

Kira – Scalable Zero-Touch Routing for Autonomic Control Planes

<u>Roland Bless</u>, Martina Zitterbart Institute of Telematics, KIT Zoran Despotovic, Artur Hecker Huawei Research Center, Munich

www.kit.edu

Internet Infrastructure...

is becoming more complex
 higher interdependencies of services
 must be reliable → resilient operation

Internet Infrastructure...

- is becoming more complex
 - higher interdependencies of services
- \blacksquare must be reliable \rightarrow resilient operation

Internet Infrastructure...

- is becoming more complex
 - higher interdependencies of services
- must be reliable \rightarrow resilient operation

Requires configuration via management/control plane

Foundation for Resilient Internet Infrastructures

This Talk

Controllability and Control Planes

Controllability and Control Planes

Services depend on resilient connectivity

Control plane connectivity inherently important

Controllability and Control Planes

Services depend on resilient connectivity

Control plane connectivity inherently important

provides self-organized robust control plane connectivity

Control Planes of Future Networks Need to Support...

Interconnection of a Large Pool of Networked Resources

Compute, Storage, Network

- Scalability
- In-band control
- High dynamics
- Multiple domains
- Various topologies

Resilient Connectivity for Control Plane

- Zero-touch
- Fast convergence
- Network split
- Nomadic networks

Stable Addresses for Moving Resources

ID-based addresses

What KIRA achieves...

Interconnection of a Large Pool of Networked Resources

Compute, Storage, Network

KIRA provides (all-in-one)

- Massive scalability (100,000s of nodes)
- Zero-touch (no configuration)
- Dynamics: fast convergence, loop free
- Topological versatility
- Efficient routes

Resilient Connectivity for Control Plane

Stable Addresses for Moving Resources

- Related Works (examples)
 - UIP: lacks dynamics and efficient routes
 - DISCO: lacks dynamics
 - RIFT, Data Center BGP/OSPF/IS-IS: specific topologies only, not ID-based
 - RPL: traffic concentration near root, zero-touch?

KIRA – Main Components

Routing Tier \rightarrow connectivity

• Forwarding Tier \rightarrow optimization

PathID-based Forwarding

- Eliminates source routing
- Label switching approach
- Reduces overhead

KIRA – Main Components

• Routing Tier \rightarrow connectivity

- ID-based addresses
- Source routing
- On top of link layer

• Forwarding Tier \rightarrow optimization

15

2023-11-23

PathID-based Forwarding

- Eliminates source routing
- Label switching approach
- Reduces overhead

R²/Kad – Path Discovery

Each node

- randomly chooses its NodelD (Overlay)
- explores its 2-hop vicinity (Underlay)
 - X learns contacts A, Y, Q, B, M, ...

R²/Kad – Path Discovery

Each node

- randomly chooses its NodelD (Overlay)
- explores its 2-hop vicinity (Underlay)
 - X learns contacts A, Y, Q, B, M, ...
- X: path to Z?
- Approach:
 - construct underlay routes
 - by using the NodelD-based overlay
 - Source route to contact that is ID-wise closest to destination NodeID (→ recursively)
 - Distance of NodelDs: XOR metric $d(X, Y) = X \oplus Y$
 - Longer shared prefix \rightarrow closer

R²/Kad – Path Discovery Example

- Example: letters close in alphabet ↔ NodeIDs close
- Next (overlay) hop: Y
- $X \rightarrow Y$ via source route <A>
- Assume Y knows Z already
- Y \rightarrow Z via source route <A,Q,M>

FindNodeReq records complete route <X,A,Y,A,Q,M>

incurs path stretch: |shortest path|

Path Discovery,

Routing

R²/Kad

Failure Recovery

R²/Kad – Path Discovery Example

- Shortened recorded route <A,Q,M> is returned to X in FindNodeRsp
- Later packets use shorter route <B,M>
 if X already knows M via

Initial stretch can be reduced for later packets!

R²/Kad offers flexible memory/stretch trade-off...

R²/Kad – Dynamics: Rediscovery Procedure

Two step strategy
 1.) inform ID-wise neighbors about failed link
 2.) ...

R²/Kad – Dynamics: Rediscovery Procedure

Detection of node/link failure in the underlay

- Two step strategy
 - 1.) inform ID-wise neighbors about failed link
 - 2.) rediscover alternative paths via overlay routes (includes "Not Via" information)

Validity

- State sequence numbers
- Path information age
- Periodically
 - probe contacts for broken paths
 - Iookup own NodelD

R²/Kad

Recovery

Routing

KIRA – Main Components

Routing Tier \rightarrow connectivity

- ID-based addresses
- Source routing
- On top of link layer

• Forwarding Tier \rightarrow optimization

PathID-based Forwarding

- Label Switching Approach
- Eliminates Source Routing
- Reduces Overhead

Forwarding Tier – Fast Forwarding

Get rid of source routes for control plane traffic

- Reduce per packet overhead
- Approach: replace source routes with PathIDs
 - PathID(<A,Q,M,Z>)= Hash(A | Q | M | Z)

■ Use PathID as unique label for path segment → Label Switching

Forwarding Tier – Fast Forwarding

Get rid of source routes for control plane traffic

- Reduce per packet overhead
- Approach: replace source routes with PathIDs
 - PathID(<A,Q,M,Z>)= Hash(A | Q | M | Z)

■ Use PathID as unique label for path segment → Label Switching

Precalculate PathIDs for 2-hop (physical) vicinity
 Explicit path setup for paths ≥ 6 hops

Evaluation – Simulation Setup

- Simulations using RoutingSim → Dynamics (node/link failures)
 OMNeT++ 5.7
- 10 repetitions with different seeds
- Random processing time per node uniformly drawn from [0...500]µs
- Various topologies of different sizes up to 200,000 nodes:
 - Small World: Power-Law, Watts Strogatz, Internet-AS level
 - Regular: Grid, Fat Tree, Mixed Fat Tree/Power Law
 - Random: Random, Random Geometric
 - Real: Topology Zoo

Evaluation – Topological Versatility

- Multiplicative Stretch ⁻ Bucket size k=40 RPL-ACP:
 - Storing-mode
 - Single DODAG
 - Single DODAG version

Evaluation – Dynamics

100.000 nodes Power-Law

Conclusions

KIRA

provides self-organized zero-touch control plane connectivity → foundation for autonomic and resilient networks

- Not (yet) a replacement for OSPF/IS-IS/BGP
- Designed for large provider domains (e.g., 5G, 6G) to work across multiple providers
- Security design ongoing
- KIRA integrates a DHT for simple name resolution/service discovery
- Supports scalable and efficient topology discovery (\rightarrow KeLLy)
- Special end-systems mode → reduces overhead even more
- Supports multi-path routing and forwarding

