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Self-Driving and Data Driven Networks?
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Analyze

Measure

Control

N. Feamster and J. Rexford, “Why (and How) Networks Should Run Themselves,” CoRR, vol. abs/1710.11583, 2017.

It is not about cars!

It is about networks that 
measure, analyze and 
control themselves!

Detect 
problems!

Verify 
solutions!

Solve 
problems!



But Data-Driven Systems Can be Tricked

3Source: https://openai.com/blog/adversarial-example-research/

In typical ML applications … and in networking



Adversarial Input Only Critical for Machine Learning?
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… but this is also true for existing solutions by human!

Adversarial input is not only critical for self-driving networks …
It’s already a problem!

Machine Learning-
based solution

Solution designed by 
human

Adversarial InputAdversarial Input

Why?



Benchmarking Network Algorithms, Architectures etc…
The Traditional Way …
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Our idea: Use ML to automatically find adversarial input to benchmark 
legacy and self-driving networks 

Traces Models Human‘s 
Best 

Guesses

Data-Driven

Not always 
available

Not 
generalizing

Hmm…
Biased? Alternative 

opponent?



Towards Automated Network Optimization and Design
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Benchmark
Instance

Generator

Problem 
Instance

Network Algorithm Problem 
Solution

The Traditional Way!

Machine
Learning-based  

Network Algorithm

O’zapf t is [BIG DAMA’17]

ML/AI

Adversarial
Problem 
Instance

Old!

NetBOA [NetAI’19]

TOXIN [CoNEXT‘19]
Empowerement [SelfDN’18]

ISMAEL [TNSM’19]

challenge

ML/AI vs ML/AI and Human

Fast and 
efficient!

This talk!



Data-Driven Adversarial Network Benchmarking in Data Centers: 
NetBOA
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Use Cases of This Talk: Data Center Network Benchmarking
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(1) Benchmarking Open vSwitch: NetBOA



VM 2

Host

VM 1

Network Traffic Generation in a Testbed
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Open
vSwitch

CPU
Packets over time

Traffic
Generator Traffic

Sink

Goal: Find network traffic configuration that maximizes CPU load

Config

Match Rule
Forward

* DROP



How many packets to send? How should headers look like? What protocol to use? When to send 
packets? Etc.

Network Benchmarking is Challenging: Complex and Huge 
Configuration Space
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Number of Network 
Packets [1000 – 5000]

Batch Size
[1-5]

Packet Inter Arrival Time 
[1ms – 13ms]

VLANs
[1-5]

Human still
involved!



NetBOA: The Bayesian Optimization Measurement Loop
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NetBOA

Bayesian Optimization

Open
vSwitch

Traffic
Generator

Traffic
Sink

CPU
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Update Posterior
Fit Gaussian Process

Acquisition Function
Maximize Expected Improvement

(1) Set configuration

(2) Measure until 
confidence is reached

(3) New measurement 
points

(4) Machine learn 
performance model

0
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C
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OVS Performance for Number of Packets and Inter-arrival Times
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§ Performance models are non-trivial
§ Surprising: Sending less network packets over time can lead to significantly higher CPU

0-1 % CPU

20 % CPU4000 packets, 
IAT 3 ms

5000 packets, 
IAT 1 ms

NetBOA finds this implementation weak spot! 30% CPU increase!



§ We are using the OvS switch with the Megaflow Cache enabled
§ For instance for 5000 packets: We trigger roughly every >2 ms a flow insertion + removal
à Forcing OvS to continuously run through the array + resizing it

Why? Let Us Look At OvS Behavior!
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Time

1 2 N…

Match

1 Drop

Match

1 Drop
2 Drop

Match

1 Drop
2 Drop
3 Drop
… …
N Drop

OvS rule timeout 10 seconds

1

Match

1 Drop
2 Drop
3 Drop
… …
N Drop

1

Match

2 Drop
3 Drop
… …
N Drop

Match

1 Drop
2 Drop
3 Drop
… …
N Drop

Every packet
triggers 2 times 

a costly
array resizing 

operation!



Adversarial input can harm your systems!

This talk: Data-Driven approach to automatically generate adversarial input to find 
weak spots, security holes … to make your systems bullet-proof! 

Information missing in this talk: measurement details, simulation details, details on the 
used machine learning and artificial intelligence algorithms, … anything else :D?

Use concepts like NetBOA to receive continuous feedback about your 
solutions/implementations

Summary
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Next steps: 
Integrating 
MoonGen
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Thank you!

Questions?



§ Algorithmic complexity attacks (software domain):
§ SlowFuzz
§ PerfFuzz

§ Automated Synthesis of Adversarial Workloads for 
Network Functions, ACM Sigcomm 2018

§ Policy Injection: A Cloud Dataplane DoS Attack, ACM 
Sigcomm DEMO 2018

What Could be Seen as Related
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Why Important?

Implementation aspects can 
harm performance

Could even be used to attack 
your systems!



NetBOA vs Random Search

B
etter

Faster
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NetBOA Random Search

24 % higher CPU utilization



Bayesian Optimization: NetBOA for Inter Arrival Time (IAT) Parameter
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Update Gaussian 
Process at 

runtime

Expected 
Improvement 
guides search

Stopping criteria 
aborts search

Sampling from 
Gaussian Process 
gives confidence


