Chair of Connected Mobility
TUM School of Computation, Information and Technology
Technical University of Munich

Open Source Lab
Utilities

Fabian Sauter, Christian Menges, Alexander Stephan

Chair of Connected Mobility
TUM School of Computation, Information and Technology
Technical University of Munich

Garching, November 23, 2022

Coverage

Different Types:
B Statement Coverage (bad, don’t use it)
B Branch Coverage }i(f:(g =0 || (b==0&% c ==10)) {
B Condition Coverage } et
B Modified Condition / Decision Coverage (standard for

high-risk avionics software: DO-178B, DO-178C)

B Path Coverage

Fabian Sauter, Christian Menges, Alexander Stephan | Open Source Lab | opensourcelab@cm.in.tum.de | https:/zulip.in.tum.de/ (#Open Source Lab SS23)

https://camo.githubusercontent.com/1cde87ab5ba60df8d5283cfd2f24d8f5fea1f6c59561b48de1c7ac6a6747ab99/68747470733a2f2f6170702e636f646163792e636f6d2f70726f6a6563742f62616467652f436f7665726167652f3839383630616561356661373464393938656338383466316138373565643063
https://camo.githubusercontent.com/1cde87ab5ba60df8d5283cfd2f24d8f5fea1f6c59561b48de1c7ac6a6747ab99/68747470733a2f2f6170702e636f646163792e636f6d2f70726f6a6563742f62616467652f436f7665726167652f3839383630616561356661373464393938656338383466316138373565643063
mailto:opensourcelab@cm.in.tum.de
https://zulip.in.tum.de/#narrow/stream/1541-Open-Source-Lab-SS23

Coverage BRI T”TI

Different Types:
B Statement Coverage (bad, don’t use it)
B Branch Coverage }i(f:(g =0 || (b==028&% c==0)) {
B Condition Coverage } et
B Modified Condition / Decision Coverage (standard for

high-risk avionics software: DO-178B, DO-178C)

Path Coverage

Coverage can help you to assess the quality of a test suite, but it should not be the reason why tests are written.

Ask, what is not covered instead of how much is not covered. (Example: If a project has 98% coverage, but the remaining 2%
contain emergency shutdown or recovery routines, then this is not a good test suite)

Badge Source: https://camo.githubusercontent.com/1cde87ab5ba60df8d5283cfd2f24d8f5fealf6c5956 1b48de1c7ac6a6747ab99/68747470733a2f2f6170702e636646163

792e636f6d2f70726f6a6563742f6261646765243617665726167652{3839383630616561356661373464393938656338383466316138373565643063

Fabian Sauter, Christian Menges, Alexander Stephan | Open Source Lab | opensourcelab@cm.in.tum.de | https:/zulip.in.tum.de/ (#Open Source Lab SS23)

https://camo.githubusercontent.com/1cde87ab5ba60df8d5283cfd2f24d8f5fea1f6c59561b48de1c7ac6a6747ab99/68747470733a2f2f6170702e636f646163792e636f6d2f70726f6a6563742f62616467652f436f7665726167652f3839383630616561356661373464393938656338383466316138373565643063
https://camo.githubusercontent.com/1cde87ab5ba60df8d5283cfd2f24d8f5fea1f6c59561b48de1c7ac6a6747ab99/68747470733a2f2f6170702e636f646163792e636f6d2f70726f6a6563742f62616467652f436f7665726167652f3839383630616561356661373464393938656338383466316138373565643063
mailto:opensourcelab@cm.in.tum.de
https://zulip.in.tum.de/#narrow/stream/1541-Open-Source-Lab-SS23

Static Analyzers / Formatter TI.ITI

ALWAYS use it. There is no cheaper and easier way of finding bugs.
Tools depend on the language. A few examples:

C gcc static-analyzer https://gcc.gnu.org/onlinedocs/gcc-12.1.0/gcc/Static- Analyzer-Options.html
C++ cppcheck https:/github.com/danmar/cppcheck,
clang-tidy https://clang.llvm.org/extra/clang-tidy/,
clang-format https://clang.llvm.org/docs/ClangFormat.html
(configuration generator: https://zed0.co.uk/clang-format-configurator/)
Go go vet https://pkg.go.dev/cmd/vet,
golangci-lint https://github.com/golangci/golangci-lint
Ruby rubocop https://github.com/rubocop/rubocop,
fasterer https://github.com/DamirSvrtan/fasterer,
reek https://github.com/troessner/reek
XML-like (HTML, SVG, . ..) W3 validator https://validator.w3.org/
Docker Haskell Dockerfile Linter - hadolint https://github.com/hadolint/hadolint
Shell ShellCheck https://github.com/koalaman/shellcheck
Tex ChkTeX https://www.nongnu.org/chktex/
Javascript/Typescript EsLint https://github.com/eslint/eslint)
Java PMD https://github.com/pmd/pmd A more complete |.IS'[can be found here:
Rust Miri https:/github.com/rust-lang/miri, https://analysis-tools.dev/tools
clippy https://github.com/rust-lang/rust-clippy,
fmt https://github.com/rust-lang/rustfmt
Python flake8 https:/github.com/PyCQA/flake8

Fabian Sauter, Christian Menges, Alexander Stephan | Open Source Lab | opensourcelab@cm.in.tum.de | https://zulip.in.tum.de/ (#Open Source Lab SS23) 3

https://gcc.gnu.org/onlinedocs/gcc-12.1.0/gcc/Static-Analyzer-Options.html
https://github.com/danmar/cppcheck
https://clang.llvm.org/extra/clang-tidy/
https://clang.llvm.org/docs/ClangFormat.html
https://zed0.co.uk/clang-format-configurator/
https://pkg.go.dev/cmd/vet
https://github.com/golangci/golangci-lint
https://github.com/rubocop/rubocop
https://github.com/DamirSvrtan/fasterer
https://github.com/troessner/reek
https://validator.w3.org/
https://github.com/hadolint/hadolint
https://github.com/koalaman/shellcheck
https://www.nongnu.org/chktex/
https://github.com/eslint/eslint
https://github.com/pmd/pmd
https://github.com/rust-lang/miri
https://github.com/rust-lang/rust-clippy
https://github.com/rust-lang/rustfmt
https://github.com/PyCQA/flake8
https://analysis-tools.dev/tools
mailto:opensourcelab@cm.in.tum.de
https://zulip.in.tum.de/#narrow/stream/1541-Open-Source-Lab-SS23

Dynamic analysis TI-ITI

asan (address sanitizer)

ubsan (undefined behavior sanitizer)
Isan (leak sanitizer)

tsan (thread sanitizer)

DMon (current research, OSDI 21)

./leak.out

==81400==ERROR: LeakSanitizer: detected memory leaks

Direct leak of 40 byte(s) in 1 object(s) allocated from:

#0 0x7fb07a0f1db0 in __interceptor_malloc ../../../../src/libsanitizer/lsan/lsan_interceptors.cpp:54
#1 0x401147 in main (/open-source-lab/leak/leak.out+0x401147)

#2 0x7fb079f44d09 in __libc_start_main ../csu/libc-start.c:308

SUMMARY: LeakSanitizer: 40 byte(s) leaked in 1 allocation(s).

Listing 1 Example: Leak detected by leak sanitizer

Fabian Sauter, Christian Menges, Alexander Stephan | Open Source Lab | opensourcelab@cm.in.tum.de | https:/zulip.in.tum.de/ (#Open Source Lab SS23)

mailto:opensourcelab@cm.in.tum.de
https://zulip.in.tum.de/#narrow/stream/1541-Open-Source-Lab-SS23

Compiler TI_ITI

A compiler not only transforms your code into another form, it also is crucial for software quality, performance and security.
Best practices:

B enable warnings (e.g. -Wall)

B enable security mechanisms (e.g. Stack protection, Relocation Read-Only (RELRO))

B test with optimization enabled

The performance of generated code can vary between compilers. Comparing compilers can be helpful (e.g. for C++: gcc,
clang and icc (not open-source :())

Warning: Sometimes bugs are caused by the compiler!

Fabian Sauter, Christian Menges, Alexander Stephan | Open Source Lab | opensourcelab@cm.in.tum.de | https:/zulip.in.tum.de/ (#Open Source Lab SS23) 5

mailto:opensourcelab@cm.in.tum.de
https://zulip.in.tum.de/#narrow/stream/1541-Open-Source-Lab-SS23

Fuzzing

Traditional testing requires an oracle. But it is always possible to test for crashes = Fuzzing
Fuzzing generates (semi-)random input and tries to crash the application

OpenSSL Heartbleed (CVE-2014-0160) bug could have been found by using fuzzing
Google’s OSSFuzz initiative for open source projects https:/github.com/google/oss-fuzz
Popular fuzzer: AFL fuzzer https://github.com/google/AFL

Some languages, like Go (v1.18+), provide native support for fuzzing.

Fabian Sauter, Christian Menges, Alexander Stephan | Open Source Lab | opensourcelab@cm.in.tum.de | https:/zulip.in.tum.de/ (#Open Source Lab SS23)

https://github.com/google/oss-fuzz
https://github.com/google/AFL
mailto:opensourcelab@cm.in.tum.de
https://zulip.in.tum.de/#narrow/stream/1541-Open-Source-Lab-SS23

Ul Fuzzing - Monkey Testing

@Deutsch 4 GitLab

Configure the memory paging exercise Q

Lo Joen] O

Configuration b Configuration by CSV

Select algorithm Number of pages Calllist length

O

Number of frames

First-in, First-out v 23 g 128 g 4 g
Configuration link: O
7 O
e O O
Page f, I3 fs fa Page fault O
22 : D 2 z o O

128

@

https://github.com/marmelab/gremlins.js/
Fabian Sauter, Christian Menges, Alexander Stephan | Open Source Lab | opensourcelab@cm.in.tum.de | https://zulip.in.tum.de/ (#Open Source Lab SS23)

https://github.com/marmelab/gremlins.js/
mailto:opensourcelab@cm.in.tum.de
https://zulip.in.tum.de/#narrow/stream/1541-Open-Source-Lab-SS23

TUTl

Unfortunately, still mostly used for academic purposes, but rises in popularity as algorithms become more complex. Very
powerful.

Formal verification

ESBMC model checker https://github.com/esbmc/esbmc
Isabelle/HOL Verifies Standard ML programs https:/isabelle.in.tum.de/

ivy Proofs protocols, such as leader election, raft, etc. https://github.com/kenmcmil/ivy

If you come up with a completely new, fundamental algorithm, you should definitely consider this.

Fabian Sauter, Christian Menges, Alexander Stephan | Open Source Lab | opensourcelab@cm.in.tum.de | https:/zulip.in.tum.de/ (#Open Source Lab SS23)

https://github.com/esbmc/esbmc
https://isabelle.in.tum.de/
https://github.com/kenmcmil/ivy
mailto:opensourcelab@cm.in.tum.de
https://zulip.in.tum.de/#narrow/stream/1541-Open-Source-Lab-SS23

Logging / Tracing
B Important for debugging and auditing
B Store important events with timestamp
B Use consistent format
B Consider performance and storage overhead

B Libraries can help

[debug] [thread 172236] PublMed request done.

[info] [thread 172236] PubMed: Requested 50 out of 56 abstracts.

[info] [thread 172236] PubMed: Parsing abstracts.

[warning] [thread 172236] PubMed: No Abstract node found for: 30460988.
[warning] [thread 172236] PubMed: No Abstract node found for: 27389065.
[warning] [thread 172236] PubMed: No Abstract node found for: 25075404.
[info] [thread 172236] PubMed: Parsing abstracts done.

[debug] [thread 172236] PubMed request done.

[info] [thread 172236] PubMed: Requested 100 out of 56 abstracts.

[info] [thread 172236] PubMed: Parsing abstracts.

[warning] [thread 172236] PubMed: No Abstract node found for: 9306861.
[info] [thread 172236] PubMed: Parsing abstracts done.

[info] [thread 172236] PubMed: Requesting 56 full text links...

Listing 2 Log example
Fabian Sauter, Christian Menges, Alexander Stephan | Open Source Lab | opensourcelab@cm.in.tum.de | https:/zulip.in.tum.de/ (#Open Source Lab SS23)

mailto:opensourcelab@cm.in.tum.de
https://zulip.in.tum.de/#narrow/stream/1541-Open-Source-Lab-SS23

Meaningful Crashes TI-ITI

Not helpful:

Segmentation fault (core dumpe

Better:

Stack trace (most recent call last):
#12

Segmentation fault (core dumped)

Example:
B https://github.com/bombela/backward-cpp

Fabian Sauter, Christian Menges, Alexander Stephan | Open Source Lab | opensourcelab@cm.in.tum.de | https://zulip.in.tum.de/ (#Open Source Lab SS23) 10

https://github.com/bombela/backward-cpp
mailto:opensourcelab@cm.in.tum.de
https://zulip.in.tum.de/#narrow/stream/1541-Open-Source-Lab-SS23

Performance matters TI-ITI

Many people don’t care about performance too much until it gets a problem. DON'T be one of them.
Slow programs are annoying, expensive and are contributing to climate change.
Always ask yourself, whether the algorithm or data-structure you are using is appropriate.

Example:
We once had a program doing a lot of computations on intervals. At the beginning, these were organized in an array. Later the
implementation was changed to an interval tree which improved performance by an order of magnitude.

Fabian Sauter, Christian Menges, Alexander Stephan | Open Source Lab | opensourcelab@cm.in.tum.de | https:/zulip.in.tum.de/ (#Open Source Lab SS23) 11

mailto:opensourcelab@cm.in.tum.de
https://zulip.in.tum.de/#narrow/stream/1541-Open-Source-Lab-SS23

Performance measurements / Profiling

Easiest way: time or hyperfine
(https://github.com/sharkdp/hyperfine)

Use profilers, often they are integrated in IDEs, making usage
extremely simple.

In complex scenarios, use perf or vTune (not open source,
but still really nice), to find the performance bottlenecks.

Make sure you compiled your program with enabled
optimizations!

Example output of profiler rbspy"

Thttps://github.com/rbspy/rbspy.github.io/blob/main/src/static/images/rubocop-flamegraph.svg

Fabian Sauter, Christian Menges, Alexander Stephan | Open Source Lab | opensourcelab@cm.in.tum.de | https://zulip.in.tum.de/ (#Open Source Lab SS23) 12

https://github.com/sharkdp/hyperfine
https://github.com/rbspy/rbspy.github.io/blob/main/src/static/images/rubocop-flamegraph.svg
mailto:opensourcelab@cm.in.tum.de
https://zulip.in.tum.de/#narrow/stream/1541-Open-Source-Lab-SS23

Package/Dependency management TI.ITI
Use package managers:

C++ conan, CPM
Ruby RubyGems
Javascript/Typescript npm
Java maven, gradle
Rust cargo
Fortran fpm
Python pip

Some languages provide native support for package management, e.g. Go.
Keep your dependencies up to date (Use tools, such as dependabot (covered later))

Use in conjunction with security scanners to detect vulnerable versions and license risks.

Fabian Sauter, Christian Menges, Alexander Stephan | Open Source Lab | opensourcelab@cm.in.tum.de | https:/zulip.in.tum.de/ (#Open Source Lab SS23) 13

mailto:opensourcelab@cm.in.tum.de
https://zulip.in.tum.de/#narrow/stream/1541-Open-Source-Lab-SS23

What should you use? TI.ITI

Always pick a combination of the described techniques and use the more advanced ones where applicable.

Fabian Sauter, Christian Menges, Alexander Stephan | Open Source Lab | opensourcelab@cm.in.tum.de | https://zulip.in.tum.de/ (#Open Source Lab SS23) 14

https://campus.tum.de/tumonline/ee/ui/ca2/app/desktop/#/slc.tm.cp/student/courses/950602762
mailto:opensourcelab@cm.in.tum.de
https://zulip.in.tum.de/#narrow/stream/1541-Open-Source-Lab-SS23

What should you use? TI.ITI

Always pick a combination of the described techniques and use the more advanced ones where applicable.

Want to learn more about testing?

Visit Alexander Pretschner’s course on Advanced Topics of Software Testing:
https://campus.tum.de/tumonline/ee/ui/ca2/app/desktop/#/slc.tm.cp/student/courses/950602762

Fabian Sauter, Christian Menges, Alexander Stephan | Open Source Lab | opensourcelab@cm.in.tum.de | https:/zulip.in.tum.de/ (#Open Source Lab SS23) 14

https://campus.tum.de/tumonline/ee/ui/ca2/app/desktop/#/slc.tm.cp/student/courses/950602762
mailto:opensourcelab@cm.in.tum.de
https://zulip.in.tum.de/#narrow/stream/1541-Open-Source-Lab-SS23

What should you use? TI.ITI

Always pick a combination of the described techniques and use the more advanced ones where applicable.

Want to learn more about testing?

Visit Alexander Pretschner’s course on Advanced Topics of Software Testing:
https://campus.tum.de/tumonline/ee/ui/ca2/app/desktop/#/slc.tm.cp/student/courses/950602762

Concluding Remarks

Don't believe that important and famous projects are always following these rules. Many don’t. Always have a look at the build
scripts to see what is going on in a project. Adding some of these techniques can reveal bugs, you would have never deemed
possible in a well known project.

Fabian Sauter, Christian Menges, Alexander Stephan | Open Source Lab | opensourcelab@cm.in.tum.de | https:/zulip.in.tum.de/ (#Open Source Lab SS23) 14

https://campus.tum.de/tumonline/ee/ui/ca2/app/desktop/#/slc.tm.cp/student/courses/950602762
mailto:opensourcelab@cm.in.tum.de
https://zulip.in.tum.de/#narrow/stream/1541-Open-Source-Lab-SS23

Next step: Automation!

Fabian Sauter, Christian Menges, Alexander Stephan | Open Source Lab | opensourcelab@cm.in.tum.de | https:/zulip.in.tum.de/ (#Open Source Lab SS23)

mailto:opensourcelab@cm.in.tum.de
https://zulip.in.tum.de/#narrow/stream/1541-Open-Source-Lab-SS23

