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EVALUATING QUIC IMPLEMENTATIONS ON HIGH-RATE LINKS
Motivation

QUIC is implemented in user-space

▶ Multiple implementations from different developers

▶ Various languages and architectures

Advantages and Disadvantages

+ Flexibility

− More context switches

Approach

Goal: Identify performance bottlenecks in QUIC stacks

▶ Dedicated physical hosts for client and server

▶ Support for core pinning, profiling, DPDK, fiber tapping, . . .

▶ Collect CPU, OS, and NIC metrics with various tools

▶ Experiment orchestration via POS [1]

⇒ Flexibility, Portability, Reproducibility
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▶ High variations between implementations

▶ Implementations in C & Rust show best performance

▶ Performance as client / server often varies

▶ Some implementations have interoperability issues

Performance Bottlenecks

▶ Performance is usually limited by the CPU of the
sender

▶ Default UDP socket buffer size is too small and
causes packet drops

▶ Offloading features that could significantly reduce
CPU load are rarely used

▶ Acknowledgement frequency is often too high for
high-rate links

▶ Crypto operations are CPU intensive but not a bot-
tleneck

Summary

Take Away Messages

▶ QUIC implementations show different behavior
(acknowledgement frequency, congestion control, . . . )

▶ Many QUIC implementations do not use available optimizations

▶ Default OS settings often not optimized for QUIC

Outlook

▶ More implementations to be evaluated

▶ Support for Multipath QUIC
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