

Database

GRAPH-BASED MODELING AND ANALYSIS OF THE TLS ECOSYSTEM

Motivation

- ► Blocklists often have a limited view of which resources are malicious, depending on how they amass their information
- ► Other researchers have proposed multiple methods to use the blocklists and Internet measurements to find more malicious actors that are not listed on the blocklists
- ► This work evaluates different approaches and compares their results and how well they perform on a larger dataset

- ► Blocklists designate malicious actors and suspicious ressources
- ► The blocklists are split into a training and evaluation set.

Local Community Detection

- ► Different fitness functions [5, 4, 3]
- ► $f_M(C) = \frac{1}{|E|} (k_{in}^C \frac{(2k_{in}^C + k_{out}^C)^2}{4|E|})$ ► $f_{\alpha}(C) = \frac{2k_{in}^C + 1}{(2k_{in}^C + k_{out}^C)^{\alpha}}$

► Proposed by Carter et al. [1, 2] maliciousness Propagate

- score ► All blocked nodes have a fixed score of 1
- ► Each iteration, all nodes with a score push their score to their neighbors
- ► Algorithm stops, when scores converge or the change falls below a certain threshold

Results

Total Number

Blocklist	LCD Modularity	LCD $\alpha_{0.5}$	LCD α_1	PTP
Feodo	2,955	931	788	3,055
SSLBL	865	778	755	$2.57 \cdot 10^5$
StrongIPs	7,869	1,815	1,413	8,596
OpenPhish	$4.22 \cdot 10^5$	$1.55 \cdot 10^{5}$	$1.31 \cdot 10^{5}$	$4.49 \cdot 10^6$

Recall

Blocklist	LCD Modularity	LCD $lpha_{0.5}$	LCD $lpha_1$	PTP
Feodo	7.5%	7.5%	7.5%	7.5%
SSLBL	/	/	/	/
StrongIPs	14%	12%	11%	6.8%
OpenPhish	14%	5.7%	5.2%	19%

Precision

Blocklist	LCD Modularity	LCD $lpha_{0.5}$	LCD α_1	PTP
Feodo	0.43%	0.63%	0.79%	0.43%
SSLBL	/	/	/	/
StrongIPs	0.44%	0.69%	0.86%	0.06%
OpenPhish	0.31%	0.33%	0.37%	0.04%

- ► Changes in the blocklists are used to evaluate the results
- ► High number of potential candidates
- ► Good recall rate
- ► Precision is low, because the blocklists are in comparison much smaller

- ► Performance is a important characteristic for the algorithms
- ► Local Community Detection has better recall and precision rates
- ► Probabilistic Threat Propagation has a much better performance
- ► Graph and blocklists characteristics have a large impact on the analysis
 - Highly connected graphs lead to a low convergence rate for LCD
 - Large structures lead to a large number of nodes with a score for PTP
- ➤ Outlook
 - Performance improvements
 - Building a blocklists accumulator with additional information is possible

Tim Betzer betzer@net.in.tum.de

^[1] K. M. Carter, N. Idika, and W. W. Streilein. Probabilistic threat propagation for network security. IEEE Transactions on Information Forensics and Security, 9(9):1394–1405, Sept.

^[2] K. M. Carter, N. Idika, and W. W. Streilein. Probabilistic threat propagation for malicious activity detection. In 2013 IEEE International Conference on Acoustics, Speech and Signal Processing. IEEE, May 2013. [3] F. Havemann, M. Heinz, A. Struck, and J. Gläser. Identification of overlapping communities and their hierarchy by locally calculating community-changing resolution levels. Journal of Statistical Mechanics: Theory and Experiment, 2011(01):P01023, Jan. 2011.

^[4] M. E. J. Newman and M. Girvan. Finding and evaluating community structure in networks. *Physical Review E*, 69(2), Feb. 2004. [5] A. Zakrzewska and D. A. Bader. A dynamic algorithm for local community detection in graphs. In Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015, ASONAM '15. ACM, Aug. 2015.