
Active Heterogeneous Hardware 
and its Impact on System Design
Jana Giceva
Department of Informatics, TUM



Hardware trends

On-chip network

5
4

3

D
R
A
M

D
R
A
M

D
R
A
M

D
R
A
MMC MC

MC

NIC 
+ 

FPGA2

SSD

near-memory 
computing

smart DMA/accelerators on the Memory controller

smart 
storage

smart NICs

SoC accelerators (e.g., GPU, FPGA)
1

MC

src: https://www.karlrupp.net/2018/02/42-years-of-microprocessor-trend-data/

Only 3% annual 
increase in last years

Dennard’s scaling and power 
limitation leaves us with one 

option – specialization

https://www.karlrupp.net/2018/02/42-years-of-microprocessor-trend-data/


The new Golden Age for Computer Architecture

▪ Patterson and Hennessy – Turing Award Lecture in 2018

▪ The next focus should be in:
▪ Domain Specific Architectures (DSAs)
▪ Big expectations for performance efficiency by linking DSLs to DSAs

Allow the programmer to express the semantics of a program 
in a high level language and then let the system and 

compiler do optimizations for the underlying architecture.

▪ This is the same philosophy that databases use for decades.

▪ Time to resurrect the idea for a database machine? 

[DIRECT -- DeWitt’78, Gamma Database Machine – DeWitt et al.’90] 
[RAPID @ SIGMOD’18, DPU @ MICRO’17, Q100 @ MICRO’15, etc.]



Driving trends for systems research

HTAP and BI

Graph 
processing

             Modern hardware               .

▪ Increasing size and complexity

▪ Heterogeneous resources

▪ Diversity among machines

SPARC M7

          Application and workload         .

▪ Data intensive

▪ Efficient resource usage

▪ Predictable performance

ML



Opportunity 1: Database technology for the masses
Databases have a wealth of technology accumulated over 
decades

But, many neighboring domains mirror what is being done in 
databases:

New compilation techniques
New data-types and languages to deal with them
Optimization for multicore, designs for GPUs, FPGAs

And there is a great deal that could be re-used: e.g., operator 
models, compilation techniques, composability of operators, 
optimization and scheduling techniques.

Main problem is the rigidity of relational operators when used 
as building blocks

     

Driven by hardware developments:
▪ DSLs for particular application domains 
▪ e.g., XLA, GreenMarl, LINQ, etc.

▪ Compilation and optimisation techniques 
▪ e.g., Bohrium, DLVM, Dimwitted, Weld, Voodoo, etc.

▪ Cross compilation to run on various platforms (CPU, GPU, FPGA)
▪ e.g., TVM, GraphGen, OpenCL, etc.

▪ Great deal of DB technology that is being mirrored or could be reused.

▪ Questions: should we use this opportunity to rethink databases and join
the effort of extending their support for modern workloads?



A

SQL Graph analytics, ML

A
A

A

B C D E F G

A A A A

C

E
G

D

B

HW platform implementations
of sub-operator A

▪ Operator primitives for hardware 
acceleration on- and off-chip
▪ e.g., SPARC M7 data accelerators (DAX)

▪ Hybrid data processing (e.g. FGPA/CPU) 
▪ FPGA-based data partitioning 

[Kara et al., SIGMOD’16]

▪ Stochastic gradient decent (SGD)

An idea: lose SQL operators and 
make sub-operators first class citizens

Flexible for constructing various 
dataflows, both SQL and more complex 
analytics.

Sub-operators are logical functions that 
perform basic data transformations and 
management tasks

Granularity chosen such that we not only 
benefit from more efficient compilation to 
CPU/GPU but also to offload computation 
to where data sits and moves.



Sub-operator based system architecture

Sub-operator based ISA

Optimizer Compiler Execution
engine

Existing database technology La
n

gu
ag

e 
R

u
n

ti
m

e

Heterogeneous hardware platforms

SQL operators dataflow models

Declarative languages, DSLs (SQL, LINQ, HiveQL, Spark, etc.)



Example sub-operator: data partitioning (FPGA-based)

Hybrid (FPGA/CPU) data processing, e.g., FPGA-based data partitioning

“FPGA-based Data Partitioning” Kara et al. [SIGMOD’17] 



Industry Example #1 (Oracle)
Oracle’s SQL in Silicon – SPARC M7

Data Movement System (DMS)
• Filter and projection
• hash/range partioning, 
• scatter/gather

DAX
• In-line compression, 

decompression
• Bloom-filter
• Predicate evaluation
• Filtering by bit-vector
• Encryption

src: White Paper, 
August 2016

Oracle Lab’s DPU (MICRO’17)



Industry Example #2 (Baidu)

Baidu’s XPU (Hot Chips’17)

Baidu’s SQL in the Cloud (Hot Chips’16)



Computational storage

Example on-going project done by Maximilian Bandle pushing computation to data storage
Device: SSD + dedicated ARM A53 SoC (+ FPGA) for computational tasks
Investigating:
▪ What pays off to be offloaded?

▪ Datasets, workloads, operators
▪ Building an analytical model of device’s resource capacities

▪ Compute power, Internal/external bandwidth ratio, memory transfer costs, accelerators, 
energy efficiency

E
st

im
at

ed
 T

im
e 

[s
]

TPC-H Query



Driving trends for systems research

             Modern hardware               .

▪ Increasing size and complexity

▪ Heterogeneous resources

▪ Diversity among machines

SPARC M7

          Application and workload         .                  Deployment                    .

DRAM

core core

GDDRAM

?

▪ Server consolidation

▪ Virtualization

▪ Multi-tenancy

▪ Data intensive

▪ Efficient resource usage

▪ Predictable performance

HTAP and BI

Graph 
processing

ML



Accelerators are deployed in the cloud

Microsoft’s Azure configurable cloud (MICRO’16) Amazon’s FPGA-acceleration using F1 (HotChips’17)

Google’s TPU 3.0 pods (Google I/O 2018)



     … and they are disaggregated resources

▪ Almost all are accessible over a high-bandwidth network
▪ So the CPU and the traditional OS no longer have the high-level overview

Which opens many interesting systems (research) questions, which we could 
maybe discuss in (after) this retreat?

▪ How does this impact the load on the network?
▪ What’s the (new) role of the switch?
▪ Can we explore declarative interfaces, pushing down application-level semantics 

(cost models) to the brain (control plane) overlooking the networked resources?



Policy Engine

System-level

OS

DB storage engine

DB system-level
properties

System-level facts

Declarative interface

DB-specific facts

Push database specific facts:
▪ #Requests (in a batch)
▪ Datastore size (#Tuples, and TupleSize)
▪ SLA response time requirement

Cost models:

and stored procedures.

Application-specific

DB system-level
properties

System-level facts

System-level

Cost models

Stored procedure

Policy Engine
OS

OS Policy Engine



Many implications for systems design

▪ Which function should be offloaded and to which device? 
▪ Recall that active components can be anywhere
▪ The granularity of the function-offload depends on the device’s capabilities 

and where the data is at that time
▪ How to program the active hardware? What is the interface? DSAs?
▪ How to best leverage compilers?

▪We are investigating the potential of the MLIR proposal
▪ How to decide which computation to offload? 

▪ Generate suitable cost-models, runtime resource monitoring
▪ Revisit the wisdom of database optimizers

▪ Who manages the active components? Should they be context-switched? 
▪ How do we virtualize them? Where is the control plane?
▪ Their own drivers, or managed by the OS, application, runtime, switch, network?

▪ What is the failure domain?



Requirement for a holistic solution

Modern workloads: data analytics

Modern machines

DRAM

core core

GDDRAM

CSD Flash

Smart NICs

ASIC acceler.

Data processing system

Runtime engine / Compiler

Operating system

▪ Current trends require a holistic
approach and cross-layer optimization.

▪ Needs joint work by:
▪ Systems: OS, runtime, networking, 

virtualization, security.

▪ Data management: data-flows, cost-based 
optimizers, workload requirements.

▪ Compilers and PL: knowledge-transfer 
through layered IRs between DSLs and DSAs.

▪ Computer architects to influence the 
future DSAs, architectures and devices.



Computational storage

Example on-going project done by Maximilian Bandle pushing computation to data storage
Device: SSD + dedicated ARM A53 SoC (+ FPGA) for computational tasks

Current status:
▪ Umbra database runs on ARM
▪ Existing model suggests non-trivial savings even for simple push-downs

Next steps:
▪ End-to-end query execution between the host and the CSD
▪ Integrating the cost-modeling for when to offload to CSD in the optimizer.

Stay tuned!



DRAM DRAM DRAM DRAM

core core core core core corecore core

Multicore machine

FWKFWK Basslet Basslet BassletControl plane                                         Compute plane   

1. Leverage the multi-kernel model (e.g., Barrelfish [SOSP’09]).

2. Split the machine’s resources into a control and a compute plane.

3. Specialize the compute plane kernels for parallel data-processing.

OS support for data processing

In collaboration with Gerd Zellweger (now at VMWare Research)



Customizing the OS for accelerators

▪ Optimize the OS kernel for heterogeneous architectures

▪ API for DAG-like jobs that can easily offload tasks to the accelerator transparently

▪ Link the mechanism to the OS policy engine and the optimizer.

core core

DRAM GDDRAM

core core

DRAM

NUMA 1 NUMA 2 Accelerator

O
S

H
ar

d
w

ar
e

Control
plane

Control
plane

Compute plane
(Basslet)

Compute plane
(Basslet)

Ongoing work by Daniel Grumberg at Imperial College London



Systems support for heterogeneous hardware

Cloud providers: Microsoft, Amazon, Google, etc.
Platform providers: Intel, Nvidia+ARM, Mellanox, Xilinx

From the research side (just a small subset): 
▪ The Multikernel: A new OS architecture for scalable multicore systems [OSDI’08]
▪ Helios: Heterogeneous Multiprocessing with Satellite Kernels [SOSP’09]
▪ IX: Dataplane Operating System [OSDI’14]
▪ Arrakis: OS is the control plane [OSDI’14]
▪ M3: A HW/OS co-design to tame heterogeneous manycores [ASPLOS’16]
▪ Popcorn – OS support for heterogeneous ISA [EuroSys’15, ASPLOS’17]
▪ LITE – OS support for RDMA in the data centers [SOSP’17]
▪ Solros – a data-centric OS for heterogeneous computing [EuroSys’18]
▪ LegoOS: A disseminated, distributed OS for Hardware Resource Disaggregation [OSDI’18]
▪ SemperOS: A Distributed Capability System [ATC’19]
▪ Automatic Virtualization of Accelerators [HotOS’19]
▪ When should the network be the computer? [HotOS’19]
▪ LeapIO: Efficient and Portable Virtual NVMe Storage on ARM SoCs [ASPLOS’20]
▪ Do OS abstractions make sense on FPGAs? [OSDI’20]



DB/OS knowledge gap

Big semantic 
gap!

Application requirements
and characteristics

Runtime system state

Hardware properties 
+

OS

DB



DB/OS co-design

Operating System

Policy Engine

Resource Profiler

Mechanisms

Services

InterfaceDeclarative

Execution 
engine

Storage
engine

Optimizer 

     Rich     

Address the knowledge gap

▪ Who knows what? Where
should knowledge reside?

▪ How can the OS help with
HW complexity & diversity?

▪ What DB knowledge can
improve OS policies?

[CIDR’13, VLDB’14]

Customize the OS kernel

▪ Where does the OS gets in 
the way? What’s redundant?

▪ What mechanisms are
needed by modern
workloads?

▪ What OS design can enable 
kernel customizations?

[DaMoN’16]



Where can we find the accelerators?

On-chip network

21

4

D
R
A
M

D
R
A
M

D
R
A
M

D
R
A
MMC MC

MC

NIC + FPGA5SSD

near-memory computing smart DMA/accelerators on the Memory controller

smart storage
smart NICs

SoC accelerators (e.g., GPU, FPGA)

3

Intel HARP, Xilinx, IBM
DPU, XPU, DAX
NPU, Configurable Cloud



Compute plane – how does it work?

Application Threads Tasks

C0

int main() {
  bas_ptask_
  enqueue(ptask, …)
}

Control Plane

void t(arg) {
  f(arg);
}

void t2(arg) {
  …
}

A
p

p
licatio

n
O

S / B
asslet

Compute Plane

…

Thread scheduler

IRQ Handling

Memory mgmt.

B
as

sl
et

 R
u

n
ti

m
e

p
task

p
task

p
task

p
task task

task

task

task

task



A

SQL Graph analytics, ML

A
A

A

B C D E F G

A A A A

C

E
G

D

B

HW platform implementations
of sub-operator A

▪ Flexible for constructing complex
dataflows

▪ Operator primitives for hardware 
acceleration on- and off-chip
▪ e.g., SPARC M7 data accelerators (DAX)

▪ Hybrid data processing (e.g. FGPA/CPU) 
▪ FPGA-based data partitioning 

[Kara et al., SIGMOD’16]

▪ Stochastic gradient decent (SGD)

An alternative: sub-operators as first class citizens


