

Distributed Inference at the Edge: Variant Parallelism

Navidreza Asadi, Chair of Communication Networks, Technical University of Munich

Maziar Goudarzi, Computer Engineering Department, Sharif University of Technology

1

Distributed Edge AI

Why Deep Learning on Edge?

- Lower latency (processing near data sources)
- Data privacy concerns
- Higher availability

Why Distributed Inference?

- AI trends are towards more complicated tasks and larger deep learning models.
- Edge devices have limited compute, memory and storage resources.
- It may **not** be **feasible** to deploy the whole neural network model on a single device.
- **Faster response time** might be achievable by applying **parallelism** techniques across multiple compute nodes.

Need for a Better Parallelism

Model Parallelism

- × Huge communication cost
- × Multiple instances of single point of failure
- × Inherent sequential blockages.

Class Parallelism

- $\checkmark\,$ Improved parallelism and communication cost
- × Multiple instances of single point of failure
- × Limited flexibility
- × Homogeneity: all sub-models have similar characteristics.

Data Parallelism

× Atomic data can not be split into further pieces.

- 1. Higher fault-tolerance
- 2. Better parallelization across multiple (heterogenous) compute nodes
- 3. Maintaining accuracy as much as possible

How?

- We propose a bottom-up ensemble-based model distribution.
- Each variant is a lighter pruned version of the reference model that has its own characteristics.
- Variants are independent of each other and can produce complete prediction vectors.
- Each node returns only the top k (e.g., k = 2) elements of its prediction vector with the highest probability.
- Variants can be flexibly selected or generated based on a device characteristics.

Results

Single Variant Accuracy and Scaling Accuracy

- Different accuracy vs. MACs can be achieved using different combinations of variants.
- Variants can be chosen based on available resources.

Impact of Each Variant

• Each point shows aggregated accuracy of all variants when omitting one of them.

3

5

Future Directions

- Distributed Inference in untrusted environments
 - E.g., Byzantine attacks
- Optimization of input data communication
- Automated generation of variants for more complicated tasks

References

[*] N. Asadi et al., "Variant Parallelism: Lightweight Deep Convolutional Models for Distributed Inference on IoT Devices" IEEE Internet of Things Journal, 2023.
[1] G. Wang et al., "sensAI: ConvNets Decomposition via Class Parallelism for Fast Inference on Live Data" MLSys '21, 2021.

Variants Performance Characteristics

Model	Response Time (ms)	Speedup	MACs Gain	Params Gain
MobileNetV2 (Baseline)	226	1x	1x	1x
V ₅	71	3.2x	5.6x	6.1x
V ₄	53	4.2 x	7.6 x	6.3x
V ₃	38	5.9 x	10.9 x	6.7x
<i>V</i> ₂	26.5	8.6x	17.5x	6.9x
V ₁	17	13.2 x	31x	7.1x
senAI ¹	-	2x	3.5x	5x