB, SQL) can be used without affecting the development
and deployment of other application CCes. (ii) Each CC is designed and built around
an application domain subset. That creates barriers among the CCes which leads to
design modularity. (iii) By following this approach in combination with the event-driven
communication (3.2.3), we achieve efficient data sharing without the need of a shared
database, by replicating the data to the CCes that need it.

Nevertheless, it is important to correctly decompose the system and decide on the services,
otherwise unnecessary complexity might be introduced. For instance, communication
among many remote CCes to serve a single request induces communication delays and
complexity due to additional coordination, thus, it is better to rethink of the system
granularity and merge service components that serve related purposes into one, i.e. if a
change requires an update in another part of the system, those parts should be close to
each other.

An alternative technique that could be applied in particular use cases is to use a shared
database, but with a private schema per service in order to keep clear boundaries among
the services. In this case, there are service CCes that are stateless and access a remote
database. In our scenarios, this is feasible in the cases of stationary store-carry-forward
nodes utilization e.g. in the scenario 3.1.1.2, the throwbox node publishes the final ratings
and reviews to other devices on which CCes might be running and using this content for
further purposes.

CHAPTER 3. AN ARCHITECTURE FOR COMPOSABLE OPPORTUNISTIC APPLICATIONS31

3.3 Framework

This section presents a composable system architecture that provides a framework
suitable for enabling mobile opportunistic applications and services, by leveraging the
above-mentioned key concepts. The discussed network topologies presented earlier are
composed of arbitrary number of devices, i.e. mobile nodes (laptops, smartphones e.t.c.)
and/or static nodes (store-carry-forward routers), the collaboration of which is enabled
by the framework. The architecture enforces separation of concerns and a decoupled
system that allows the developers to work on different parts of the system and build
applications and services independently that can be deployed on different devices. In this
work, we attempt to adapt the Microservices architecture to opportunistic environments
and provide a structure that reduces the additional complexity that occurs due to the
extra coordination interactions among the microservices required to enable the resulting
composed system. This section provides details on the elements of the framework and
design decisions taken to this goal.The implementation of the application framework is
presented in Chapter 5.

Figure 3.3: Composable System Architecture

The left part of the Figure 3.3 presents the system structure within a node instance, i.e.,
the system is composed of a set of CCes that come in two types, i.e. service and widget
which represent the services and applications that wish to communicate opportunistically
and two bus abstraction layers i.e. the Local Bus and the Remote Bus that are responsible
for the communication between those CCes. More specifically, with the Local Bus we
enable an event-driven communication model for interaction among the CCes running in
the node instance, whereas with the Remote Bus, we support communication among
service CCes running within the same node or among remote nodes. To enable the

CHAPTER 3. AN ARCHITECTURE FOR COMPOSABLE OPPORTUNISTIC APPLICATIONS32

dynamic instantiation of services composed of multiple applications and services running
on different nodes, an instance of the framework must run on each device in order to
enable the event-driven communication models both within the node and among remote
nodes. On the right of the Figure 3.3, a composable application built out of multiple CCes
(marked with a black circle) on different node instances is presented. The nodes in the
figure host a set of services and UI widgets that serve different domain-specific purposes
and communicate locally using the Local Bus and remotelly using the Remote Bus that
enables peer-wise asynchronous communication links.

Figure 3.4: UML component diagram of the Opportunistic Application Framework

Figure 3.4 presents the internal subsystems of the opportunistic application framework
and their dependencies. The subsytems of the framework are the bus abstractions as
introduced previously, the component registry and the component controller. The Local
Bus provides pub/sub interfaces for local events and the Remote Bus for remote events.
The component registry maintains information of the CCes installed within a node
instance and the component controller uses the component registry to check the state
of the running CCes, manage their lifecycle and install new CCes on the node. To enable
communication among remote nodes, the framework must run on every node.

The following sections describe the framework subsystems and their interactions in detail
and Chapter 4 presents a set of distributed application designs that show how concrete
applications and services are being created by different CCes in multiple node instances.

CHAPTER 3. AN ARCHITECTURE FOR COMPOSABLE OPPORTUNISTIC APPLICATIONS33

3.3.1 Service Tag and Event Message

The service tag corresponds to a service identifier that can be used to publish content
and subscribe to receive the particular content from a network service. For instance, a CC
may wish to publish content related to nature thus it publishes messages identified by the
tag nature and other CCes that wish to receive this content subscribe to the tag nature.
The event message is a message exchanged between CCes with the following properties:
(i) service tag, (ii) event type, i.e., local and remote, the remote event is published to
the Remote Bus and the local to the Local Bus, (iii) event content, the encapsulated
generated content and (iv) event tag, a unique description of the event within the service
tag scope. The event messages enable CCes to issue commands, requests and publish
content. All CCes must agree on a common set of event messages in order to achieve
proper coordination.

3.3.2 Service Component

Figure 3.5: UML component diagram of stateful and stateless service components

The Service Component is a self-contained, composable component that represents a
service built for a single domain purpose and might be composed of the storage and
domain model (business logic) layers. It can be attached into an event message as a
binary and published to the network. The framework allows nodes to receive and execute
the binaries. This functionality is realized by the Component Controller as described in

CHAPTER 3. AN ARCHITECTURE FOR COMPOSABLE OPPORTUNISTIC APPLICATIONS34

section 3.3.7. Each service component uses the pub/sub APIs exposed by the Remote Bus
to communicate opportunistically with other service components. More specifically, it
publishes and receives event messages to/from the Remote Bus mapped to the subscribed
service tags. As soon as, it receives an event message from the Remote Bus, it stores it
and processes it properly. Subsequently, it might publish a local event to the Local Bus
which, in turn, will publish it to the local widget components which have subscribed to
it, and/or create a new remote event and publish it to the Remote Bus, which, in turn,
will notify in-network service components.

The storage layer is an abstraction that provides an API to be used by the business logic
layer in order to manage the received and published event messages and their content.
The storage layer notifies the business logic layer about a new event message as soon as
it has been stored. Then the business layer can handle the message as required. It can
even discard it. The Service Component can also be designed as a stateless component.
In this case, it does not contain a storage layer, instead the business logic interacts with
a remote database hosted by an other service component. Figure 3.5 illustrates a stateful
service component and its inner subsystems as well as the pub/sub interface of Remote
Bus that the service consumes. In addition, the dependency among the stateful service
component and a stateless one is implied in the figure, since those two components can
communicate with each other using a publish-subscribe messaging model via the Remote
Bus. For instance, this can be realized in scenarios where a static node exists in the
network and stateful service components run on it publishing aggregated content to the
network and stateless service components run on mobile nodes who come and go and are
interested in just reading that content.

In addition, a service component might even encapsulate logic that includes connecting
to a remote web service and post the localized content to it. The behavior of the service
component is hidden from the rest of the system and it only exposes its local and remote
pub/sub interfaces to communicate with the in-network CCes.

3.3.3 Widget Component

The Widget Component represents a platform-dependent user application that contains
all the views and view controllers to display the content to the user and handle the
user events. The only dependency it has to the framework is the Pub/Sub interface of
Local Bus abstraction through which it can read and write user-generated content. It
is not aware of the underlying networking infrastructure and it only subscribes to local
events and listens to messages coming from the layers beneath. The widget can be either a
standard user application with input views or even an advanced application that leverages
hardware capabilities through platform APIs such as sensors, camera, GPS and others.
The architecture of the widget is decided by the widget developer.

Figure 3.6 shows the framework local bus, a sensor and a view widget component. Both

CHAPTER 3. AN ARCHITECTURE FOR COMPOSABLE OPPORTUNISTIC APPLICATIONS35

Figure 3.6: UML component diagram of widget components

view and sensor widgets consume the Pub/Sub interface provided by the local bus in
order to publish and subscribe to local events. The view widget is composed of the
View subsystem which contains all the application view elements and the ViewController
subsystem which is responsible for receiving the local events published by the local bus
and handle them properly in order to pass the required information to the views. In
addition, it receives the user input and publishes it to the local bus. In the case of the
sensor widget, it is composed of the Sensor subsystem which, in this figure, is a platform
sensor module that provides an interface for getting notified when a new sensor value
has been recorded and the SensorController subsystem which gets the sensor value and
prepares a local event encapsulating the value and publishes it to the local bus so that
the underlying service components can get the value.

3.3.4 Remote Bus

The Remote Bus abstraction is the fundamental architectural element that enables
opportunistic communication links between the network processes using an event-based
approach. It provides publish-subscribe messaging (Remote PubSub) as described in
section 3.2.3 and runs on all network nodes. It encapsulates an opportunistic networking
middleware that enables it to act as the intermediary between co-located and remote
service components (see 3.3.2), which have agreed on a common set of event messages to
communicate and can subscribe and publish to service tags. The middleware was used in
this work is SCAMPI and its main features are the following:

1. peer discovery : is responsible for detecting peers through the communication
interfaces. The middleware provides IP multicast discovery used for both IPv4
and IPv6, and unicast discovery using known targets (IP/port). In addition, the

CHAPTER 3. AN ARCHITECTURE FOR COMPOSABLE OPPORTUNISTIC APPLICATIONS36

middleware offers the possibility to indirectly connect nodes that might have never
directly met. This is done with a discovery mechanism on top of direct discovery,
called multihop. A node keeps track of all the peers that has discovered and share the
information with all other encountered nodes. This is mostly used in networks with
a large amount of nodes where it is not efficient to open a direct link to each one.
The middleware takes over the decision of which links should be opened and remain
active and which are unnecessary and must close, thus, scaling can be achieved in
dense networks.

2. routing : is responsible for deciding which messages should be passed to which peers.
It supports a framework of routing algorithms that can be used in a variety of
network scenarios. For instance, in case we need to deliver presence information,
flooding-based protocols should be used, whereas to efficiently deliver instant
messages, unicast routing protocols are used.

3. storage: the Remote Bus supports a storage abstraction for caching the network
service event messages and peer information. It supports add/remove/update/fetch
operations with messages. The storage size can be configured and the messages
can be marked as persistent or temporary. Versioning and duplicate detection is
supported.

4. publish/subscribe messaging : is the main communication mechanism offered by the
middleware. It resembles the store-carry-forward abstraction of DTN architecture, in
that the messages a self-contained and are forwarded in the network hop-by-hop as
complete transmission units. Nodes express interest in receiving messages belonging
to a particular service by subscribing to its identifier. Any node can publish messages
to any identifier and then the middleware tries to deliver to all interested subscribers.

Using the Remote Bus, a service component that needs to access the data of an other
component can subscribe to a service tag and a set of event messages of the particular
service that it needs to consume and receive all those event messages. Similarly, an other
service component can publish event messages to a particular service tag in the network.

3.3.5 Local Bus

The Local Bus abstraction is used to decouple the widgets layer from the services layer
and realize the messaging models Local PubSub and Local RPC as described in section
3.2.3. The purpose of widgets having no dependency to the remote bus is that widget is
assumed to be a simple component, which encapsulates views and/or platform-dependent
functionality such as sensors only. No network code and no business logic belongs to this
kind of composable component. It can provide application logic and subscribe to local
events to receive and display content to the user or receive user input and publish it to
the local bus, which in turn is responsible to forward it to all interested subscribers for
further processing. In practice, if we want to deploy a widget that listens to a remote

CHAPTER 3. AN ARCHITECTURE FOR COMPOSABLE OPPORTUNISTIC APPLICATIONS37

service component, we need then to deploy on the same node a service component that
it actually listens to the remote service component feed via the remote bus and publishes
events to local bus, so that the widget can receive the feed.

The framework enforces separation of concerns and applies the SRP, which leads to a more
modular design that implies increase of composability. The widget and service developers
can work separately and concurrently, having initially agreed on the local and remote
events that must be used for the components communication. The widget developer builds
the UIs and is the expert on the supported application platform, and the service developer
is responsible for handling database management, (de)serialization and logic without
depending on the technologies used for the widget development. The developers work
is a black box to each other and the only common concern is the communication protocol.
This approach promotes a clean and modular architecture that improves testability and
maintainability. In addition, developers can replace/upgrade anytime their composable
component or deploy more components that can listen to local events, without getting
concerned on side effects on the system.

Furthermore, by using the local bus, the system is more robust, because if the widget
fails, till it gets up and running again, the service component will keep listening to the
network content and executing its tasks and as soon as the widget is back, it will notify
it with the collected content.

3.3.6 Component Registry

The Component Registry is responsible for keeping track of the CCes. It persists the CCes
binaries and metadata helpful for their installation and configuration. It runs in its own
process on every node and exposes a pub/sub interface, enabled by the Remote Bus, to
access information about the CCes such as name, state (active, running, disabled), type,
version and others. This enables the discovery of CCes in the network and can be used in
complex scenarios where, for instance, intent for composing an application out of specific
CCes occurs and there are multiple in the network with similar functionality. An event
message of type registry query can be published to the service tag component-registry,
requesting of the list of CCes running and based on this information, the proper service
binding can be decided. A concrete example is a user-composable application, where the
users can choose what service and widget components want to use and bind them together,
i.e., the user decides to use the service component university-party-photos and bind it to
the widget component awesome-gallery-view instead of the widget simple-gallery-view.
In addition, it provides local pub/sub interfaces, enabled by the Local Bus, to allow
Component Controller to register and manage CCes.

CHAPTER 3. AN ARCHITECTURE FOR COMPOSABLE OPPORTUNISTIC APPLICATIONS38

3.3.7 Component Controller

The Component Controller undergoes the management of the CCes on a node. It runs in
its own process and handles the lifecycle of a CC, it is able to install, uninstall, stop, start
and replace a CC. It provides a pub/sub interface where other CCes in the network can
publish their services and widgets, including their metadata. Then it decides whether the
received CC should be installed on the node or not. It queries the Component Registry
through the Local Bus to look up, register and unregister CCes.

3.4 Security

In this work, we discuss an architecture in OppNets, which are characterized by long
communication delays, high mobility of nodes and disruptive links. Those features lead
to difficulties in designing applications and services as well as authentication and access
control mechanisms. In OppNets, centralized key servers and central certificate authority
is not possible to be used, since end-to-end communication cannot be established. Such
networks focus on disseminating the content to interested nodes, rather end-to-end
communication. In this section, we provide a brief overview of the potential security
challenges in the discussed scenarios and solutions that have been proposed and can be
taken into consideration for future research on this work.

The major security threats in such scenarios are the following: (i) any unauthorized
access and utilization of resources can cause system performance degradation, since the
in-network resources are limited. (ii) the architecture can allow code injection attack
since it is easy for the attacker to inject executable source code directed to participate in
a composable application in the network. Code Injection occurs as the result of including
an external resource and it is commonly referred to as a Remote File Inclusion (RFI).
(iii) Event messages are being stored and forwarded to intermediary nodes to reach the
destination node, that can lead to confidentiality disclosure by copying the message on
one of the intermediate nodes. (iv) In addition, privacy invasion is feasible since the
intermediary nodes that store the event messages can steal destination node location
data, identity or other sensitive user data.

To deal with the above-mentioned threats, requirements such as privacy protection,
authentication, authorization and access control, data confidentiality and integrity must
be taken into account. In [Wu 15], the authors propose a general security architecture built
on five modules: authentication, secure routing, access control, trust management and
cooperation, and application/user-specific privacy protection. They state that generally,
one or more security modules can be selected and implemented, depending on different
threats and specific user or network requirements. In [Lili 07], the authors provided a
similar security framework, but did not provide concrete security solutions.

CHAPTER 3. AN ARCHITECTURE FOR COMPOSABLE OPPORTUNISTIC APPLICATIONS39

3.5 Summary

This chapter discussed the proposed architecture of this work. Initially, it provided the
motivation behind this architecture, real-life scenarios that this architecture is applicable
and the requirements needed to be fulfilled to realize those scenarios. Subsequently,
we dived into the key concepts that enable the discussed framework and how these
concepts help in solving particular issues in designing and developing mobile opportunistic
applications. A detailed high-level description of the framework structure is following,
while at the end we discuss one of the most significant challenges in such scenarios,
security. Implementation of security mechanisms is out of the scope of the thesis, thus, we
only discuss crucial security challenges in OppNets and solutions concerning the particular
scenarios.

Chapter 4

Designing Composable
Opportunistic Applications

The goal of this section is to initiate the evaluation part of the thesis, which is entirely
presented in the chapters 4, 5 and 6. In this chapter, we present a set of composable
applications and services designs to demonstrate the applicability of the discussed
architecture presented in Chapter 3 in various contexts and network topologies and
show that it is feasible to design and develop applications that are partitioned into
multiple composable components running on different devices, the intercommunication
of which is enabled by opportunistic pair-wise contacts. We begin by presenting the
polling application scenario described earlier, for which we additionally provide the
implementation and its evaluation in the following chapters, and we continue with two
more system designs, a course rating system and an event organization application, both
described in Chapter 3.

In all scenarios, the systems comprise static (or infrastructure) nodes, which have stronger
capabilities in terms of storage and computing power. Those might be a Liberouter
[Kark 14] store-carry-forward router, a laptop, desktop or any other powerful device
running an instance of the SCAMPI. For the mobile nodes, we assume that they are
smartphones, tablets or other modern mobile devices with moderate capabilities, and
they run an instance of SCAMPI as well as the framework presented in section 3.3. The
application and service CCes are instantiated on the network nodes by the framework
instances, based on information that accompanies the CCes e.g. the type of the node that
is designated to be run, configuration before their execution and more.

40

CHAPTER 4. DESIGNING COMPOSABLE OPPORTUNISTIC APPLICATIONS 41

4.1 Polling Application

As described in section 3.1.1.1, the polling application enables the creation of a polling
service in a neighborhood network consisted of an arbitrary number of mobile devices that
might be smartphones, tablets or laptops. Figure 4.1 presents the system decomposition
using a component UML diagram. In this scenario, there are three different roles for the
mobile devices: (i) the PollCreator, which represents the service creator, since it publishes
the service’s CCes in binary files in the network to be installed on the network nodes, and
allows the user to create and publish a new poll, (ii) the PollManager, which is responsible
for storing and publishing the newly created Poll and processing the users’ poll answers
to generate and publish the poll results, and (iii) the PollParticipant, which is enabled
to offer a UI to the user to respond to the polls and display the poll results. On each
node, the framework is running and provides the required pub/sub interfaces to enable
the communication among the system’s CCes. The CCes of this application publish and
subscribe to event messages under the service tag polls.

PollCreator comprises two CCes, the Poll Creator Widget (PCW) and the New Poll
Service (NPS). PCW provides a UI to the users to allow them to create a poll and publish
it as well as it maintains in its resources storage all the binaries to create the polling service
in the network and publishes them as soon as it is started. As mentioned in Chapter 3, the
widget components have only dependency to the local bus, thus, the PCW publishes the
binaries and the new polls as local events to the local bus. The NPS, since it is a service
component, has dependencies to both local and remote buses. It has subscribed to the local
events NewPollLocal for receiving a new poll and InstantiateCCLocal for receiving a CC
binary and metadata which includes information about the configuration and installation
of the CC. As soon as it receives the local events, it stores the NewPollLocal in its local
database and prepares the remote events, NewPollRemote and InstantiateCCRemote,
including the user content and CCes binaries respectively and publishes them to the
network. The PollManager node is configured to act as an infrastructure node, which
means it is able to store big amount of data and has stronger computing capabilities, and
receives the InstantiateCCRemote event that includes the binary for the Poll Management
Service CC (PMS), which is designated to be run on infrastructure nodes. As soon as it
receives it, the framework instantiates the component on the node. In addition, it receives
two more InstantiateCCRemote events, each of those includes a widget component, the
Published Polls Widget (PPW) and the Poll Results Widget (PRW), able to run on
the specific PollManager device. The PMS is responsible for maintaining the published
polls and calculate the poll results. As soon as, it receives a NewPollRemote event, it
publishes to the network the PollPublishedRemote event to notify the interested CCes on
the network about the published poll.

The PollParticipant node is responsible for providing a user application for responding
to the published poll. Initially, no CCes is running on the node, only the framework. As
soon as the InstantiateCCRemote events that includes the participant application binaries

CHAPTER 4. DESIGNING COMPOSABLE OPPORTUNISTIC APPLICATIONS 42

Figure 4.1: UML component diagram of the polling application

published by the PollCreator node, arrives at the PollParticipant, they get instantiated.
Those binaries include the Poll Participant Service (PPS), the Poll Answer Widget (PAW)
and the Poll Results Widget (PRW). The PPS has subscribed to the PollPublishedRemote
event in order to receive the new poll and publish it locally to the PAW which is responsible
to provide the poll form to the user. As soon as the user responds to the poll, the PAW
creates the PollAnswerLocal event and publishes it to the local bus. The PPS which has
subscribed to the PollAnswerLocal receives the user answer, stores it and prepares the
PollAnswerRemote to publish it to the remote bus.

The PMS component running on PollManager node, has subscribed to the
PollAnswerRemote event and thus, it receives the user answer and updates the poll
results based on the new value. Subsequently, it publishes the PollResultRemote and
PollResultLocal events so that the interested local and remote PRW CCes receive the
new poll result. According to the scenario in section 3.1.1.1 on PollManager, the PPW
and PRW display the published polls and the poll results respectively on the laptop of
the speaker which is connected to the projector so that everyone can view the content.
Additionally, the users’ mobile devices which act as PollParticipant nodes get the content
on their screens.

4.2 Course Rating System

In this section, we present the design of the scenario described in Section 3.1.1.2 using the
proposed architecture. In this scenario, the system comprises a number of mobile nodes
and one static node, called throwbox. There are four types of nodes in this scenario: (i)

CHAPTER 4. DESIGNING COMPOSABLE OPPORTUNISTIC APPLICATIONS 43

the QuestionnaireDistributor, which is responsible for publishing the questionnaire to be
filled in and the system’s binaries, (ii) ReviewsInfopoint, which is the throwbox and is
responsible for maintaining all the reviews for a long period of time and calculating the
final course ratings and publishing the information at the end of each semester. (iii) The
Respondent, which is responsible for providing the questionnaire form to the user and
publishing the user input to the network, and (iv) the FinalReviewsReceiver, which is
in charge of receiving, storing and displaying the final reviews and ratings information.
The CCes of this system publish and subscribe to event messages under the service tag
reviews.

The QuestionnaireDistributor comprises two CCes, the Questionnaire Selector Widget
(QSW) and the New Questionnaire Service (NQS). The QSW displays a list of
questionnaires associated with the university courses and allows user to select a
questionnaire. As soon as the selection is done, the QSW publishes it within the
NewQuestionnaireLocal event message to the local bus. In addition, the QSW is in
charge of retrieving the service’s binaries from its resources and publishing them to
the local bus using an InstantiateCCLocal event message. The NQS has subscribed to
both NewQuestionnaireLocal and InstantiateCCLocal, thus, it gets notified by the local
bus and publishes the user content and the binaries to the network nodes using the
NewQuestionnaireRemote and InstantiateCCRemote respectively.

The ReviewsInfopoint is an infrastructure node, thus it handles the InstantiateCCRemote
messages that include binaries designated to this kind of nodes. As soon as, it receives
these messages, the framework instantiates the Reviews Monitor Widget (RMW) and
the Reviews Service (RS). The Respondent node, is a mobile node, thus it handles the
InstantiateCCRemote messages that include binaries running on this kind of nodes. As
soon as, it receives these events, it extracts the binaries and instantiates the Questionnaire
Widget (QW) and the Respondent Service (RS). As soon as the RS is instantiated,
it can handle messages published to the remote bus and since it has subscribed to
NewQuestRemote, it receives and stores the questionnaire which then publishes to the
local bus, so that the QW receives it and displays it to the user. When the user fills in the
questionnaire and submits it, validation is being triggered and if it is successful the QW
creates the FilledQuestLocal event which includes the questionnaire answers and publishes
it to the local bus. The RS which has subscribed to this events, receives the questionnaire
and publishes it to the remote bus by including it into the FilledQuestRemote.

The RS on the ReviewsInfopoint node, receives the FilledQuestRemote and extracts
the user’s responses and updates the courses ratings and stores the specific review.
At the end of the semester, the RS calculates the final ratings and prepares the
FinalReviewsResultLocal and FinalReviewsResultRemote events which include the final
ratings and all the reviews for each course and publishes them to the local and remote
bus respectively. The Review Monitor Widget (RMW) on the ReviewsInfopoint node and
Final Reviews Widget (FRW) on the FinalReviewsReceiver node receive the events and
display the information. The FRW receive the information through the local bus on the

CHAPTER 4. DESIGNING COMPOSABLE OPPORTUNISTIC APPLICATIONS 44

FinalReviewsReceiver node which has been published within FinalReviewsResultLocal
event message by the Reviews Receiver Service (RRS).

Figure 4.2: UML component diagram of the course rating system

The Ranking Widget (RW) and Top Course Widget (TCW) display a subset of the
information published within the FinalReviewsResultLocal, i.e., only the courses rating
ordered by ranking and the top course as home screen card. The latter shows one of the
benefits of the local bus, which is the ability to efficiently design and develop applications
which enable user to choose which view they would like to have running on their devices
depending on the amount of the content and their individual preferences. This can be
done without additional development effort during the entire life of the system since all
widgets are completely decoupled and independently deployable. They can be selected by
the user, replaced with a newer version and still listen to the intended content.

4.3 Event Registration and Check-in Application

Section 3.1.1.3 presented the last university scenario, the design of which demonstrates
the applicability of the discussed architecture as well. In this scenario, there are four types

CHAPTER 4. DESIGNING COMPOSABLE OPPORTUNISTIC APPLICATIONS 45

of nodes: (i) the MobileEventDistributor, which is responsible for distributing the event
poster to other in-network nodes as well as the system’s binaries to be installed on the
nodes. It is a node characterized by high mobility since it changes from one neighborhood
network to the other to offload the binaries and the event poster. (ii) the EventInfopoint,
which is an infrastructure node and is in charge of maintaining and publishing the system’s
binaries by installing the event poster distributor service CC to publish the event poster
CCes to the newly connected nodes and creating the event guest list associated with the
particular neighborhood. (iii) The Attendant, which is a mobile node and responsible for
displaying the event poster to the user and store and publish their response to the event
invitation, and (iv) the GuestListHolder, is a mobile node which is responsible for merging
all neighborhood guest lists and provide a finalized list that can be used to check in the
attendants. The CCes of this application publish and subscribe to event messages under
the service tag events.

The MobileEventDistributor offers a UI to the user to allow them to pick the event poster
out of a list of university events and publish them to the network. It comprises two
CCes, the Event Poster Widget (EPW), which provides the event selector UI and the
Event Poster Distributor Service (EPDS) which publishes the event poster application
to the network. As soon as the user selects the event poster, the EPW creates a
NewInvitationLocal event which includes the particular event poster binaries that provide
all the functionality to display the event information, accept the invitation and publish
the response to the interested subscribers. The EPDS receives the local event and prepares
and publishes a NewInvitationRemote event with the binaries and event information.

In this design, we decided to bind the event content with the application binaries,
designated to be run on the Attendant node, in one event message so that we reduce
the steps of the instantiation of the services. More specifically, in polling application
scenario, the PollCreator publishes initially the binaries and then the poll. In the current
case, those two steps are combined to one and it seems more reasonable here since we want
to start a service for one particular event, while in the context of a polling application, it
may happen that the user wants to start multiple polls for a specific topic.

For the remaining CCes need to be run on the network nodes, i.e., Guest List Service
(GLS) and EPDS on the EventInfopoint node, the MobileEventDistributor publishes
InstantiateCCRemote events which include the binaries and metadata for the description
and configuration of the CCes. The EPDS that is being instantiated on the EventInfopoint
node is in charge of publishing the particular event poster to the connected to the network
nodes and is used instead of the EPDS running on the EventDistributor node, since the
latter moves from one neighborhood to the other and may never return to the same
neighborhood, thus the EventInfopoint takes charge of the distribution.

The Attendant node receives and instantiates the Event Invitation Widget (EIW) and
Event Invitation Service (EIS) CCes extracted by the NewInvitationRemote event. As
soon as the user of Attendant device accepts the invitation using the EIW, it publishes
the response to the local bus using the InvitationRespLocal and the EIS stores the

CHAPTER 4. DESIGNING COMPOSABLE OPPORTUNISTIC APPLICATIONS 46

Figure 4.3: UML component diagram of the event registration and check-in application

response and publishes the InvitationRespRemote event to remote bus. The Guest List
Service (GLS), having being instantiated on the EventInfopoint and has subscribed to
the InvitationRespRemote, receives the Attendant invitation response and updates the
guest list associated with the particular event and publishes the list to the remote bus
within the GuestListRemote event message. The GuestListHolder node moves to the
neighborhood networks and picks up the guest lists. The Guest List Merger Service
(GLMS) has subscribed to the GuestListRemote event and thus, it queries the GLS
running on the EventInfopoint by publishing a remote event GuestListQueryRemote with
the identifier for the specific event and it receives the GuestListRemote. Subsequently, it
merges the received list with the locally stored one and thus, it updates the final guest
list. It prepares the FinalGuestListLocal event and publishes it to the local bus. The
Final Guest List Widget (FGLW) receives the local event, extracts the list and renders
it. Additionally, the FGLW offers the capability of user check off the guests from the list
and thus check them in the event as soon as the attendants arrive at the event location.

CHAPTER 4. DESIGNING COMPOSABLE OPPORTUNISTIC APPLICATIONS 47

4.4 Summary

This chapter provided the first part of the evaluation of this work. It presented a
set of designs structured by applying the architecture discussed in Chapter 3 with
the purpose of demonstrating the feasibility of a system being created dynamically
out of autonomous components running multiple nodes that communicate leveraging
opportunistic, peer-wise contacts. Chapter 5 presents the second part of the evaluation,
which is the implementation of the framework and the polling application introduced in
chapters 3 and 4 respectively and lastly, chapter 6 demonstrates the viability of the system
presenting the results of the experiments run on real devices using the implementations
of chapter 5.

Chapter 5

Implementation

In Chapter 3, we presented the major contribution of this work which is an architecture
that enables us to build opportunistic applications and services out of self-contained
components utilizing an arbitrary number of consumer mobile devices. Subsequently,
in Chapter 4, we provided a set of designs based on this architecture to evaluate the
feasibility of this sort of composable systems. However, undoubtedly, it is necessary to
prove this concept by providing a real implementation and show how this architecture
works in practice. Therefore, we proceeded with the generation of a proof-of-concept by
implementing two versions of the framework, one in pure Java and one for the Android
platform as well as the CCes of the polling application scenario, the decomposition of
which is presented in section 4.1. In Chapter 6, we deploy those implementations on real
devices and run a set of experiments to study the functionalities of the framework and
the interactions of different CCes in detail.

5.1 Framework

In this section, we describe in detail the implementation of the discussed framework.
Initially, we provide the description of a framework library with abstract classes and
interfaces, which is used to implement concretely the local bus, remote bus, component
registry, component controller and the composable components subsystems, used for both
Android and pure Java framework versions. The design of the framework is depicted in
Figure 3.4 and the implementation presented in this section tends to map this design.
Afterwards, we proceed with the individual implementations for each version and in the
following section, we move with the description of each CC of the polling application.
While we are describing the implementations, we provide information about the external
libraries used as well as the design patterns that have been applied to create a clean and
modular codebase.

48

CHAPTER 5. IMPLEMENTATION 49

5.1.1 Common Library

The implementation of a common library is necessary to provide the generic structure of
the framework that is used to build the Android-specific and pure Java-based concrete
implementations. The library is written in Java and consists of the local bus interface and
its event messages, a generic composable component that has dependencies to both local
bus and remote bus, the generic component storage and concrete implementation which is
used in both framework versions, the generic service component model which corresponds
to the domain model in the Figure 3.5, the component registry implementation and the
framework-level logging subsystem. The Common library is provided as a JAR file.

5.1.1.1 Service Composable Component and Remote Bus

Figure 5.1 shows the class diagram of the AbstractComponent which maps to the generic
implementation of the service composable component, the ComponentRole enum class
that is used to define the role of the component, and the MessageField class which includes
a set of constants used as keys for the metadata fields to the instantiation event messages
(ConfigMessage). The important attributes of the AbstractComponent are the following:

• componentRole: the role of the AbstractComponent is defined using the
ComponentRole enum class shown in the figure. A component can be widget or
service and can be designated to run either on an infrastructure or mobile node.

• serviceTag : defines the service identifier.

• events : is a collection of events that the AbstractComponent needs to subscribe to.

• ComponentStorage: is the storage implementation of the service composable
component and is presented in section 5.1.1.4.

• ILocalBus : is the interface of the local bus implementation provided by the
framework common library and needed to implemented to provide a concrete local
bus implementation. It is presented in section 5.1.1.2.

• AppLib: is provided by the Scampi middleware and used to enable the remote bus
discussed in the previous chapters.

• IEventLogger : is part of the logging mechanism provided by the framework and used
in AbstractComponent to log the remote events published and received.

The Remote Bus implementation corresponds to the Scampi middleware which
provides services to publish and receive messages through the Application Library
(AppLib). AppLib exposes an API, which is used by the AbstractComponent, to
communicate with the Scampi middleware instance running on the device. In addition,
the AbstractComponent needs to get notified about the status of the connection
to the Scampi instance, to do so, we attach an AppLibLifecycleListener to the

CHAPTER 5. IMPLEMENTATION 50

Figure 5.1: UML class diagram of the abstract component in common library

AppLib. The interface defines methods invoked during transitions of the AppLib
lifecycle: onConnected, onDisconnected, onConnectFailed and onStopped. In case
the connection has been established successfully, the ComponentStorage instance of
the AbstractComponent asynchronously retrieves the unrouted messages in order to
be published. To receive messages, the AbstractComponent can subscribe() to a
service tag and a set of service events, if required. In order to do that, it must
implement the MessageReceivedCallback to be executed when AppLib receives a
new message from the local middleware instance, and subscribe to a service tag so
that the middleware instance starts delivering messages to the AbstractComponent
with the callback function messageReceived(SCAMPIMessage scampiMessage, String

service). In order to publish a message the AbstractComponent initially constructs
a message of type SCAMPIMessage provided by the AppLib and uses the publish()

method to post it to the local middleware. The necessary parameters to publish a remote
message are: (i) serviceTag, to define the service/application, (ii) content, the message
content, (iii) timestamp, that defines the timestamp the message is generated, (iv) dbid,
the event message database identifier that is supposed to be globally unique in the scope
of the service. The MessageField class is used to set the keys for those values and extract
them when a SCAMPIMessage is received.

The AbstractComponent provides the method preExecution() in order to offer
the ability to configure the component before its instantiation by the Component
Controller (see 5.1.2 and 5.1.3). In practice, when a CC is sent over the network in
a binary file, the message that includes it contains additional information on how to
configure it. This information is being exported using the constants of the MessageField
class, i.e., BINARY COMPONENT CLASS NAME FIELD, BINARY STORAGE CLASS NAME FIELD,
BINARY MODEL CLASS NAME FIELD, COMPONENT ROLE FIELD, COMPONENT SERVICE FIELD,
and COMPONENT SERVICE EVENTS FIELD. As soon as the Component Controller has

CHAPTER 5. IMPLEMENTATION 51

extracted those field values, it invokes the preExecution() of the AbstractComponent
and passes them as parameters. Then it instantiates it. In addition, the IComponent
interface is used for the class loading in the instantiation process. Regarding the latter,
we provide more details later in this chapter.

5.1.1.2 Local Bus

The local bus, as described in section 3.3.5, represents an abstraction layer between
the service and widget composable components. Therefore, it exposes an interface to
subscribe, unsubscribe and publish a message to the bus to enable the communication
models Local RPC and Local PubSub (see section 3.2.3) among the components running
locally. The interface is shown in Figure 5.2. Apart from the Java version, we also support
an Android version for the framework, thus this interface provides various methods to
support both. In order to accelerate the development of the framework, we use the Cooking
Fox EventBus Adapter [Cook] that wraps various EventBus implementations for Java and
Android using a uniform interface (com.cookingfox.eventbus.EventBus). The encapsulated
implementations are Google Gueva EventBus [Goog] for Java and GreenRobot EventBus
[Gree] for Android. The post() method is invoked in the Java version, while the
publishXprocess() is invoked in the Android version which is result of the combination
of the Android BroadcastReceiver to support inter-process communication on Android
devices and the GreenRobot EventBus responsible for publishing events within an Android
application. The BusMessage and ConfigMessage classes represent the messages posted

Figure 5.2: UML class diagram of the local bus in common library

to the local bus. The first one is used for publishing an event message and the second for
publishing the instantiation event messages, called ConfigMessage. The ConfigMessage
supports three different constructors to support different requirements; configuration for
remote mobile or infrastructure service, remote mobile widget, local instantiation (not
publishing to remote bus). We discuss this in detail later in this chapter.

CHAPTER 5. IMPLEMENTATION 52

5.1.1.3 Component Registry

The Component Registry subsystem is responsible for keeping track of the running CCes
within the node and provide this information to Component Controller subsystem or
other systems, which might be running on different nodes and wish to gather information
on the locally running services. To realize those functionalities, the Component Registry
is designed in this work as an independent module that uses the Local Bus and the
Remote Bus respectively, as described in 3.3.6. However, the focus of the implementation
is to achieve the decoupling of the widget and service components utilizing the buses
abstractions, thus, in this chapter, we present the Component Registry coupled with
the Component Controller, having a reference of the IComponentRegistry in the
ComponentController class. We provide more details on this in the sections 5.1.2 and
5.1.3. For the implementation of the databse used in the Component Registry module, we
used MapDB Data Engine [MapD], which provides Java Maps, Sets, Queues and other
collections backed by disk storage or off-heap-memory. Figure 5.3 presents the structure
of the component registry package. The IDisk interface facilitates the creation of the
necessary registry directories on the node’s disk and needs to be injected using the init()
method which is the initialization method of the ComponentRegistry that implements the
IComponentRegistry interface. There are two different implementations of the IDisk in
order to support both the pure Java and Android-based frameworks. Each implementation
is included in the corresponding framework version.

Figure 5.3: UML class diagram of the component registry in common library

The ComponentRegistry supports on-disk storage and indexing and the queries are
realized using a SubscriptionQuery class instance. The storage organization is as follows:

CHAPTER 5. IMPLEMENTATION 53

• BTreeMap<Long, Subscription> primary: is the main collection declared as a
BTreeMap, which stores a Subscription object under long identifier.

• NavigableSet<Object[]> tagIndex: defines a secondary index on the primary
collection based on the serviceTag attribute of the Subscription class.

• NavigableSet<Object[]> hostIndex: defines a secondary index on the primary
collection based on the host attribute of the Subscription class.

• NavigableSet<Object[]> stateIndex: defines a secondary index on the primary
collection based on the state attribute of the Subscription class.

• NavigableSet<Object[]> hostTagIndex: defines a secondary index on the
primary collection based on the host and serviceTag attributes of the Subscription
class.

• NavigableSet<Object[]> hostTagComponentStateIndex: defines a secondary
index on the primary collection based on the host, serviceTag, state and component
attributes of the Subscription class.

The important methods of IComponentRegistry are the following:

• lookup(String host, String tag, String componentName,

SubscriptionState state): when a CC is sent using the remote event
ConfigMessage, the Component Controller must decide whether this CC should
be installed on the node or not. Thus, it invokes the lookup method of the
IComponentRegistry and gets a Subscription object as response which includes the
info of the CC stored in the database, otherwise it returns null.

• subscribe(String host, String serviceTag, String componentName,

IComponent component): in case the lookup() returns null, the
ComponentController invokes the subscribe() method to register the CC by
providing information about the service tag, local host, the CC name and the
IComponent.

• unsubscribe(long id): it is used to unsubscribe a CC by passing the identifier of
the CC Subscription.

• lookup(String host, SubscriptionState state): it is used to lookup all CCes
on a specific node using the SubscriptionState: PENDING, SUBSCRIBED,
UNSUBSCRIBED.

5.1.1.4 Component Storage

The Component Storage subsystem is used by stateful service CCes to persist their
domain data. In order to build a cross-platform storage module, we used the MapDB
Java engine. The structure of this subsystem is illustrated by Figure 5.4 and corresponds

CHAPTER 5. IMPLEMENTATION 54

to the Strategy Design Pattern [Stra], which assists in interchanging between different
database implementations that might be developed for specific purposes for particular
service CCes. The IStorage interface represents the template code in the owner class
of the ComponentStorage. The Component Storage subsystem provides the storage
implementation represented by the ItemStorageImpl, however a different implementation
that realizes the IStorage interface can be used and injected using the setStorage() of
the ComponentStorage class.

Figure 5.4: UML class diagram of the component storage in common library

ItemStorageImpl class, as mentioned previously, uses the MapDB data engine to realize a
database for storing Item objects. Item class represents the wrapper class of the message
content published and received using the Remote Bus. Its attributes are: (i) unique, which
is a unique identifier of the message (ii) message, which is the content of the event message
in JSON format (iii) tag, that defines the service tag (iv) event, the event identifier that
is unique within the scope of the composable application/service, (v) routed, a flag that
shows whether the event has been published by the Scampi instance, (vi) timestamp,
the event creation timestamp which along with the unique field can ensure the unique
occurrence of the event message in the database and (vii) dbid, the database identifier
which is globally unique in the scope of the composable application/service. The same
dbid is used in every node for the specific event message in the particular application.
The Item class contains the method deserialize(), which uses the GsonUtil helper
class to convert a JSON string to a Java object. That allows the run-time loading of the
Java objects needed in the Component Model classes used by the concrete service CC
implementations.

The important methods of IStorage interface are the following:

• insertMessage(String tag, String event, String message, long

timestamp, long uniqueid, boolean routed, Long dbId): is used to insert a
message into the database along with all the necessary fields described above. It
returns the stored Item associated with a database id which is created inside the
method only in case the dbid parameter is null. As soon as an item is stored in the
database, the messageReceived() method of the IStorageItemInsertionListener
is being invoked in order to notify the observer classes about the newly stored
item. Those classes inherit from the Model class (see 5.1.1.5) that implements the
IStorageItemInsertionListener. The listener is set in the preExecute() method

CHAPTER 5. IMPLEMENTATION 55

of the IComponent, which is responsible for configuring the component and its
associated classes before it gets instantiated by the ComponentController.

• updateMessage(Item i): it allows the updating of a specific item stored in the
database by passing the modified item along with the dbid.

• getMessage(long timestamp, long uniqueid): getter that queries the database
using an ItemQuery object given the timestamp and uniqueid fields of the Item.

• getMessageById(long dbid): getter that queries the database using an ItemQuery
object given the dbid field of the Item.

• getUnroutedMessagesAsync(): getter to asynchronously retrieve the unrouted to
the Scampi instance messages. The class that has subscribed to the local event
ItemUnroutedRetrieved receives the even through the local bus.

5.1.1.5 Component Model

The Model class is inherited by the domain model classes implemented for the
service CCes. It provides all the required dependencies to publish model updates to
the local widget CCes through the Local Bus and update the model locally using
the ComponentStorage instance. Figure 5.5 presents the UML class diagram of the
Model class which contains the setters for the ComponentStorage and ILocalBus
objects and the onEvent(event: UnregisterEvent) event subscription method that
receives the UnregisterEvent local event, in case the client of the Model class requests
to unregister the Model from the local bus. In addition, Model implements the
IStorageItemInsertionListener which allows its child classes to get notified about
new Item insertions to the Component Storage. Logging is supported for the Component
Model.

Figure 5.5: UML class diagram of the component model in common library

CHAPTER 5. IMPLEMENTATION 56

5.1.2 Java-based Implementation

In this section, we present the implementation of the Java version of the
framework presented in Figure 3.4. The main classes of this implementation are the
ComponentController and the LocalBus. The DiskImpl and EventLogger classes are
presented to describe the creation of the framework directories and the logging mechanism
respectively. The remaining classes and interfaces are included in the Common library
described above. Figure 5.6 shows the UML class diagram of the Java-based framework
including the dependencies to the Common library. The ComponentController class

Figure 5.6: UML class diagram of the Java-based framework

implements the following interfaces: (i) Runnable, for allowing the class’s instances to
be run by a thread, (ii) MessageReceivedCallback, as mentioned in Section 5.1.1.1,
provides the callback functions to receive a message from the local Scampi instance,
which is used to publish and receive event messages of type ConfigMessage posted
to the service tag InstantiateCCRemote, this can be realized by invoking the method
subscribe(InstantiateCCRemote: String) of the AppLib in order to subscribe to the
particular service, and (iii) AppLibLifecycleListener, which provides the methods to
monitor the state of the connection to the local Scampi instance. The ReconnectTask
inner class is being executed by a thread as soon as the ComponentController is being
instantiated in order to attempt to connect to the local Scampi instance at a fixed interval
until the connection is established. In order to instantiate the ComponentController, the
client class must pass as parameters to the constructor objects of IDisk, ILocalBus and
IComponentRegistry. As mentioned earlier, in Chapter 3, we present the Component
Registry subsystem as a self-contained, independent module that communicates with

CHAPTER 5. IMPLEMENTATION 57

the framework elements through the Local Bus applying the publish-subscribe models
described in section 3.2.3. However, in the implementation we focus on how to achieve the
decoupling of the CCes, thus, the ComponentRegistry is part of the ComponentController
implementation and it is being referenced in the ComponentController class.

The ComponentController owns the attribute executorPool of type ThreadPoolExecutor,
with which it can instantiate the receiving CCes to the service tag InstantiateCCRemote.
More specifically, as soon as the remote event message of type ConfigMessage (see
section 5.2) is received, the ComponentController invokes the lookup() method
of the ComponentRegistry in order to check whether the received component
is already running. If not and in case the contained component is of type
service, i.e. componentRole = SERVICE INFRASTRUCTURE, the ComponentController
replicateComponentFromRemoteBus() locally by loading the class that implements the
IComponent interface and the complementary classes that are needed to instantiate the
component from the JAR file contained in the event message. The additional classes
are: (i) a class that inherits from the Model (see section 5.1.1.5) and (ii) a class the
implements the IStorage interface (see section 5.1.1.4). The class loading is provided by the
loadComponentFromStream() method. In addition, in the SCAMPIMessage that contains
the remote ConfigMessage event, further necessary information is included, i.e., a list of
strings that represent a collection of remote events that the component needs to subscribe
to, and which actually represents the dependencies to the remote CCes, the component
role, the component name and the IStorage, Model and IComponent classes names.
Subsequently, it invokes the preExecute() method of the IComponent and configures it
based on this configuration and thus, it injects the instances of the classes, the event list,
the component name and role as well as the path to the component disk partition, where
it can persist its own data and files. After the instantiation of the Runnable IComponent,
it is submitted to the thread pool held by the ComponentController instance and at
last a component subscription to the Component Registry subsystem is realized by the
subscribe() method of the ComponentRegistry being invoked.

Using an instance of the class LocalBus, which implements the ILocalBus interface, the
ComponentController can subscribe to the local event message of type ConfigMessage.
This is realized by the callback method onEvent(configMessage: ConfigMessage)

of the com.cookingfox.eventbus.adapter.GuavaEventBusAdapter, the occurrence of
which in the code defines the subscription to the event. As soon as a local ConfigMessage
event is being received, the ComponentController similarly to the reception of a
remote ConfigMessage event, checks whether the component is registered in the
Component Registry subsystem and if not, it instantiates it by invoking the method
replicateComponentFromLocalBus. The latter occurs only in case componentRole =

SERVICE INFRASTRUCTURE. Subsequently, it prepares a remote ConfigMessage event and
publishes it to the remote bus using the publishBinary() method that invokes the
publish() method of the AppLib.

Logging is supported in the ComponentController by using the logInfo() and logError

CHAPTER 5. IMPLEMENTATION 58

methods of the IEventLogger. The EventLogger class implementation is slightly different
from the Android one since an IDisk instance is required and that needs to be implemented
differently to support both versions.

5.1.3 Android-based Implementation

The architecture of the Android-based framework is similar to the Java version, as
illustrated by the UML class diagram in Figure 5.6. Thus, in this section, we focus on the
main differences between the two versions. The Android-based framework is developed as
an Android Service running in a separate process on Android-enabled devices that starts
at boot time. It comes as a deployment variant in APK (Android Application Package),
framework.apk, and a development variant framework.jar which provides an Android
Framework Library (FrameworkLib) to develop android opportunistic applications. The
FrameworkLib uses the Common Library, described earlier, to utilize the Remote Bus,
Component Registry and Abstract Composable Component subsystems. Regarding the
utilized external libraries, AndroidAnnotations open source framework [Andr] is used to
realize the Dependency Injection pattern in order to eliminate the boilerplate code and
speed development and GreenRobot EventBus for the implementation of the local bus.

The major implementation differences between the two framework versions are related
to the Component Controller and the Local Bus implementations which for Android
are provided by the FrameworkLib. The ComponentController class inherits from
the Android Service in order to provide a long-running thread running in the
background with own lifecycle decoupled from the Android Activities. Simiralry to the
Java-based ComponentController class, it implements the MessageReceivedCallback,

AppLibLifecycleListener interfaces to receive remote event messages from the local
Scampi instance and monitor the connection to it and holds a thread pool which
uses to instantiate the received CCes. The Android-based ComponentController handles
the instantiaton of service CCes that come as JAR files and widget CCes that
come as APK. Similarly to the Java-based ComponentController, as soon as the
callback method messageReceived() of the AppLib is invoked, a remote Config
message arrives and the ComponentController checks whether the componentRole

= SERVICE MOBILE or componentRole = WIDGET MOBILE, if so, it then invokes the
handleIncomingMessage() which checks whether the CC is already running using
the ComponentRegistry provided by the Common Library and if so, it replicates
it locally based on its role. In case it is a widget, it stores the APK on the
disk and then uses a new Intent(Action.View) for which it sets the targeted
APK file and its MIME type intent.setDataAndType(Uri.fromFile(apkFile),

"application/vnd.android.package-archive") and starts a new Android Activity
using the intent. This results in showing to the user a new activity that prompts them to
install the received widget. In case the type of the CC is service, the same implementation
with the Java-based version is supported.

CHAPTER 5. IMPLEMENTATION 59

The purpose of the Local Bus subsystem is to enable communication among widget and
service CCes. To achieve that, we need to provide a mechanism in the FrameworkLib
that allows widgets that are autonomous Android applications residing in their own
process to interact with Runnables executed by threads running in the same process
with the ComponentController Android Service. The inter-process communication (IPC)
is realized by using the GreenRobot EventBus to publish local event messages within the
same process and the XProcessSender and XProcessReceiver classes to allow passing
event messages among different processes on the device. The GreenRobot EventBus
works similarly to the Guava EventBus described earlier and enables to publish and
receive messages among all the classes that are contained in one APK. The method
publishXProcess() of the ILocalBus interface described in 5.1.1.2 is implemented by
the IPCBus class within the FrameworkLib and is responsible for sending the messages to
different processes. Using AndroidAnnotations, the field injection of the XProcessSender

and XProcessReceiver is done and they are used by the IPCBus to delegate the
IPC tasks. When the publishXProcess() is invoked the execution control goes to
the publish(message: XProcessMessage) method of XProcessSender class which by
invoking the context.sendStickyBroadcast(intent) method sends broadcast intent
objects, having firstly set the action string to the BroadcastReceiver project package.
The BroadcastReceiver in this case is the XProcessReceiver class which inherits from
the Android BroadcastReceiver. As soon as the callback method onReceive() of the
XProcessReceiver is invoked, the deserialization of the event message is realized and
using the GreenRobot EventBus, the event message is being forwarded to the interested
subscribers within the same process.

At last, the FrameworkLib provides an abstract Android Activity that should be inherited
by the Activities of the widget implementations in order to allow them to register to the
IPCBus. Using AndroidAnnotations field injection, the IPCBus is being injected in the
BaseActivity class.

5.2 Polling Application

In this section, we describe the implementation of the polling application the design of
which is provided in section 4.1. In the following subsections, we present in detail the
components that compose the polling application, i.e., the Poll Creator Widget (PCW),
the Poll Creator Service (a.k.a. New Poll Service, NPS), the Poll Participant Widget
(PPW), the Poll Participant Service (PPS), the Poll Management Service (PMS) and the
Poll Monitor Widget (a.k.a. Poll Results Widget, PRW).

Before we proceed with the description of each CC, it is important to gain an
understanding of the set of remote and local events used in this application for the
interaction of the components. Figures 5.7 and 5.8 present the UML class diagrams of the
classes that represent the remote and local events respectively. These objects are being

CHAPTER 5. IMPLEMENTATION 60

Figure 5.7: UML class diagram of the remote events used in the polling application

converted to JSON strings to be transfered and at the reception end are being converted
back to Java classes. Some of those classes encapsulate business logic that is being executed
by the responsible CC. We provide more details in the following subsections.

Figure 5.8: UML class diagram of the local events used in the polling application

It is important to mention that all service CCes subscribe to the local event
ItemUnroutedRetrived in order to get notified about messages that have not been
published by the Scampi instance and thus, an additional attempt is required and realized
as soon as the event has been received.

5.2.1 Poll Creator Widget

The PCW is responsible for providing a UI to the user to create and publish
a new poll. In addition, it is in charge of publishing the application binaries to
dynamically instantiate it in the network. The PCW comes in a deployment variant
pollCreatorWidget.apk and has dependency to the FrameworkLib. It consists of
one Android Activity called CreatePollActivity that inherits from the FrameworkLib
BaseActivity and the view resources. The CreatePollActivity acts as a view controller
that handles the user input by validating the poll form and posting the new poll to
the local bus. AndroidAnnotations is used to inject the views at instantiation time. As
soon as the activity is started the registration to the bus is realized by invoking the
ipcBus.registerIPCBus(this) method of the BaseActivity. When user inputs the poll
question and options and they tap on the publish button, the validation of the input is
being invoked. if the input is correct, the creation of NewPoll object is done with the
following parameters: long createdAt, String question, List<String> answers,

long startDate, long duration. Subsequently, the NewPoll object is converted to json
string using the GsonUtil helper class and is passed as parameter to the constructor of the

CHAPTER 5. IMPLEMENTATION 61

BusMessage class to create a BusMessage object required to publish to the IPCBus. The
additional required parameters for the creation of the BusMessage object are: the service
tag, the event class name, the event identifier and the BusMessageType that should be
of type EVENT NEW MESSAGE. At last, the invocation of the ipcBus.publishXProcess()

method is done and message is published to the local bus and the form views are being
reseted.

With respect the ConfigMessage events published by the CreatePollActivity to
local bus in order to achieve the application instantiation in the network, the
following methods are being invoked at the start time of the CreatePollActivity;
(i) initAdminPollMobileServiceComp() which loads the NPS binary file from the
resources of the widget and adds the necessary parameters required for the configuration
of the CC e.g. componentName, componentClassName, componentStorageName,
events list. (ii) initInfrastructureServiceComp() which loads the PMS binary
file and adds the necessary parameters required for the configuration of the CC,
(iii) initParticipantPollServiceComp() which loads the PPS binary file and
adds the necessary parameters required for the configuration of the CC and (iv)
initParticipantPollWidgetComp() which loads the PPW binary file and adds the
necessary parameters required for its configuration. After defining the required parameters
in those methods, a ConfigMessage is prepared by the publishConfigMessage() of
BaseActivity which is then published to the local bus. In fact, the classes for all the
service CCes that are needed to be published to the network are included in one JAR file
called pollService.jar and is used instead of having a different binary for each component.
However, this is implemented to speed up development and the intended way to achieve
the instantiation is mentioned previously.

5.2.2 Poll Creator Service

The Poll Creator Service or New Poll Service (NPS) as presented in section 4.1 is
responsible for receiving the local NewPoll events and transform them to remote
events which are then published to the remote bus. The NPS consists of three classes
presented in Figure 5.9: (i) NewPollModel, which inherits from the Model class of the
Common Library (see section 5.1.1.5) in order to get the dependency to the Local
Bus subsystem, (ii) NewPollComponent, which inherits from the AbstractComponent
of Common Library to get the dependencies to the Local Bus and Remote Bus (see
section 5.1.1.1), and (iii) NewPollStorage, inherits from ItemStorageImpl of Common
Library and is used for database management based on the Item objects as described
in section 5.1.1.4. NewPollComponent subscribes to the local event NewPoll using the
method onEvent(newPoll: NewPoll) and as soon as it receives an event message
it checks if the particular message has been published again and if not, it proceeds
with storing it locally using a ComponentStorage object that has been configured
to be of type NewPollStorage in the instantiation of the NewPollComponent by the

CHAPTER 5. IMPLEMENTATION 62

Figure 5.9: UML class diagram of New Poll Service on the PollCreator node used in the polling
application

ComponentController and subsequently, it publishes it to the locally running Scampi
instance. NewPollModel subscribes to the local event NewPollEntry which is used for
confirming the storing and publishing of the poll.

5.2.3 Poll Participant Widget

The PPW corresponds to the widgets running on the PollParticipant node in the design
provided in section 4.1. For the implementation, we proceeded with realizing the Poll
Answer Widget (PAW) and Poll Results Widget (PRW) as different Android Activities
instead of different applications that come in separate APKs to speed up development
and evaluation, however the separation of those is feasible. The PAW maps to the
PublishedPollDetailActivity which provides a detailed view of the poll and allows user
to vote for the preferred answer. The PRW maps to the PublishedPollListActivity

which provides a list of published polls and as soon as the user taps on one of the
list items, they get redirected to the PublishedPollDetailActivity which shows the
poll results. The user interface of the implemented activities are presented in section
5.2.7. AndroidAnnotations framework is used to develop a clear codebase by separating
the handling of the views realized by the PollDetailLayout and PollListLayout

respectively and the local event message handling realized by the activities themselves.
Both activities inherit from the BaseActivity of FrameworkLib.

PublishedPollListActivity subscribes to the local event PublishedPoll using the
onEventMainThread(publishedPoll: PublishedPoll) method and as soon as it
receives a new published poll it adds it to the list. To allow user to respond
to a poll, interactions between the PublishedPollDetailActivity and the Poll
Participant Service (PPS) described in the following section are required. As soon as
PublishedPollDetailActivity is started, a query event message PollAnswerQuery to
the PPS is sent through the local bus by invoking the ipcBus.publishXProcess()

method in order to check whether the user has answered the question. The PPS sends back
the response event message PollAnswerQueryResponse and in case the user response has
not been found, the form is enabled and allows user to vote. In case the user has responded

CHAPTER 5. IMPLEMENTATION 63

to the poll, a second query local event PollResultQuery is sent to the retrieve the poll
results. The activity subscribes to the event message PollResultQueryResponse and as
soon as it receives it, it displays the results. The classes of those events are presented in
Figure 5.8.

5.2.4 Poll Participant Service

The Poll Participant Service (PPS) as presented in section 4.1 is responsible for receiving
the remote PublishedPoll and PollResult events and transform them to local events which
are then published to the local bus. In addition, it subscribes to the local event PollAnswer
in order to receive the user’s response to the poll by the PPW and publish it to the
remote bus as well as to the local events PollAnswerQuery and PollResultQuery for
allowing PPW to query the local storage as described in the previous section. The PPS
consists of three classes presented in Figure 5.10: (i) PollParticipantModel, which inherits
from the Model class of the Common Library (see section 5.1.1.5) in order to get the
dependency to the Local Bus subsystem and realize the above-mentioned interactions,
(ii) PollParticipantComponent, which inherits from the AbstractComponent of Common
Library to get the dependencies to the Local Bus and Remote Bus (see section 5.1.1.1),
and (iii) PollParticipantStorage, inherits from ItemStorageImpl of Common Library and
is used for database management based on the Item objects as described in section 5.1.1.4.

Figure 5.10: UML class diagram of Poll Participant Service on the PollParticipant node used in the
polling application

5.2.5 Poll Management Service

The Poll Management Service (PMS) as presented in section 4.1 is responsible for
receiving the remote NewPoll and PollAnswer events and process them in order to
execute its logic for publishing a new poll and the updates on the poll results to
remote and local CCes. The PMS consists of three classes presented in Figure 5.11: (i)

CHAPTER 5. IMPLEMENTATION 64

PollManagementModel, which inherits from the Model class of the Common Library (see
section 5.1.1.5) in order to get the dependency to the Local Bus subsystem and trigger
the above-mentioned interactions, (ii) PollManagementComponent, which inherits from
the AbstractComponent of Common Library to get the dependencies to the Local Bus
and Remote Bus (see section 5.1.1.1) and realizes the above-mentioned logic and network
interactions, and (iii) PollManagementStorage, inherits from ItemStorageImpl of Common
Library and is used for database management based on the Item objects as described
in section 5.1.1.4. As soon as the PollManagementModel gets notified that a message

Figure 5.11: UML class diagram of Poll Management Service on the PollManager node used in the
polling application

has been received by the invocation of the callback method messageReceived(item:

Item) of the ComponentStorage.IStorageItemInsertionListener (see section 5.1.1.4), it
checks the type of the event and handles it properly. In case, the item is of event type
NewPoll, the schedulePoll() method is being invoked and creates a PollPublished object
which contains the information included in NewPoll and converts it to Item object by
invoking the create(serviceTag, componentStorage) method of the PollPublished
class and publishes it to the local bus by invoking the publishXProcess(). The
PollManagementComponent subscribes to the local event messages Item and thus it
receives the local event published in the schedulePoll() method and publishes it to
the remote bus. In case, the item delivered to the PollManagementModel is of type
PollAnswer, the handlePollAnswer() is being invoked which encapsulates the logic
for updating the results of the particular poll. At last, in case the item is of type
PollPublished or PollResult, the PollManagementModel prepares the respective local
events and publishes them to the local bus so that the interested widgets running on
the node can receive the messages.

5.2.6 Poll Results Widget

The Poll Results Widget maps to the widget running on the PollManager node as
described in section 4.1. It is a widget that provides a view suitable for screens of high
resolutions. It is developed as a JavaFX application and the views are implemented

CHAPTER 5. IMPLEMENTATION 65

in HTML and CSS. The architecture of this widget implementation is presented in
Figure 5.12 which shows the UML class diagram of the widget. The Observer pattern is

Figure 5.12: UML class diagram of Poll Results Widget on PollManager node used in the polling
application

realized in this design in a simplified way. The observer class LocalPollListScreen, which is
responsible for updating the javafx.scene.web.WebView with the real-time results of all
the local polls, implements the PollViewController.IPollViewControllerListener

and subscribes to the local event PollResult with the method onEvent(pollResult:

PollResult). As soon as it receives a new event, it invokes firstly the
pollViewController.update(pollResult) method in order to update the cache
with the new results and the responsive HTML views which are both combined
using the PollViewModel class, then it calls the pollViewController.sortByDate()

to sort the cached PollViewModel objects by date and finally it invokes the
pollViewController.refreshPage() which concatenates all the generated HTML views
on which the model is attached and notifies the Webview for the updated HTML by
invoking pollViewControllerListener.notifyWebEngine(concatenatedHtml).

5.2.7 User Interface

The user interface of the Android and JavaFX widget components is presented in Figure
5.13 and Figure 5.14 respectively. The first screenshot presented in Figure 5.13 corresponds
to PCW, which provides a form view to create and publish a poll with multiple options.
The remaining screenshots correspond to PPW and illustrate a list view displaying a
collection of published polls showing the question, the author and the timestamp of the
poll. As soon as the user selects the poll from the list can view either the result of the poll,
in case they have already responded, or the poll responding form (third screenshot). When
the user provides an answer to the poll, real time statistics based on the poll results are
shown (forth screenshot). At last, Figure 5.14 illustrates the user interface of PRW, which

CHAPTER 5. IMPLEMENTATION 66

Figure 5.13: Mobile user interface of polling application

shows in real time the results of all published polls, including additional information, i.e.,
author, total votes, timestamp, in a view designated for screens of high resolution.

Figure 5.14: User interface of Poll Results Widget on PollManager node

5.3 Summary

In this chapter, we described the implementation of the framework presented in Chapter
3 and the polling application design provided in Chapter 4. We provide a framework
for both Java and Android and a polling application that can run on Android-powered
devices. Initially, we described the Java Common Library which realizes the Component

CHAPTER 5. IMPLEMENTATION 67

Registry subsystem, the Remote Bus subsystem, the Component Storage subsystem and
provides the necessary abstract classes and interfaces to be used by the concrete framework
implementations, i.e., Android-based and Java-based versions. Subsequently, we described
those two framework implementations in detail and proceeded with the description of each
CC participating in the polling application as well as the remote and local events used
as the communication protocol among the CCes. At last, we provided screenshots of the
user interfaces developed for the polling application. In the following chapter, we utilize
those implementations to experiment with on Android-powered devices and examine the
interactions among the participating CCes.

Chapter 6

Implementation Evaluation

This section presents the evaluation of an experimental deployment of the framework
implementation and the polling application, as described in Chapter 5. It represents the
last part of the evaluation of the discussed architecture and aims at establishing the
viability of the architecture in practice. In order to achieve this, we demonstrate important
interactions and functionalities of the system by running a set of experiments on real
devices where the implementations described above are being deployed. The focus is not
on evaluating the performance of the implemented system, but rather on validating the
framework and proving that the implemented functionalities work as designed.

We begin with presenting the testbed devices and general assumptions and setup that hold
for all described experiments. Subsequently, we proceed with describing each experiment
individually and providing the respective results analysis. The experiments fall into two
categories: (i) those being carried out in a static, minimal topology where the CCes and
devices act as intended without failures and network topology changes and (ii) those
demonstrating dynamic behavior, proving the capability of the system to maintain its
state while long delays and network changes take place.

6.1 Evaluation Testbed and Data Collection

The goal of the experiments is to validate the implementation and protocol design, not
study the performance of the system in production deployments. To this end, we run a set
of experiments by deploying real implementations on real devices. The evaluation testbed,
as presented in Table 6.1, consists of four consumer Android smartphones that will act as
clients and two Windows laptops that will act as Liberouters.

We consider the following assumptions during the experiments: (i) SCAMPI must be
running on all testbed devices during the experiment sessions. The LibeRouter-1.1.1.apk
is used for the Android-enabled devices and the SCAMPI.jar for the Windows laptop. (ii)

68

CHAPTER 6. IMPLEMENTATION EVALUATION 69

Table 6.1: Evaluation Testbed

Samsung Galaxy Note II N7100 Android 4.4.2
Quad-core 1.6 GHz Cortex-A9
2 GB RAM
Wi-Fi 802.11 a/b/g/n

Samsung Galaxy S Mini 5 Android 4.4.2
Quad-core 1.4 GHz Cortex-A7
1.5 GB RAM
Wi-Fi 802.11 a/b/g/n

Sony Xperia M2 Android 4.4.4
Quad-core 1.2 GHz Qualcomm Snapdragon
1 GB RAM
Wi-Fi 802.11 a/b/g/n

Fujitsu Lifebook UH572 Ultrabook Windows 8.1
Java 1.8.0 66

Intel Core i5 3317U Prozessor 2x 1,70 GHz
8 GB RAM

The framework software enables the interactions among the composable components of
the system and the instatiation of the services and must be pre-installed and trunning on
all testbed devices. The microframe.apk is used for the Android-enabled devices and the
microframe.jar for the Windows laptops. (iii) The PollCreatorWidget.apk is pre-installed
on the nodes of type PollCreator, before each experiment. PollCreatorWidget is designed
as a widget CC and is responsible for publishing the remote instantiation event messages
that include the CC binaries and metadata and creating a poll.

The experiments are automated using background tasks that run on the mobile devices
and generate NewPoll and PollAnswer local events which in turn trigger the execution of
the examined interactions. Furthermore, an Android Service is developed for automatically
switching on and off the Wi-Fi on the Android-enabled devices in the temporary node
absence test case presented in section 6.3.2.1. A logging mechanism is developed and used
to record the local and remote events that occur during the CCes interactions. The logging
provide the following information for each event:

• eventAction: it defines the action of the event, i.e., publish, subscribe, save.

• eventType: it defines whether the event is local or remote.

• eventTag: the tag of the event, e.g., NewPoll.

• serviceTag: the tag of the service, e.g., Polls.

• eventContent: the content of the event in JSON format.

• eventID: the event identifier.

CHAPTER 6. IMPLEMENTATION EVALUATION 70

• eventCreatedAt: the timestamp that the event is created.

• componentName: the name of the CC.

• componentRole: it defines the role of the CC, i.e., widget or service.

• componentChild: it represents the class of the CC binary code where the logger
recorded the event.

• IP: the IP address of the device, on which the event takes place.

• MAC: the MAC address of the device, on which the event takes place.

6.2 Static Topology Test Cases

This section presents the results of the experiments that take place in a static topology,
where only the participating devices are connected to a stable access point during the
entire experiment session. The selected scenarios to be run on top of this topology are
(i) the service instantiation phase, where we examine how an application consisted of a
set of autonomous components can be instantiated in the network, originating from only
one device. (ii) The second scenario refers to the functional phase of the running polling
application where we examine the interactions and functionalities of the system.

6.2.1 Experiments Setup

In this section we present two test cases taking place in a static topology that demonstrate
the basic scenarios of the application instantiation and operation, i.e., instantiation phase
and functional phase. Figure 4.1 illustrates the interactions among the specified nodes
used in the design of the experiments in this chapter.

In instantiation phase, as shown in Table 6.2, in the static topology experiments, Client A
(PollCreator) acts as the poll application initiator, which publishes the required binaries
(PollParticipantWidget.apk, PollParticipantService.jar and PollManagementService.jar)
in the network, as well as the poll creator, which is responsible for creating and publishing
new polls. Client B (PollParticipant) acts as the poll participant, which at a certain
point receives the PollParticipantWidget.apk and the PollParticipantService.jar files and
handles them in order to load the proper views and classes needed to instantiate the CCes
within the node instance. At last, the Liberouter, which acts as the infrastructure node
(PollManager), able to persist and process large sets of data for a long period of time,
receives the PollManagementService.jar and loads the classes required for the instantiation
of the service CC.

After the completion of the application creation on multiple nodes in the network, the
functional phase takes place, where interactions occur in order to realize all the features

CHAPTER 6. IMPLEMENTATION EVALUATION 71

described in the polling application scenario in section 4.1. More specifically, an Android
background task, called publishDummyPoll, is implemented and triggered by the PCW
as soon as it is started. This task is responsible for creating a new poll and publishing it
to the Local Bus within a NewPoll local event message every 30 seconds. The initiation
of this task denotes the beginning of the functional phase experiment. The creation and
publishing of all the remote and local events described in section 4.1 is automated for the
evaluation purposes.

The interactions of the participating CCes are described in section 4.1. In the following
sections, we present in detail the evaluation of the aforementioned functionalities and
interactions.

Table 6.2: Experiment Testbed - Static Topology

Node
Name

Node Role Software Test Device

Client A PollCreator PollCreatorWidget.apk
(PCW.apk, 5.6 MB)
PollCreatorService.jar
(PCS.jar, 24 KB)

Samsung Galaxy
Note II N7100

Client B PollParticipant PollParticipantWidget.apk
(PPW.apk, 5.4 MB)
PollParticipantService.jar
(PPS.jar, 24 KB)
framework.jar
(pre-deployed, 5.69 MB)

Sony Xperia M2

Liberouter PollManager PollManagementService.jar
(PMS.jar, 24 KB)
PollResultsWidget.jar
(PRW.jar, 24 KB)
framework.jar
(pre-deployed, 4.21 MB)

Fujitsu
Lifebook UH572
Ultrabook

6.2.2 Results and Analysis

In this section, we provide the results of the service instantiation phase and functional
phase experiments carried out in the above-mentioned setting. Furthermore we analyze
the results proving the viability and functionalities of the opportunistic polling application
described in section 4.1.

CHAPTER 6. IMPLEMENTATION EVALUATION 72

6.2.2.1 Service Instantiation Phase

In this experiment, we measure the dynamic instantiation of the polling application on
multiple node instances. As described in section 4.1, the polling application consists of
several CCes that run on different nodes and together compose the final application.
We prove the viability of the instantiation of the discussed CCes passed as executable
files in the network from one of the nodes. Figure 6.1 illustrates the ConfigMessage and
Instantiate remote event messages that lead to the instantiation and configuration of
the resulting service and the corresponding mean delays. More specifically, at time t0,

Table 6.3: The mean delays in milliseconds recorded for the instantiation remote events and the
confidence interval on each mean

∆̄t2 = t̄2 − t̄0 ∆̄t4 = t̄4 − t̄1 ∆̄t5 = t̄5 − t̄3

Mean Delay 14575.9 ms 11203.5 ms 54053.7 ms

CI 95% [7976.36, 21175.44] [6210.43, 16196.57] [37458.58, 70648.82]

95th Percentile 34202.2 ms 25508.9 92320.2 ms

Binary Size 24 KB 24 KB 5.4 MB

Client A (PollCreator) publishes the event ConfigMessage (1: publish ConfigMessage
with parameters: PMS.jar, config) which includes the PollManagementService.jar and
configuration metadata for proper instantiation by the receiving node. The configuration
information includes the CC role which is SERVICE INFRASTRUCTURE and thus,
it is handled and instantiated by the Liberouter node (1.1 Instantiate PMS.jar). In the
meantime, at time t1, Client A (PollCreator) publishes an other ConfigMessage (2: publish
ConfigMessage with parameters: PPS.jar, config) with the PollParticipantService.jar the
role of which is SERVICE MOBILE and handled and instantiated by Client B (2.1
Instantiate PPS.jar) which acts as the PollParticipant node, as described in section 4.1. At
last, Client A, at time t3 publishes the last ConfigMessage for the PollParticipantWidget
CC (3: publish ConfigMessage with parameters: PPW.jar, config). The role of this CC is
WIDGET MOBILE and is handled and instantiated by nodes of type PollParticipant. In
this experiment the PollParticipant node is Client B. Each of the timestamps t2, t4 and t5
denote the completion of the CC instantiation on the corresponding nodes. In Table 6.3,
we present the mean delays recorded during the instantiation phase as shown in Figure
6.1. For the completion of the steps 1 and 1.1 that lead to the instantiation of the PMS
CC of size 24 KB in the Liberouter node, the mean delay ∆̄t2 equals to 14575.9 ms with
confidence interval in 95% [7976.36, 21175.44]. For the instantiation of PPS of size 24
KB on Client B, the mean delay ∆̄t4 equals to 11203.5 ms with confidence interval in
95% [6210.43, 16196.57]. At last, for the steps 3 and 3.1 that refer to the transmission
and instantiation of PPW of size 5.4 MB, for which user permission required to be given
manually, the mean delay ∆̄t5 is 54053.7 ms with confidence interval in 95% [37458.58,

CHAPTER 6. IMPLEMENTATION EVALUATION 73

Figure 6.1: UML sequence diagram of instantiation phase for remote events ConfigMessage and the
respective delays.

70648.82]. ∆̄t5 is greater than the other two mean delays because the size of the binary
code transfered and installed is bigger and the installation process includes a step where
human input is required in order to provide installation permission.

6.2.2.2 Functional Phase

With this experiment we want to validate the viability of the framework by studying the
interactions among the composable components of a polling opportunistic application.
The interaction model consists of local and remote event messages. In the examined
polling application, the local messages correspond to the communication protocol that
enables composable components residing on the same machine to interact with each other
via the Local Bus. The remote events are published to the Remote Bus, an abstraction
that encapsulates the opportunistic networking infrastructure, and consumed by remote
composable components. The aim of this experiment is to present all the important
interactions after the instantiation of the application. We focus first on the remote events
and then we go deeper and evaluate the local events and the internal execution flows.

Figure 6.2 illustrates all the remote events among Client A, Client B and Liberouter nodes
for publishing a poll, responding to it and calculating, publishing, displaying poll results
as a result of a new poll answer issued by the poll participant. The Table 6.4 presents

CHAPTER 6. IMPLEMENTATION EVALUATION 74

Figure 6.2: UML sequence diagram of functional phase for remote events and the respective delays.

the means of the events processing and transmission delays that prove the realization of
those interactions.

More specifically, Client A publishes the event message NewPoll at time t0 which contains
the poll question and answer options of the new poll, a globally unique user identifier and
the required metadata (1. publish NewPoll). As soon as the event arrives on Liberouter,
it processes the new poll message by extracting the new poll information, checking if
the poll already exists in the database and if not, it stores it locally and creates a new
object called PublishedPoll that contains the information of the new poll as well as a
globally unique poll identifier (1.1: process NewPoll). Subsequently, it publishes the event
message PollPublished (1.2: publish PollPublished). At time t1 the PollPublished arrives
at Client B, the participant processes the event and automatically selects the first poll
answer option (1.3: create PollAnswer, more details are presented later in this section). At
time t2, the participant publishes the PollAnswer event to the Remote Bus (1.4: publish
PollAnswer). As soon as, it arrives at Liberouter, the PollService composable component
that is running on that node, updates the poll results and creates a new PollResult event
(1.5: update results) that publishes to the Remote Bus provided by the framework (1.6:
publish PollResult). At t3, Client B receives the PollResult. As shown in Table 6.4,the
mean delay ∆̄t1 equals to 1498.06 ms (with confidence interval [1485.24,1510.87] and 95th
percentile equals to 1559 ms) and includes the steps 1 and 1.2 that correspond to the
transmission times from Client A to Liberouter and Liberouter to Client B respectively
as well as the step 1.1 that corresponds to the processing time of NewPoll on Liberouter.
It is logical that the ∆̄t2, which is equal to 777.96 ms (with confidence interval [745.15,

CHAPTER 6. IMPLEMENTATION EVALUATION 75

810.76] and 95th percentile equals to 948.5 ms), is smaller than ∆̄t1 since it only includes
local processing delay. Concerning the ∆̄t3, it equals to 610.55 ms (with confidence
interval [598.58, 622.52] and 95th percentile equals to 732 ms) and is smaller than the
previously-mentioned, it includes the steps 1.4 and 1.6 that correspond to transmission
delays and 1.5 that is refers to processing tasks on the Liberouter. A possible reason that
∆̄t2 is greater than ∆̄t3, even though ∆̄t2 only includes local processing, is the realization
of the Local RPC (see section 3.2.3) within Client B node, which is a resource-constraint
device, during the step 1.3.

Table 6.4: The mean delays in milliseconds recorded in the functional phase for remote events and the
confidence interval on each mean

∆̄t1 = t̄1 − t̄0 ∆̄t2 = t̄2 − t̄1 ∆̄t3 = t̄3 − t̄2

Mean Delay 1498.06 ms 777.96 ms 610.55 ms

CI 95% (ms) [1485.24, 1510.87] [745.15, 810.76] [598.58, 622.52]

95th Percentile 1559 ms 948.5 ms 732 ms

Figure 6.3 presents a sequence diagram for the local events taking place during the step 1.3
of the sequence diagram 6.2 on Client B. This diagram shows that the mean time required
from the time point that Client B has received the remote event PollPublished message
till the time Client B publishes the remote event message PollAnswer that corresponds to
the sum of the processing delays of the interactions of the local composable components
on Client B. More specifically, we analyze the step 1.3 presented in Figure 6.2. The overall
time needed for the local interactions in Figure 6.3 equals to 777.96 ms, which approaches
∆̄t2 mean delay that corresponds to the aforementioned step 1.3.

As soon as the remote event PollPublished is received on Client B, the
PollParticipantService composable component processes the remote message and stores
the object PollPublished (1.3.1: process PollPublished) and publishes it to the Local Bus
(1.3.2: publish PollPublished), so that the widgets that have subscribed to this event
can receive the notification. The Local Bus notifies the subscriber PollParticipantWidget
(1.3.3: notify PollPublished), which processes the local event and responds to the poll
(1.3.4: respond to PollPublished). Subsequently, it publishes the PollAnswer to Local
Bus that notifies the subscriber PollParticipantService (1.3.5 and 1.3.6 respectively).
PollParticipantService component processes the event and prepares to publish it to
Remote Bus (1.3.7 and 1.4 respectively).

As shown in Table 6.5,the mean delay ∆̄t′1 equals to 78.85 ms (with confidence interval
[71.82,85.89] and 95th percentile equals to 126.75 ms) and includes the steps 1.3.1, 1.3.2
and 1.3.3 that correspond to the processing time of the remote event PollPublished
received on Client B from the Liberouter and the time required for notifying the widget
components subscribers running on Client B node via the Local Bus. The mean delay
∆̄t′′1, recorded for the step 1.3.4, equals to 542.27 ms (with confidence interval [513.51,

CHAPTER 6. IMPLEMENTATION EVALUATION 76

Figure 6.3: UML sequence diagram of functional phase for local events on Client B and the respective
delays.

571.03] and 95th percentile equals to 723.85 ms) and is the greatest local delay recorded
on Client B. The reason is the realization of the local RPC model, i.e., in step 1.3.4,
the PollParticipantWidget queries the PollParticipantService in order to check whether
the particular user has already responded to the poll and whether there are available
poll results to be shown. We implemented this functionality to show that the framework
enables the client pull communication model on top of opportunistic networks. The mean
delay ∆̄t′′′1 , which equals to 72.15 ms (with confidence interval [60.15, 84.14] and 95th
percentile equals to 169.35 ms), includes the time required to publish the local event
PollAnswer via the Local Bus (1.3.5 and 1.3.6). At last, the mean delay ¯∆t′′′′1 , which equals
to 81.17 ms (with confidence interval [75.54, 86.80] and 95th percentile equals to 113.75
ms), corresponds to the processing of the local event PollAnswer on PollParticipantService
that processes and encapsulates the local event into the remote event by attaching a
globally unique identifier and then, it publishes it to the Remote Bus (1.3.7 and 1.4
respectively).

Considering the above, we conclude that an application or a service designed by applying
the discussed architecture on top of challenged networks is able to show behavior similar
to centralized infrastructure networks. We observe low delays which lead to real-time
messaging experience that is taking place in standard Internet-based mobile applications
as well as we prove that an application composed of self-contained components, with the

CHAPTER 6. IMPLEMENTATION EVALUATION 77

Table 6.5: The mean delays in milliseconds recorded in the functional phase for local events and the
confidence interval on each mean

∆̄t′1 = t̄′1 − t̄1 ∆̄t′′1 = t̄′′1 − t̄′1 ∆̄t′′′1 = t̄′′′1 − t̄′′1
¯∆t′′′′1 = t̄′′′′1 − t̄′′′1

Mean Delay 78.85 ms 542.27 ms 72.15 ms 81.17 ms

CI 95% (ms) [71.82, 85.89] [513.51, 571.03] [60.15, 84.14] [75.54, 86.80]

95th Percentile 126.75 ms 723.85 ms 169.35 ms 113.75 ms

discussed structure can provide sufficient orchestration for its proper operation needed
in standard application without the need of a centralized coordinator, i.e., a centralized
entity commonly used in Internet-based systems, e.g., Kubernetes Master.

6.3 Dynamic Behavior Test Cases

In this section, we present two experiments that demonstrate dynamic behavior within
the polling application system. The goal is to show that the state can be maintained
after long delays and system failures. In the first experiment, the PollParticipant node
disconnects shortly from the network while the application is running and when it returns,
it reconstructs the state of the old and current polls. In the second experiment, we evaluate
the performance of the framework itself by interchanging between two framework instances
at a fixed time interval in order to show that a temporary framework failure does not affect
the reliability of the system. It affects the availability since part of the service is down,
however the state gets reconstructed as soon as the whole system is up and running again.

6.3.1 Experiments Setup

Table 6.6 presents the evaluation testbed for the dynamic test cases. As previously in the
static topology setup, Client A acts as a PollCreator node and Client B as PollParticipant
node. The differences in the setup of this set of experiments compared to the static
topology are: (i) in both dynamic cases, i.e., temporary node absence and switching
framework instance, the PollParticipant node is a more powerful smartphone (Samsung
Note II instead of Sony Xperia M2, see Table 6.1) and (ii) in the second test case two
Framework instances (F and F’) are created on the laptop and used to evaluate the
framework performance. Similarly to the static topology setup, framework is installed
and running on all devices apart from the PollCreator device where it is included in the
PCW.apk and started as soon as the widget is being initialized.

In the temporary node absence test case, the PollCreator disseminates the ConfigMessage
events which include the binary code for each application CC as described in section

CHAPTER 6. IMPLEMENTATION EVALUATION 78

6.2.2.1. As soon as the PPW CC is instantiated on the PollParticipant node, an Android
Service, which is implemented within PPW, is triggered and starts running in the
background with the task of switching on and off the Wi-Fi every, forcing the framework
and SCAMPI instances running on the node get disconnected from the network and
reconnect again. In the switching framework instance test case, after the application
instantiation, given the framework instance F running on the PollManager node, the
automated poll posting task, publishDummyPoll, on the PollCreator starts publishing a
new poll every 30 seconds and every 2 minutes the F and F’ instances interchange. The
interactions of the participating CCes are described in section 4.1.

Table 6.6: Experiment Testbed - Dynamic behavior

Node Name Node Role Software Test Device

Client A PollCreator PollCreatorWidget.apk
(pre-deployed, PCW.apk, 5.6 MB)
PollCreatorService.jar
(PCS.jar, 24 KB)

Samsung Galaxy
S Mini 5

Client B PollParticipant PollParticipantWidget.apk
(PPW.apk, 5.4 MB)
PollParticipantService.jar
(PPS.jar, 24 KB)
framework.apk
(pre-deployed, 5.69 MB)

Samsung Galaxy
Note II N7100

Liberouter
(Framework
instances F
and F’)

PollManager PollManagementService.jar
(PMS.jar, 24 KB)
PollResultsWidget.jar
(PRW.jar, 24 KB)
framework.jar
(pre-deployed, 4.21 MB)

Fujitsu
Lifebook UH572
Ultrabook

6.3.2 Results and Analysis

In this section, we provide the results and analysis of the temporary node absence and
switching framework instance experiments carried out in the above-mentioned setting in
order to evaluate the framework performance.

6.3.2.1 Temporary Node Absence

In this experiment, we demonstrate the capability of the PollParticipant node to
reconstruct the current and previously published polls state after a brief disconnection
from the network. As mentioned previously, the Wi-Fi on Client B is being switched on

CHAPTER 6. IMPLEMENTATION EVALUATION 79

and off every 30 seconds. We call the periods that the Wi-Fi is switched on and off,
connected period and disconnected period respectively. The delays for the instantiation
phase, mapping to the timestamps displayed in the sequence diagram 6.1 are the following:
(i) ∆t2 equals 31180 ms, (ii) ∆t4 equals 25157 ms and (iii) ∆t5 equals 90705 ms. Figure

Figure 6.4: PollPublished remote event delivery delay in milliseconds on Client B in function of NewPoll
local event creation time in seconds on Client A

6.4 illustrates the end-to-end delays for the NewPoll and PollPublished local and remote
event messages from the perspective of Client B as shown in the sequence diagram 6.2
as a function of the creation time of the local event NewPoll created within the PCW
CC on Client A. Those interactions correspond to the first part of the polling application
functional phase, i.e., ∆̄t1 = t̄1 − t̄0 of Figure 6.2, where event messages published by
Client A, received, transformed and republished by Liberouter to be received by Client B.
A sawtooth pattern is formed while generated event messages are buffered in the SCAMPI
instance cache waiting for the next contact to be published. The delay reaches its peak
just after the end of the of each connected period and approaches its minimum values
during the connected period. The maximum delay shown in Figure 6.4 for the first part of
the functional phase is approximately 122 seconds, which corresponds to the disconnected
periods due to Wi-Fi switching off. During the connected periods, it is observed, similarly
to the functional phase experiment, that the values are close to zero which leads to
real-time experience that resembles centralized infrastructure network behavior.

In this experiment we observe that the mean delays follow the same pattern noticed
in functional phase test case results with the difference of the additional delay of the
diconnected periods of PollParticipant node. As shown in Table 6.7, the mean delay ∆̄t1
equals to 29827.9 ms (with confidence interval [18967.7, 40688.1] and 95th percentile equals
to 101118.3 ms) and includes the steps 1 and 1.2 of Figure 6.2 that correspond to the
transmission times from Client A to Liberouter and Liberouter to Client B respectively
as well as the step 1.1 that corresponds to the processing time of NewPoll on Liberouter.
Mean delay ∆̄t2, which is equal to 29105.8 ms (with confidence interval [0.0, 78416.7]

CHAPTER 6. IMPLEMENTATION EVALUATION 80

Table 6.7: The mean delays in milliseconds recorded in the temporary node absence scenario for remote
events and the confidence interval on each mean

∆̄t1 = t̄1 − t̄0 ∆̄t2 = t̄2 − t̄1 ∆̄t3 = t̄3 − t̄2

Mean Delay 29827.9 ms 29105.8 ms 13937.1 ms

Max Delay 122469 ms 1207934 ms 130586 ms

CI 95% [18967.7, 40688.1] [0.0, 78416.7] [2897.1, 24977.1]

95th Percentile 101118.3 ms 56569.8 ms 129546.4 ms

and 95th percentile equals to 56569.8 ms), is smaller than ∆̄t1 since it only includes local
processing delay. The CI lower level equals to 0.0 due to the occurrence of extreme values.
∆̄t3 equals to 13937.1 ms (with confidence interval [2897.1, 24977.1] and 95th percentile
equals to 129546.4 ms) and is smaller than the previously-mentioned delays, since it
includes the steps 1.4 and 1.6 that correspond to transmission delays and 1.5 that is refers
to processing tasks on the Liberouter. We conclude that the system behavior resembles
the interactions observed in functional phase and eventually the PollParticipant node is
capable of resynchronizing with the current system state and retrieve the old and current
polls, respond to them and retrieve the poll results.

6.3.2.2 Switching Framework Instance

With this experiment, we evaluate the framework performance and aim at proving that
the framework is capable of rebuilding its state. As described in the setup section 6.3.1,
two framework instances are running in turn on Liberouter, F and F’. The period that a
framework instance is down is called disconnected period and the time it is up is called
connected period. Similarly to the previous test cases, Client A and Client B act as
PollCreator and PollParticipant respectively and Liberouter as PollManager. We perform
a variation of the functional phase test case, illustrated in Figure 6.2, with the difference
of switching framework instance on Liberourer at a fixed time interval, i.e., 2 minutes,
and we focus on the delays of the event messages delivered to Liberouter. The NewPoll
local event message is being create every 30 seconds similarly to previous test cases. The
discussed messages correspond to the steps 1: publish NewPoll and 1.4: publish PollAnswer
of Figure 6.2.

Tables 6.8 and 6.9 present the mean delays of the aforementioned messages for F and
F’ respectively. We observe that the event messages reach both framework instances
with different delays for each one. For F, which is the instances that is created first
during the experiment session, the mean delay for step 1 equals to 40356.44 ms (with
confidence interval [24799.46, 55913.42] and 95th percentile equals to 132033.30 ms).
Concerning the same delay on F’, which is being created on the expiration of the first two

CHAPTER 6. IMPLEMENTATION EVALUATION 81

Table 6.8: The mean delays in milliseconds recorded in switching framework instance scenario for remote
events delivered and published from framework instance F on Liberouter as illustrated in Figure 6.2 and
the confidence interval on each mean

1: publish NewPoll 1.4: publish PollAnswer

Mean Delay 40356.44 ms 36954.22 ms

CI 95% [24799.46, 55913.42] [21980.92, 51927.52]

95th Percentile 132033.30 ms 120520.80 ms

Table 6.9: The mean delays in milliseconds recorded in switching framework instance scenario for remote
events delivered and published from framework instance F’ on Liberouter as illustrated in Figure 6.2 and
the confidence interval on each mean

1: publish NewPoll 1.4: publish PollAnswer

Mean Delay 38110.69 ms 35496.16 ms

CI 95% [23175.36, 53046.01] [20671.20, 50321.11]

95th Percentile 122727.05 ms 114483.05 ms

minutes of the experiment, it is equal to 38110.69 ms (with confidence interval [23175.36,
53046.01] and 95th percentile equals to 122727.05 ms and slightly smaller than the mean
delay on F, which proves the pattern illustrated in Figure 6.5. In this figure, we notice
that a sawtooth pattern is formed, based on the NewPoll remote event message delay
perceived on Liberouter as a function of the creation time of the local event NewPoll
created within the PCW CC on Client A, demonstrating the buffering of the application
state, its dissemination at the next contact from the SCAMPI local instance and the
capability of the system to continue performing as intended. Similarly, we observe the
same phenomenon for the step 1.4: publish PollAnswer, the occurrence of which also
confirms that the framework is capable of reconstructing the system state and perform as
designed.

Table 6.10 presents the mean delays ∆t1, ∆t2, and ∆t3 for the remote events as illustrated
in Figure 6.2, which demonstrate that the PollParticipant node receives the intended
remote events and interacts with the PollManager node instance, on which either the F
or F’ is running, as designed with an additional delay due to the time needed by the
framework instances to get synchronized after the disconnected periods.

CHAPTER 6. IMPLEMENTATION EVALUATION 82

Figure 6.5: NewPoll remote event delivery delay in milliseconds on Liberouter in function of NewPoll
local event creation time in seconds on Client A

Table 6.10: The mean delays in milliseconds recorded in the switching framework instance scenario for
remote events as illustrated in Figure 6.2 and the confidence interval on each mean

∆̄t1 = t̄1 − t̄0 ∆̄t2 = t̄2 − t̄1 ∆̄t3 = t̄3 − t̄2

Mean Delay 3696.03 ms 391.19 ms 459390.41 ms

CI 95% [1543.61, 5848.46] [355.23, 427.14] [366194.72, 552586.09]

95th Percentile 23611.25 ms 641.15 ms 894623.65 ms

6.4 Summary

In this chapter, we presented the last part of the evaluation of the architecture proposed in
this work. Initially, we described the evaluation testbed and general assumptions applied
to the examined test cases. Subsequently, we proceeded with the description of the setup
for a set of static topology scenarios used to carry out experiments with the aim to prove
the viability of the discussed framework in a static, minimal setting and provided the
results of the experiments and their analysis. At last, we presented the evaluation of the
system considering a set of scenarios triggering dynamic behavior in order to evaluate
the capability of the framework to rebuild its state and act as intended after a dynamic
change in the system.

Chapter 7

Conclusion

This thesis presents an architecture for building composable applications and services
on top of challenged networks. Initially, it describes the background areas that frame
this work and proceeds with the requirement analysis of concrete scenarios taking place
in OppNets and observes key concepts that needed to be adopted in order to achieve
their realization. Taking those requirements and concepts into account, it elaborates on
the architecture that can enable those scenarios and describes an application framework
that can enforce the discussed structure to opportunistic applications and frameworks.
Subsequently, in order to evaluate the viability of the architecture, it provides the design of
the scenarios by applying the examined architecture, utilizing the application framework,
the real implementation of the framework for both Java and Android and one of the
discussed application scenarios, i.e., the polling application. At last, it evaluates the
implementations by experimenting on real devices.

The thesis concludes that building opportunistic applications and services by composing
them out of self-contained components and enforcing the proposed structure is viable and
it does not induce additional complexity commonly seen in Internet-based systems enabled
by Microservices architecture due to coordination overhead. In the implementation
evaluation, we observe system behaviors noticed in standard Internet-based applications
such as real-time experience as well as the capability of the system to reconstruct its state
after long delays and system changes.

The major contribution of this work is the application framework that (i) enables modular
system designs by breaking complex applications and services into smaller manageable
self-contained components, (ii) enforces self-coordination without the need of a central
orchestration entity usually needed in standard web-based applications, (iii) supports the
realization of systems on top of OppNets providing the ability to implement both client
pull and server push communication models, (iv) enables the expansion of the applications
in remote neighborhood networks by buffering the current state and disseminate as soon
as being connected to the next network without the use of Internet and (v) allows
the distribution and instantiation of the applications without the need of a centralized

83

CHAPTER 7. CONCLUSION 84

distribution mechanism.

Concerning future research efforts on this work, we consider the following improvements:

• Evaluation of a set of complex test cases considering dynamic topologies. For
instance, multiple neighborhood networks are established utilizing infrastructure
nodes, i.e., Liberouter routers, and the participating mobile nodes physically switch
networks with the result of transferring the current applications and services state
from one network to the other.

• The development and evaluation of an independent Component Registry framework
subsystem that is able to communicate with the Component Controller framework
subsystem using the Local Bus and provide public interfaces to local and remote
CCes for providing information on the in-network running CCes. This will allow the
realization of scenarios where users can decide on the CCes of their applications and
thus, build their own composable user interfaces and gain the freedom to generate
an application based on their preferences.

• The design, implementation and evaluation of a security layer that will provide
protection against unauthorized access and utilization of resources, privacy invasion
and confidentiality disclosure.

Bibliography

[Ahlg 11] B. Ahlgren, C. Dannewitz, C. Imbrenda, and D. Kutscher. “A Survey of
Information-Centric Networking (Draft)”. 2011.

[Andr] “AndroidAnnotations Framework”. http://androidannotations.org/.
Accessed: 15.07.2016.

[Bria 97] L. C. Briand, J. W. Daly, and J. Wust. “A unified framework for cohesion
measurement in object-oriented systems”. In: Software Metrics Symposium,
1997. Proceedings., Fourth International, pp. 43–53, Nov 1997.

[Burg 06] J. Burgess, B. Gallagher, D. Jensen, and B. Levine. “MaxProp: Routing for
vehicle-based delay-tolerant networks”. IEEE, Spain, 4 2006.

[Burn 05] B. Burns, O. Brock, and B. N. Levine. “MV routing and capacity building in
disruption tolerant networks”. IEEE, 3 2005.

[Cerf 07] V. Cerf, S. Burleigh, A. Hooke, L. Torgerson, R. Durst, K. Scott, K. Fall,
and H. Weiss. “Delay-tolerant networking architecture.”. Tech. Rep., SRI
International, Menlo Park, California, 4 2007. RFC 4838.

[Cock 05] A. Cockburn. “Hexagonal architecture”. April 2005.
http://alistair.cockburn.us/Hexagonal+architecture.

[Cont 10] M. Conti and M. Kumar. “Opportunities in Opportunistic Computing”. IEEE,
1 2010.

[Cook] “Cooking Fox EventBus Adapter”. https://github.com/cookingfox/eventbus-adapter-java.
Accessed: 15.07.2016.

[Dela] “Delay-tolerant Networking at Aalto University Comnet”.
http://www.netlab.tkk.fi/ jo/dtn/. Accessed: 29.07.2016.

[Dock] “Docker”. https://www.docker.com/. Accessed: 05.07.2016.

[Four] “Foursquare”. https://foursquare.com/. Accessed: 05.07.2016.

[Goog] “Google Guava EventBus”. https://github.com/google/guava/wiki/EventBusExplained.
Accessed: 15.07.2016.

85

BIBLIOGRAPHY 86

[Gree] “Greenrobot EventBus”. http://greenrobot.org/eventbus/. Accessed:
15.07.2016.

[Grou] “Groupon”. https://www.groupon.com/. Accessed: 05.07.2016.

[Hyyt 11] E. Hyytiä, J. Virtamo, P. Lassila, J. Kangasharju, and J. Ott. “When
does content float? Characterizing availability of anchored information in
opportunistic content sharing”. In: INFOCOM, 2011 Proceedings IEEE,
pp. 3137–3145, April 2011.

[Kark 12] T. Kärkkäinen, M. Pitkänen, P. Houghton, and J. Ott. “SCAMPI Application
Platform”. In: Proceedings of the Seventh ACM International Workshop on
Challenged Networks, pp. 83–86, ACM, New York, NY, USA, 2012.

[Kark 14] T. Kärkkäinen and J. Ott. “Towards Autonomous Neighborhood Networking”.
IEEE WONS, 2014.

[Kube] “Kubernetes Production-Grade Container Orchestration”.
http://kubernetes.io/. Accessed: 05.07.2016.

[Lili 07] L. Lilien, Z. H. Kamal, V. Bhuse, and A. Gupta. The Concept of Opportunistic
Networks and their Research Challenges in Privacy and Security, pp. 85–117.
Springer US, Boston, MA, 2007.

[MapD] “MapDB Data Engine”. http://www.mapdb.org/. Accessed: 15.07.2016.

[Neum 95] P. G. Neumann. “Architectures and formal representations for secure
systems.”. Tech. Rep., SRI International, Menlo Park, California, 10 1995.

[Next] “Nextdoor”. https://nextdoor.com/. Accessed: 05.07.2016.

[Pitk 12] M. Pitkänen, T. Kärkkäinen, J. Ott, M. Conti, A. Passarella, S. Giordano,
D. Puccinelli, F. Legendre, S. Trifunovic, K. Hummel, M. May, N. Hegde,
and T. Spyropoulos. “SCAMPI: Service Platform for Social Aware Mobile
and Pervasive Computing”. In: Proceedings of the First Edition of the MCC
Workshop on Mobile Cloud Computing, pp. 7–12, ACM, New York, NY, USA,
2012.

[Powe] “Power Systems and SOA Synergy”. http://www.redbooks.ibm.com/redbooks/pdfs/sg247607.pdf.
Accessed: 15.07.2016.

[Rich 15] M. Richards. Software Architecture Patterns. O’Reilly Media, 2015.

[Scot 07] K. Scott and S. Burleigh. “Bundle Protocol Specification”. Tech. Rep., SRI
International, Menlo Park, California, 11 2007. RFC 5050.

[Stra] “Strategy Design Pattern”. https://sourcemaking.com/design patterns/strategy.
Accessed: 15.07.2016.

BIBLIOGRAPHY 87

[Tros 10] D. Trossen, M. Sarela, and K. Sollins. “Arguments for an Information-centric
Internetworking Architecture”. SIGCOMM Comput. Commun. Rev., Vol. 40,
No. 2, pp. 26–33, Apr. 2010.

[Tros 12] D. Trossen and G. Parissis. “Designing and Realizing an Information-Centric
Internet”. IEEE Communications Magazine, pp. 60–67, 7 2012.

[Vlie 08] H. v. Vliet. Software Engineering: Principles and Practice. Wiley Publishing,
3rd Ed., 2008.

[Wu 15] Y. Wu, Y. Zhao, M. Riguidel, G. Wang, and P. Yi. “Security and Trust
Management in Opportunistic Networks: A Survey”. Sec. and Commun.
Netw., Vol. 8, No. 9, pp. 1812–1827, June 2015.

[Zhao 06] W. Zhao, Y. Chen, M. Ammar, M. Corner, B. Levine, and E. Zegura.
“Capacity enhancement using throwboxes in DTNs”. IEEE, 10 2006.

