Decentralized integration of non-terrestrial networks into 6G

Internet Research Retreat Raitenhaslach

Sept 12th, 2022

Paulo MENDES

Expert in Communication Network Architectures and Design Airbus paulo.mendes@airbus.com

This presentation reflects my personal view on the topic and not Airbus position

Starting point: Flexible satellite technology

OneSat can be fully reconfigured while in orbit – and it is capable of adjusting its coverage area, capacity and frequency "on the fly" to meet evolving mission scenarios.

Encompasses active antennas enabling several thousand beams.

Multi-beam RF technology

Free Space Optical Links

Flexible payloads

Latest development: Constellations

		<u>LEO at 600 km</u>		LEO at 1500 km		<u>MEO at 10000 km</u>	
Elevation angle	Path	Distance D (km)	Delay (ms)	Distance D (km)	Delay (ms)	Distance D (km)	Delay (ms)
UE: 10°	satellite - UE	1932.24	6,440	3647.5	12,158	14018.16	46.727
GW: 5°	satellite - gateway	2329.01	7.763	4101.6	13.672	14539.4	48.464
90°	satellite - UE	600	2	1500	5	10000	33.333
Bent pipe satellite							
One way delay	Gateway-satellite_UE	4261.2	14.204	7749.2	25.83	28557.6	95.192
Round Trip Delay	Twice	8522.5	28.408	15498.4	51.661	57115.2	190.38
Regenerative satellite							
One way delay	Satellite -UE	1932.24	6.44	3647.5	12.16	14018.16	46.73
Round Trip Delay	Satellite-UE-Satellite	3864.48	12.88	7295	24.32	28036.32	93.45

2022 Internet Research Retreat

Target development: 3D networks at different altitudes

The SpaceDataHighway The 1st Operational Optical Communication system

more than **50,000** successful relay links since 2016

Outstanding service availability greater han **99.5**%

Up to **39** link sessions per day

Downloaded more than 3,000,000 GB of data from space

SpaceDataHighway can download data from space in near-real-time

What benefits does our services bring to our customers

- Enabling last minute satellite reactivity and tasking
- Real time data access and high volume data transfer
- Improved data latency on a global scale
- Protected comms to support next-gen platforms and multi-domain operations

2022 Internet Research Retreat

AIRBUS

Challenge: Turn the Internet into a large scale 3D network

Y

Turning the Internet into a large scale 3D network

Vision

Internet able to support a large scale of new services, such as (distributed) in-network computing (for instance for the coordination among autonomous vehicles), while transparently integrating 3D space/airborne networks.

Motivation

Need to devise a more decentralized, scalable and low cost way to operate and manage large scale networks.

Potential Path

Allow dynamic space/airborne networks to deliver services, and not just connectivity, based on different semantics (host, data, service, geolocation), while being self-sustainable by observing and acting autonomously in order to optimise their performance even in scenario with intermittent connectivity and resource availability.

Goal Make a large number of new services accessible to all 7.3 billion people.

Challenge 1: Self-sustainable networks able to deliver services

Road to Cognitive service-centric networks

Challenge 2: Global Networking based on different domains

2022 Internet Research Retreat

Challenge 2: Global Networking based on different domains

Future Scenario

In a large scale heterogeneous 3D Internet, with tens of billions of nodes being connected directly and indirectly, there is a trend towards network specific and local requirements, behaviors, and semantics.

Geographic, topology, service, user community, Ad Hoc, etc

Goal How to reach global interoperability in a 3D Internet?

• Current limitations:

- No transparency to IPv6 extension headers.
- Unreliable path MTU discovery.
- Problems with TCP maximum segment size.
- Administrative domain boundaries:
 - Prone to leakage caused by human error.
 - May be difficult to define in dynamic domains.
- Protocols with semantics limited to specific domain.
- Current management of (routing) domains:
 - Careful configuration of boundary routers and firewalls.
 - Careful management of address assignment to hosts.
 - Configuration errors can lead to unwanted traffic patterns.

- Future perspective on multiple domains:
 - Domains may extent throughout the Internet:
 - Based the notion of network segments.

Based on RFC 8799

- Domains may overlap each other in an arbitrary fashion:
 - Network slices, service function chains.
- Domains may operate based on different semantics:
 - HostID, DataID, ServiceID, GeoID.
- Domains may be created and managed automatically:
 - Adaptation of boundaries over time.
 - Perform peer verification (identity and role).

Thank you!

Paulo Mendes paulo.mendes@airbus.com

manna mannes mannamanna

C.