
Chair of Connected Mobility
TUM School of Computation, Information and Technology
Technical University of Munich

Open Source Lab
Git Advanced

Fabian Sauter, Christian Menges, Alexander Stephan

Chair of Connected Mobility
TUM School of Computation, Information and Technology
Technical University of Munich

Garching, October 25, 2022

Summary

1. a) Create a repository

git init

1. b) Clone repository

git clone <remote>

2. Make changes
3. Add changes

git add <file>

3. Commit changes

git commit -m "Some message."

4. Done? No - Go back to 2. Yes - Continue

5. Rebase

git pull --rebase

6. Push

git push

Figure 1 ”Git” by xkcd

Fabian Sauter, Christian Menges, Alexander Stephan | Open Source Lab | opensourcelab@cm.in.tum.de | https://zulip.in.tum.de/ (#Open Source Lab WS22) 2

mailto:opensourcelab@cm.in.tum.de
https://zulip.in.tum.de/#narrow/stream/1158-Open-Source-Lab-WS22

And now let’s continue. . .
(With some advanced stuff.)

Fabian Sauter, Christian Menges, Alexander Stephan | Open Source Lab | opensourcelab@cm.in.tum.de | https://zulip.in.tum.de/ (#Open Source Lab WS22) 3

mailto:opensourcelab@cm.in.tum.de
https://zulip.in.tum.de/#narrow/stream/1158-Open-Source-Lab-WS22

Dealing with Merge Conflicts

Merge conflicts occur when git is unable to merge changes from two commits since both change the same lines in a file.
They can happen when. . .

� merging a branch.

� rebasing a branch.

� cherry picking a commit.

Now you have to decide which code to keep!
Example

$ git merge feature-main
Auto-merging reader.cpp
CONFLICT (content): Merge conflict in reader.cpp
Automatic merge failed; fix conflicts and then commit the result.

Fabian Sauter, Christian Menges, Alexander Stephan | Open Source Lab | opensourcelab@cm.in.tum.de | https://zulip.in.tum.de/ (#Open Source Lab WS22) 4

mailto:opensourcelab@cm.in.tum.de
https://zulip.in.tum.de/#narrow/stream/1158-Open-Source-Lab-WS22

Dealing with Merge Conflicts

Merge conflicts occur when git is unable to merge changes from two commits since both change the same lines in a file.
They can happen when. . .

� merging a branch.

� rebasing a branch.

� cherry picking a commit.

Now you have to decide which code to keep!
Example

$ git merge feature-main
Auto-merging reader.cpp
CONFLICT (content): Merge conflict in reader.cpp
Automatic merge failed; fix conflicts and then commit the result.

main

feature-main

Merge
Commit

Fabian Sauter, Christian Menges, Alexander Stephan | Open Source Lab | opensourcelab@cm.in.tum.de | https://zulip.in.tum.de/ (#Open Source Lab WS22) 4

mailto:opensourcelab@cm.in.tum.de
https://zulip.in.tum.de/#narrow/stream/1158-Open-Source-Lab-WS22

Dealing with Merge Conflicts

Git changed the reader.cpp file in a way, so now have to decide what to keep.

<<<<<<< HEAD
int main(int /*argc*/, char** /*argv*/) { }
=======
int main(void) { }
>>>>>>> feature-main

Once we are done, we can commit our decision.

git commit -m "Merged feature-main into main"

Fabian Sauter, Christian Menges, Alexander Stephan | Open Source Lab | opensourcelab@cm.in.tum.de | https://zulip.in.tum.de/ (#Open Source Lab WS22) 5

mailto:opensourcelab@cm.in.tum.de
https://zulip.in.tum.de/#narrow/stream/1158-Open-Source-Lab-WS22

Cherry Picking

Useful when you committed changes to the wrong branch.
Allows you to apply the changes from one commit to your cur-
rent branch.
Use sparingly to prevent duplicate commits, which will result in
merge conflicts later on.

git cherry-pick <commit-hash>

Sometimes merging or rebasing is more appropriate.

main

dev

🍒

Fabian Sauter, Christian Menges, Alexander Stephan | Open Source Lab | opensourcelab@cm.in.tum.de | https://zulip.in.tum.de/ (#Open Source Lab WS22) 6

mailto:opensourcelab@cm.in.tum.de
https://zulip.in.tum.de/#narrow/stream/1158-Open-Source-Lab-WS22

Exercise

� Cherry-pick the commit "2063b689f81045f1dff56db0aeca98caabadc63b" (CMake option to disable proxy tests (OFF)).

� Use "git status" to get a list of conflicts. Resolve them.

� Continue your cherry-pick with the commands suggested to you by git.

� Push your new branch to origin (git push --set-upstream origin 1.9.x_YourName).

In case you deleted your state from last week:

git clone git@gitlab.lrz.de:open-source-lab/git-demo-cpr.git
cd git-demo-cpr
git checkout origin/1.9.x
git branch 1.9.x_YourName
git switch 1.9.x_YourName

nano README.md
git add README.md # Replace Fabian Sauter with your name as maintainer
git commit -m "Updated the maintainer"

Fabian Sauter, Christian Menges, Alexander Stephan | Open Source Lab | opensourcelab@cm.in.tum.de | https://zulip.in.tum.de/ (#Open Source Lab WS22) 7

mailto:opensourcelab@cm.in.tum.de
https://zulip.in.tum.de/#narrow/stream/1158-Open-Source-Lab-WS22

Worktree

Motivation: It’s often necessary to quickly switch between branches. This can be a bit of a hassle.

git stash
git switch <new_branch>
... # Possibly stashing of new changes and commits in branch.
git switch <old_branch> # Switch back to previous branch.
git stash pop

git worktree helps manage multiple worktrees and therefore simplifies the workflow
when constantly switching branches.

Fabian Sauter, Christian Menges, Alexander Stephan | Open Source Lab | opensourcelab@cm.in.tum.de | https://zulip.in.tum.de/ (#Open Source Lab WS22) 8

mailto:opensourcelab@cm.in.tum.de
https://zulip.in.tum.de/#narrow/stream/1158-Open-Source-Lab-WS22

Worktree

Motivation: It’s often necessary to quickly switch between branches. This can be a bit of a hassle.

git stash
git switch <new_branch>
... # Possibly stashing of new changes and commits in branch.
git switch <old_branch> # Switch back to previous branch.
git stash pop

git worktree helps manage multiple worktrees and therefore simplifies the workflow
when constantly switching branches.

You can start from an existing repository and create/add a new worktree in a specified directory.

Creates a new directory that contains the <branch>.
git worktree add <directory> <branch>
List all worktrees for the current repository.
git worktree list

Fabian Sauter, Christian Menges, Alexander Stephan | Open Source Lab | opensourcelab@cm.in.tum.de | https://zulip.in.tum.de/ (#Open Source Lab WS22) 8

mailto:opensourcelab@cm.in.tum.de
https://zulip.in.tum.de/#narrow/stream/1158-Open-Source-Lab-WS22

Worktree

Motivation: It’s often necessary to quickly switch between branches. This can be a bit of a hassle.

git stash
git switch <new_branch>
... # Possibly stashing of new changes and commits in branch.
git switch <old_branch> # Switch back to previous branch.
git stash pop

git worktree helps manage multiple worktrees and therefore simplifies the workflow
when constantly switching branches.

You can start from an existing repository and create/add a new worktree in a specified directory.

Creates a new directory that contains the <branch>.
git worktree add <directory> <branch>
List all worktrees for the current repository.
git worktree list

Alternatively, you can start from a bare repository to avoid the initial checked-out working tree.

git clone --bare <repo> <directory>

Fabian Sauter, Christian Menges, Alexander Stephan | Open Source Lab | opensourcelab@cm.in.tum.de | https://zulip.in.tum.de/ (#Open Source Lab WS22) 8

mailto:opensourcelab@cm.in.tum.de
https://zulip.in.tum.de/#narrow/stream/1158-Open-Source-Lab-WS22

Bisect

Problem: In large projects, it can be really difficult to find a commit that introduced a bug.

⇒ Use git bisect to find the commit that introduced the bug via a binary search.

Example

git bisect start # Start the bisect session.
git bisect good <commit> # Mark a commit as good.
git bisect bad <commit> # Mark a commit as bad.
git bisect bad/good <commit> # Continue marking commits until search terminates.
...
git bisect reset # End bisect session and reset branch.

Bad commit Good commitNext checked out commit

Possible commits

Fabian Sauter, Christian Menges, Alexander Stephan | Open Source Lab | opensourcelab@cm.in.tum.de | https://zulip.in.tum.de/ (#Open Source Lab WS22) 9

mailto:opensourcelab@cm.in.tum.de
https://zulip.in.tum.de/#narrow/stream/1158-Open-Source-Lab-WS22

Bisect

Problem: In large projects, it can be really difficult to find a commit that introduced a bug.

⇒ Use git bisect to find the commit that introduced the bug via a binary search.

Example

git bisect start # Start the bisect session.
git bisect good <commit> # Mark a commit as good.
git bisect bad <commit> # Mark a commit as bad.
git bisect bad/good <commit> # Continue marking commits until search terminates.
...
git bisect reset # End bisect session and reset branch.

Bad commit Good commitNext checked out commit

Possible commits

Fabian Sauter, Christian Menges, Alexander Stephan | Open Source Lab | opensourcelab@cm.in.tum.de | https://zulip.in.tum.de/ (#Open Source Lab WS22) 9

mailto:opensourcelab@cm.in.tum.de
https://zulip.in.tum.de/#narrow/stream/1158-Open-Source-Lab-WS22

Exercise

� Clone: https://gitlab.lrz.de/open-source-lab/bisect-example.git

� Use "git-bisect" to find the commit, that broke the HTML formatting.

� You know the first (oldest) commit is good and the last (newest) is good.

� Use "git checkout <hash>" to switch between commits.

Fabian Sauter, Christian Menges, Alexander Stephan | Open Source Lab | opensourcelab@cm.in.tum.de | https://zulip.in.tum.de/ (#Open Source Lab WS22) 10

mailto:opensourcelab@cm.in.tum.de
https://zulip.in.tum.de/#narrow/stream/1158-Open-Source-Lab-WS22

Creating and Merging a PR Demo
(With some git best practices.)

Fabian Sauter, Christian Menges, Alexander Stephan | Open Source Lab | opensourcelab@cm.in.tum.de | https://zulip.in.tum.de/ (#Open Source Lab WS22) 11

mailto:opensourcelab@cm.in.tum.de
https://zulip.in.tum.de/#narrow/stream/1158-Open-Source-Lab-WS22

Exercise

� In GitLab create a PR from your branch and resolve all issues by rebasing onto the latest 1.9.x branch.

Fabian Sauter, Christian Menges, Alexander Stephan | Open Source Lab | opensourcelab@cm.in.tum.de | https://zulip.in.tum.de/ (#Open Source Lab WS22) 12

mailto:opensourcelab@cm.in.tum.de
https://zulip.in.tum.de/#narrow/stream/1158-Open-Source-Lab-WS22

