5G Slicing with Programmable Data Planes

Motivation

Service classes in 5G networks
- Enhanced mobile broadband (eMBB)
- Massive machine type communication (mMTC)
- Ultra-reliable low-latency communication (URLLC)

Network slicing
- Divide physical resources into slices (for different applications etc.)
- Tenants rent slices from infrastructure operator

Implementation

Current implementations rely on architecture specific instructions [1, 2] → Restrict to vanilla P4 architecture-independent instructions [3]

Investigated P4 targets
- Software-based target using 14p4s [4]
- Hardware-based switching ASIC

Measurement Setup

P4 target as Device under Test (DuT)
- Two tenants (A and B) use shared resources
- Baseline scenario: only one tenant runs
- Slicing scenario: two tenants run simultaneously

Tenant A
- Runs an Access Control List
- Total entries: 15 000 SW / 80 000 HW

Tenant B
- Runs a simple forwarder
- No table entries required

Program Slicing

Software target
- Latencies close to respective baselines
- Small increase due to slicing overhead

Hardware target
- Tenant B’s latency shifts to tenant A’s baseline
- Intensive resource usage affects all tenants

Hardware Slicing

Two tenants with A and B
- Latencies close to respective baselines
- Tenants do not affect each other
- Exclusive hardware slice for tenants

Limitation: number of available processing pipes of target

Conclusion

Software target
- Performance limited
- Less interference between single tenants

Hardware target
- High performance
- Suffering from resource intensive tenants
- Hardware slicing eliminates interference
→ Estimation of service guarantee performance
