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—>[ What-If Scenarios?

Network Digital Twins (NDTs) are a valuable tool for optimizing the configuration of the system.
Data-driven NDTs can empower Autonomous Networks, which are able to self-configure and
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KAPETANIOS: Automated Kubernetes Adaptation through a Digital Twin Normal
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KAPETANIOS uses a digital twin to gather performance statistics and learn a model for the nreq(t) outside bound condition to end
workload. With the model, the cluster autonomously adjusts HPA parameters. data collection*
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Figure 2 Hybrid HPA State Machine. HyPA consists of 3 states. Depending on the different conditions

Behaviors
specified in the figure, the states, and hence the operation mode of the HPA changes.
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Figure 1 Major components of KAPETANIOS. It consists of five building blocks: Production Cluster, Canary

Cluster, Digital Twin, Simulation, and HPAEvolver. A
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Using KAPETANIOS leads to a decrease in the Total Pod Seconds by 37 %, while the (a) Period 1 (b) Period 2 (c) Period 3 (d) Period 4
request latency stays mostly unaffected. Figure 3 Pareto-plot of the 99 %-ile RCT vs Total Pod Seconds as performance metrics.

Towards Digital Network Twins: Can we Machine Learn Network Function Behaviors?
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New metrics for evaluating the accuracy of the model have been developed:

« The accuracy of having a correct rank. This accuracy measures the percentage of requests for which the inferred ranking position of a pod is identical to the real one. A random ranking leads to an
accuracy of ~ 14.28 %. The accuracy of our DNN model reaches 44.3 9% on the Test Dataset.

» The expected error probability in choosing the Pod where to forward the requests. For the Test dataset, the DNN reaches an expected error probability of 17 %, below the random baseline of 50 %.
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