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Distributed Edge Al

Why Deep Learning on Edge?

Need for a Better Parallelism

Model Parallelism

* Lower latency (processing near data sources)
« Data privacy concerns
« Higher availability

x Huge communication cost
x  Multiple instances of single point of failure
x Inherent sequential blockages.

Why Distributed Inference? Class Parallelism

« Al trends are towards more complicated tasks and v
larger deep learning models.

* Edge devices have limited compute, memory and
storage resources.

« It may not be feasible to deploy the whole neural
network model on a single device.

» Faster response time might be achievable by
applying parallelism techniques across multiple
compute nodes.

Variant Parallelism’

Compute Node 1

Improved parallelism and communication cost
x  Multiple instances of single point of failure

x  Limited flexibility

x Homogeneilty: all sub-models have similar
characteristics.

Data Parallelism

x  Atomic data can not be split into further pieces.

Compute Node 1

Compute Node 1

Compute Node n Compute Node 2 Compute Node 2
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2. Better parallelization across multiple (heterogenous) ESULLS

compute nodes Single Variant Accuracy and Scaling Accuracy

3. Maintaining accuracy as much as possible - Different accuracy vs. MACs can be achieved using

different combinations of variants.
 Variants can be chosen based on available resources.
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* We propose a bottom-up ensemble-based model
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of its prediction vector with the highest probability. Impact of Each Variant

« Variants can be flexibly selected or generated based

. . « Each point shows aggregated accuracy of all variants
on a device characteristics.

when omitting one of them.

MBNetV2

All variants
. All variants 63 .ﬁ w/o V1 MBNetVZ.
X957 ©® w/o V1 w/o V2
" " 9 @ w/oVv2 63 W/o V7 w/o V3
1)
Future Directions RS . wiovs
%95'4 w/o V5 /o w/oV6 “W/oV5
i
o
e

 Distributed Inference in untrusted environments
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« Automated generation of variants for more
complicated tasks

Variants Performance Characteristics

Response Time (ms) Speedup MACs Gain Params Gain

MobileNetV2
R efe re n Ces (Baseline) 226 1x 1x 1x
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