
Chair of Network Architectures and Services
School of Computation, Information, and Technology
Technical University of Munich

EVALUATING QUIC IMPLEMENTATIONS ON HIGH-RATE LINKS
Motivation

QUIC is implemented in user-space

▶ Multiple implementations from different developers

▶ Various languages and architectures

Advantages and Disadvantages

+ Flexibility

− More context switches

Approach

Goal: Identify performance bottlenecks in QUIC stacks

▶ Dedicated physical hosts for client and server

▶ Support for core pinning, profiling, DPDK, fiber tapping, . . .

▶ Collect CPU, OS, and NIC metrics with various tools

▶ Experiment orchestration via POS [1]

⇒ Flexibility, Portability, Reproducibility

Measurement Setup

QUIC
Interop
Runner

Client

Server

Collect Data:
- ethtool

- tcpdump

- perf

- . . .

. . .

pidstat

keylog

ethtool

Results Analysis

100
G

bit/s

setup env

pre scripts

run client / server

post scripts

W
or

kfl
ow

Evaluation

aioquic
nginx

s2n-quic
mvfst

picoquic
quic-go

quiche
LSQUIC

Server

LSQUIC

quiche

quic-go

picoquic

mvfst

s2n-quic

neqo

aioquic

C
li
en

t

168 695 2031 2031 4337 2294 4499 4368

111 773 2048 1963 3371 2234 3910 4136

175 1457 2021 2254 2232 2180 2457

285 976 2010 2028 2043 2287 4133 4157

330 2288 2074 1982 3729 3640 3799

349 188 1874 4044 1178 4594 900

186 406 783 701 855 850 793 864

260 297 236 279 257 263 240

1000

2000

3000

4000

G
o

o
d

p
u

t
in

M
b

it
/

s

▶ High variations between implementations

▶ Implementations in C & Rust show best performance

▶ Performance as client / server often varies

▶ Some implementations have interoperability issues

Performance Bottlenecks

▶ Performance is usually limited by the CPU of the
sender

▶ Default UDP socket buffer size is too small and
causes packet drops

▶ Offloading features that could significantly reduce
CPU load are rarely used

▶ Acknowledgement frequency is often too high for
high-rate links

▶ Crypto operations are CPU intensive but not a bot-
tleneck

Summary

Take Away Messages

▶ QUIC implementations show different behavior
(acknowledgement frequency, congestion control, . . . )

▶ Many QUIC implementations do not use available optimizations

▶ Default OS settings often not optimized for QUIC

Outlook

▶ More implementations to be evaluated

▶ Support for Multipath QUIC

[1] S. Gallenmüller*, D. Scholz*, H. Stubbe, and G. Carle. The pos Framework: A Methodology and Toolchain for Reproducible Network Experiments. In The 17th International Conference on
emerging Networking EXperiments and Technologies (CoNEXT ’21), Munich, Germany (Virtual Event), Dec. 2021.

[2] B. Jaeger, J. Zirngibl, M. Kempf, K. Ploch, and G. Carle. QUIC on the Highway: Evaluating Performance on High-Rate Links. In International Federation for Information Processing (IFIP)
Networking 2023 Conference (IFIP Networking 2023), Barcelona, Spain, June 2023.

Marcel Kempf kempfm@net.in.tum.de


