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How am | defining the Edge?

* A range of different device types, including
* Small resource constrained devices — RPis, home gateways, etc
* Distributed but not so constrained devices — 5G RAN etc

* A range of different network types, including
* LoRaWAN, Zigbee, SIGFOX
* 4/5G, Wi-Fi, wired Ethernet

* Instead, define the edge via common system characteristics
* Geographically distributed
* Relatively limited CPU and memory resources
* Network connected but potentially constrained and unreliable



Example: Smart Cities

* Connectivity is a fundamental requirement
* Require low-power, low-latency, low-touch network

* E.g., LoORaWAN as a lowest-common denominator
* One LoRaWAN gateway per building vs 10s of Wi-Fi APs
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Edge, Challenges and Opportunities

1) Data locality
* Many applications naturally generate data in a distributed fashion
* Use this rather than centralise data

* E.g., Anemone [Mortier et al, 2006], Seaweed [Narayanan et al, 2006] :)

2) Latency

* Latency to the cloud may be lower than you think [Mohan et al, HotNets
2020]

* But some network types simply can’t support low latency cloud access

3) Resilience
* Infrastructure applications need resilience
* Must keep working, even if degraded, when nodes, links, services fail



(1) Data locality via deployment

* First, loT device identification at the edge
* Apply a set of pre-trained binary classifiers to identify devices
* Use the model implied by detection to determine anomalous behaviour
* Allow for re-training of models using local knowledge

* Second, Complex event processing at the edge
* Synthesis of higher-level events from raw high-frequency sensing data
* Provides low-latency localised decision making
* Better fit to the bandwidth constraints of LoORaWAN backhaul
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(2) Latency, via localised compute

* First, A smart camera performing object recognition
* Turns high bandwidth video stream into low bandwidth object counts
* “3cars, 2 people and a bus” or “at time T, a person entered the building”

* Second, A rearchitecting of LoRaWAN for low latency
* Avoid backhauling all data to a central location before acting
* Remove IP from the stack to improve performance
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(3) Resilience, via distribution

* First, Understand better how orchestration behaves at edge scale
* Most rely on consensus systems rarely deployed beyond 1/3/5 node clusters!

* Then, Extend orchestrator to improve resilience
* Get the benefits of Paxos in the more popular Raft

* Finally, Revisit assumptions to better target the edge
* Radical changes require careful modelling to ensure correct behaviour

* Ultimately,

eventual consistency works and scales better than strict consistency
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Raft popular, Paxos better?

* Raft leader election can duel => long tail latencies
® Majority voting vs static term ordering
* Fix by patching Raft to randomise low bits of term

diff --git a/raft.go b/raft.go

index d104829..e8eb5bd 100644

--- a/raft.go

+++ b/raft.go

@@ -840,0 +841,8

+func (r *raft) nextTerm() uint64 {

+ // Term = [epoch:48; rand:16]

+ var cepoch uint64 = (r.Term & Oxffff_ffff_ffff_0000) >> 16
+ var tepoch uint64 = (cepoch + 1) << 16
+
+

|

In

var trdm uint64 uint64(globalRand.Intn(65536)) & Oxffff
return tepoch | trdm

@@ -847 +855 @@ func (r *raft) becomeCandidate() {

- r.reset(r.Term + 1)

+ r.reset(r.nextTerm())

@@ -946 +954 @@ func (r *raft) campaign(t CampaignType) {
- term = r.Term + 1

+ term = r.nextTerm()
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Distributing orchestration

* How to use edge resources in a cluster while maintaining resilience?
* Avoiding both isolation of resources and enlarging the failure’s blast radius

Kubernetes K3s KubeEdge dismerge
Cloud Single-site Cloud-centric

Control plane &
etcd

Worker node
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* How to ensure correct behaviour of Kubernetes upon such a radical
change?
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Modelling orchestration

Generated Action

* Model controller behaviour as stepping
forward from starting state, generating
and applying actions

Controller

Apply action

* Extract properties from Kubernetes

{

bodet New state
{{ integration tests, documentation, and
L | C> [ seheduiePonlLanaz e 0°) “well-known” behaviour
R * Reimplement relevant controllers in Rust
Controller Covered lines Total lines Percentage and apply the Staterlght mOdeI CheCk|ng
Scheduler 52 78 66.67 library to explore whether properties hold
Job 339 760 44.61
ReplicaSet 151 204 74.02 - Simulation-based exploration of
Deployment o7 o 037 different configurations of controllers

StatefulSet 470 687 68.41
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Simulating orchestration
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Simulating orchestratlon
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Distributing orchestration

* Replace opaque strictly-consistent key-value store with a Conflict-
free Replicated Data Type such as an Automerge JSON document

* Make every node a leader, resolve discrepancies in JSON on merge
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Questions!

Smart Camera aka “DeepDish”

DeepDish: multi-object tracking with an off-the-shelf Raspberry Pi, Danish et al, ACM EDGESYS
2020

DeepDish on a diet: low-latency, energy-efficient object-detection and tracking at the edge,
Danish et al, ACM EDGESYS 2022

Anonymising Video Data Collection at the Edge Using DeepDish, Pan et al, IEEE HPSR 2023

Consensus & Orchestration

Paxos vs Raft: Have we reached consensus on distributed consensus?, Howard et al, ACM PaPoC
2020

Rearchitecting Kubernetes for the Edge, Jeffery et al, ACM EDGESYS 2021
Examining Raft’s behaviour during partial network failures, Jensen et al, ACM HAOC 2021

AMC: Towards Trustworthy and Explorable CRDT Applications with the Automerge Model
Checker, Jeffery et al, ACM PAPOC 2023

Networking

Do we want the New Old Internet?: Towards Seamless and Protocol-Independent loT Application
Interoperability, Safronov et al, ACM HOTNETS 2021

Revisiting loT Device Identification, Kolcun et al, IFIP TMA 2021

Smart Cities

RACER: Real-Time Automated Complex Event Recognition in Smart Environments, Verma et al,
ACM SIGSPATIAL 2021

Real-time data visualisation on the adaptive city platform, Brazauskas et al, ACM BuildSys 2021
CDBB West Cambridge Digital Twin: Lessons Learned, Brazauskas et al, arXiv:2209.15290 2022
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