

Third-Party Tokens for QUIC Address Validation

Benedikt Spies, Nico Greger, Jonathan Kaleve, and Justus Fries

QUIC

To prevent amplification attacks a QUIC server must limit the amount of data sent to an unvalidated address to 3x the amount of data received from the client.

The client address is validated after 1 RTT or with an Address Validation Token (AVT).

- QUIC trades performance for privacy [1]
- Large certificates prolong handshakes [2]

QUIC Handshake

Many QUIC handshakes cannot be completed within 1 RTT because the response of the server exceeds the anti-amplification limit.

Address Validation Token (AVT)

- AVTs are shared by the QUIC server in NEW TOKEN frames
- 15% of HTTP/3 servers issue AVTs, with sizes between 42 to 86 B
- All tested browsers cache AVTs for the whole browser session
- AVTs are not available on first connect
- Server can encode arbitrary data into an AVT

Web Tracking

AVTs can be used for tracking similar to cookies. Currently there is no evidence of AVT trackers.

Embedded third-parties identify origin by Referer header or origin specific URLs.

Web Tracking Protection

Firefox and Brave use isolated caches per origin to prevent tracking: Total Cookie Protection and Ephemeral Storage, respectively.

Common third-party page resources (e.g., fonts) benefit most from fast handshakes, but are also critical vectors for tracking

Privacy Pass (PP)

Privacy Pass [RFC 9576] enables privacy-preserving authentication.

Instead of presenting linkable state-carrying information to servers (e.g., cookies, AVTs), clients present unlinkable tokens, only sharing one-bit of information.

More information can be shared, as specified in the public-metadata-issuance draft, based on PBRSA.

Privacy Pass Address Validation Tokens (PPAVT)

- Can lift anti-amplification limit on first connect
- Unlinkability of PP tokens prevents tracking

Why are first RTT responses long?

Distribution of certificate sizes in Tranco top 10k

- long certificate chains
- no coalesced QUIC
- no cert. compression
- no EC certificates

Cryptography (simplified)

Cryptography is based on RSABSSA [RFC 9474] and draft-amjad-cfrg-partially-blind-rsa.

1 The browser generates a partially blinded request using the issuer's public key pkI.

```
nonce = random(32)
ext = { ip, lifetime }
blind_msg = Blind(pkI, nonce, ext)
req = { blind_msg, ext }
```

2 The issuer signs the request, after verifying the client's IP and lifetime.

```
blind_sig = BlindSign(skI, req)
resp = { blind_sig }
```

3 The client unblinds the signature, and generates the PPAVT.

```
sig = Finalize(pkI, nonce, ext, resp)
token = { nonce, ext, sig, issuer_id }
```

4 The server verifies the IP, lifetime, and signature with the issuer's public key.

Verify(pkI, token)

Evaluation 80 ms RTT 20 ms RTT 40 ms RTT — 1RTT AVT -- 1RTT NOAVT --- 1RTT PPAVT 100 2 RTT 3 RTT 4 RTT 5 RTT 2 RTT 3 RTT 4 RTT 2 RTT 3 RTT TTFB (ms)

Distribution of TTFB of different handshake modes

- PPAVT almost reduces handshake to serverprovided AVT
- Verification by Privacy Pass took about 9 ms

Open Challenges

- Address replay and double-spending problem
- Enhance browser and H3 origin replication
 - Evaluate the impact of ML-KEM
 - Integrate certificate compression
- Evaluate page load times
- Evaluate more than Tranco top 10
- Cover browsers beyond Chromium
- Optimize PP verification performance
- [1] Erik Sy, Christian Burkert, Hannes Federrath, and Mathias Fischer. A QUIC Look at Web Tracking. In PoPETs '19, volume 2019, pages 255–266.
- [2] Marcin Nawrocki, Pouyan Fotouhi Tehrani, Raphael Hiesgen, Jonas Mücke, Thomas C. Schmidt, and Matthias Wählisch. On the interplay between TLS certificates and QUIC performance. In CoNEXT '22, pages 204-213. ACM.