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GRAPH-BASED MODELING
AND ANALYSIS OF THE TLS ECOSYSTEM

Motivation

▶ Blocklists often have a limited view of which resources are malicious, depending on
how they amass their information

▶ Other researchers have proposed multiple methods to use the blocklists and Internet
measurements to find more malicious actors that are not listed on the blocklists

▶ This work evaluates different approaches and compares their results and how well
they perform on a larger dataset

Database

▶ Created from DNS and TLS queries ex-
ecuted over a period of a month

▶ Blocklists designate malicious actors
and suspicious ressources

▶ The blocklists are split into a training
and evaluation set.
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Local Community Detection

▶ Community Detection based
on edges

▶ Different fitness functions [5,
4, 3]
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Community

Probabilistic Threat Propagation

▶ Proposed by Carter et al. [1, 2]

▶ Propagate maliciousness
score

▶ All blocked nodes have a fixed
score of 1

▶ Each iteration, all nodes with a
score push their score to their
neighbors

▶ Algorithm stops, when scores
converge or the change falls
below a certain threshold
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Results

Total Number

Blocklist LCD Modularity LCD α0.5 LCD α1 PTP

Feodo 2,955 931 788 3,055

SSLBL 865 778 755 2.57 · 105
StrongIPs 7,869 1,815 1,413 8,596

OpenPhish 4.22 · 105 1.55 · 105 1.31 · 105 4.49 · 106

Recall

Blocklist LCD Modularity LCD α0.5 LCD α1 PTP

Feodo 7.5% 7.5% 7.5% 7.5%
SSLBL / / / /
StrongIPs 14% 12% 11% 6.8%
OpenPhish 14% 5.7% 5.2% 19%

Precision

Blocklist LCD Modularity LCD α0.5 LCD α1 PTP

Feodo 0.43% 0.63% 0.79% 0.43%
SSLBL / / / /
StrongIPs 0.44% 0.69% 0.86% 0.06%
OpenPhish 0.31% 0.33% 0.37% 0.04%

▶ Changes in the blocklists are used to evaluate the results

▶ High number of potential candidates

▶ Good recall rate

▶ Precision is low, because the blocklists are in comparison much smaller

Summary
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▶ Performance is a important characteristic for the algorithms

▶ Local Community Detection has better recall and precision rates

▶ Probabilistic Threat Propagation has a much better performance

▶ Graph and blocklists characteristics have a large impact on the analysis

– Highly connected graphs lead to a low convergence rate for LCD

– Large structures lead to a large number of nodes with a score for PTP

▶ Outlook

– Performance improvements

– Building a blocklists accumulator with additional information is possible
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