Internet Measurements

Dr. Vaibhav Bajpai

- 1. Measure Adoption
- 2. Measure Performance
- 3. Measure Disruption
- 4. ...

HTTP2 adoption

Is The Web HTTP/2 Yet?

http://isthewebhttp2yet.com/

Matteo Varvello¹, Kyle Schomp², David Naylor³, Jeremy Blackburn¹, Alessandro Finamore¹, and Konstantina Papagiannaki¹

Telefónica Research¹, Case Western Reserve University², Carnegie Mellon University³

Abstract. Version 2 of the Hypertext Transfer Protocol (HTTP/2) was finalized in May 2015 as RFC 7540. It addresses well-known problems with HTTP/1.1 (e.g., head of line blocking and redundant headers) and introduces new features (e.g., server push and content priority). Though HTTP/2 is designed to be the future of the web, it remains unclear whether the web will—or should—hop on board. To shed light on this question, we built a measurement platform that monitors HTTP/2 adoption and performance across the Alexa top 1 million websites on a daily basis. Our system is live and up-to-date results can be viewed at [1]. In this paper, we report findings from an 11 month measurement campaign (November 2014 - October 2015). As of October 2015, we find 68,000 websites reporting HTTP/2 support, of which about 10,000 actually serve content with it. Unsurprisingly, popular sites are quicker to adopt HTTP/2 and 31% of the Alexa top 100 already support it. For the most part, websites do not change as they move from HTTP/1.1 to HTTP/2; current web development practices like inlining and domain sharding are still present. Contrary to previous results, we find that these practices make HTTP/2 more resilient to losses and jitter. In all, we find that 80% of websites supporting HTTP/2 experience a decrease in page load time compared with HTTP/1.1 and the decrease grows in mobile networks.

http://dx.doi.org/10.1007/978-3-319-30505-9_17

https://tools.ietf.org/html/rfc7540

PROPOSED STANDARD

Errata Exist

Internet Engineering Task Force (IETF)

Request for Comments: 7540

Category: Standards Track

ISSN: 2070-1721

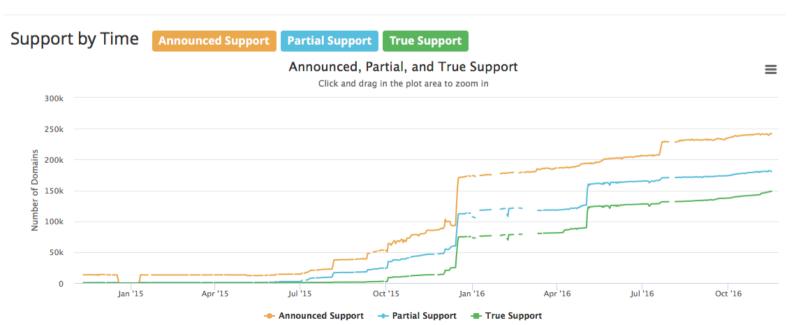
Request for Comments: 7540

R. Peon

Google, Inc

M. Thomson, Ed.

Mozilla


May 2015

Hypertext Transfer Protocol Version 2 (HTTP/2)

Abstract

This specification describes an optimized expression of the semantics of the Hypertext Transfer Protocol (HTTP), referred to as HTTP version 2 (HTTP/2). HTTP/2 enables a more efficient use of network resources and a reduced perception of latency by introducing header field compression and allowing multiple concurrent exchanges on the same connection. It also introduces unsolicited push of representations from servers to clients.

This specification is an alternative to, but does not obsolete, the HTTP/1.1 message syntax. HTTP's existing semantics remain unchanged.

IPv6 adoption

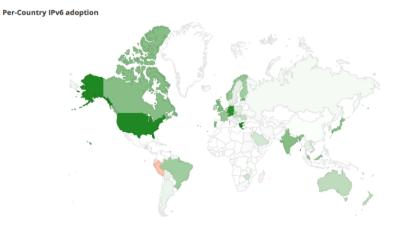
https://tools.ietf.org/html/rfc2460

Updated by: 5095, 5722, 5871, 6437, 6564, 6935, DRAFT STANDARD
6946, 7045, 7112 Errata Exist

Network Working Group S. Deering
Request for Comments: 2460 Cisco
Obsoletes: 1883 R. Hinden
Category: Standards Track
December 1998

Internet Protocol, Version 6 (IPv6) Specification

Status of this Memo

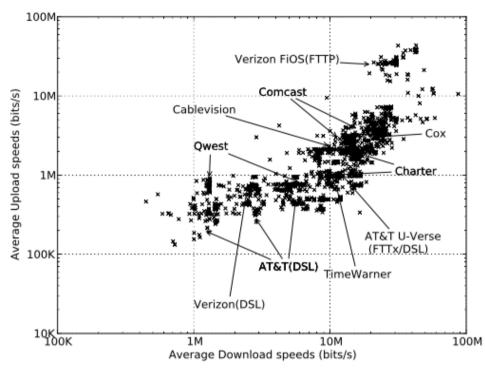

This document specifies an Internet standards track protocol for the Internet community, and requests discussion and suggestions for improvements. Please refer to the current edition of the "Internet Official Protocol Standards" (STD 1) for the standardization state and status of this protocol. Distribution of this memo is unlimited.

https://goo.gl/Qtkr8v

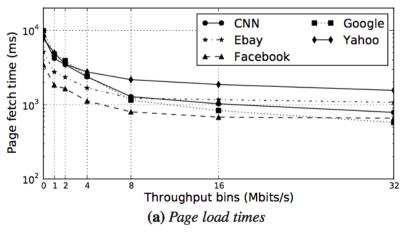
Per-Country IPv6 adoption

IPv6 Adoption

IPv6 Adoption We are continuously measuring the availability of IPv6 connectivity among Google users. The graph shows the percentage of users that access Google over IPv6. Native: 12.86% 6to4/Teredo: 0.01% Total IPv6: 12.87% I Jan 31, 2017 18.00% 16.00% 14.00% 12.00% 10.00% 8.00% 6.00% 4.00% 2.00% 0.00% Jan 2009 Jan 2010 Jan 2011 Jan 2014 Jan 2015 Jan 2016 Jan 2017 Jan 2012 Jan 2013



World | Africa | Asia | Europe | Oceania | North America | Central America | Caribbean | South America


Measuring Broadband Performance

https://www.samknows.com

https://doi.org/10.1145/2043164.2018452

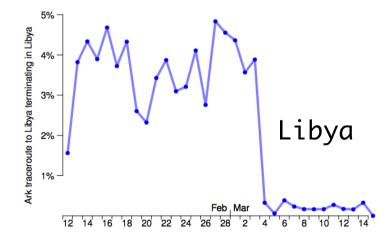
https://doi.org/10.1145/2504730.2504741

Measuring Internet Disruptions

http://www.caida.org/projects/ark/

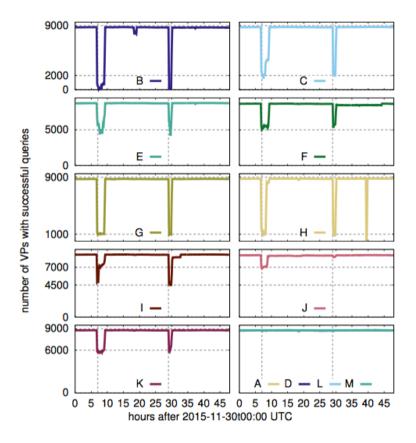
Egypt

10%


10%

21, 22, 23, 24, 25, 26, 27, 28, 29, 30, Jan, Feb, 2, 3, 4, 5, 6

~170 raspberry PI monitors


https://doi.org/10.1145/2068816.2068818

Measuring Internet Disruptions

https://doi.org/10.1145/2987443.2987446

https://atlas.ripe.net

~9.1K connected probes

https://atlas.ripe.net/probes/784
https://atlas.ripe.net/probes/6159

Internet Measurements

Dr. Vaibhav Bajpai

Seminar Webpage:

https://goo.gl/M51fPJ