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Self-Driving and Data Driven Network

Solve
Detect problems!
Cce problems! 1 S) ,
| /4 .
Verify
Analyze solutions!
Control
Measure

N. Feamster and J. Rexford, “Why (and How) Networks Should Run Themselves,” CoRR, vol. abs/1710.11583, 2017.



But Data-Driven Systems Can be Tricked

(Self) Driving Under the Influence:
Intoxicating Adversarial Network Inputs

Roland Meier"), Thomas Holterbach(,
Stephan Keck!", Matthias StahlitV,
Vincent Lenders@, Ankit Singla(,
Laurent Vanbever(

“panda” “gibbon”
57.7% confidence 909.3% confidence (M @)
ETH:urich R
In typical ML applications ... and in networking

Source: https://openai.com/blog/adversarial-example-research/



Adversarial Input Only Critical for Machine Learning? TUTI

Adversarial Input

-
Machine Learning- Solution designed by
based solution human N
J \ Why?
... but this is also true for existing solutions by human!
AN AN

Adversarial input is not only critical for self-driving networks

It’s already a problem!



Benchmarking Network Algorithms, Architectures etc...

The Traditional Way ...
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Our idea:

Alternative
opponent?

Data-Driven

to benchmark




Towards Ayitomated Network Optimization and Design TUTI

Old!
Adversarial Machine V\/
Problem

Problem »| Learning-based |_ Solut
Instance Network Algorithm olution

challenge

Benchmark
Instance

Fast and
NetBOA [NetAlI'19] efficient!

O’zapftis [BIG DAMA'17]
Empowerement [SelfDN’18]
ISMAEL [TNSM’19]

N
D
(o

TOXIN [CoNEXT19]

The Traditional Way!




Data-Driven Adversarial Network Benchmarking in Data Centers:
NetBOA

NetBOA: Self-Driving Network Benchmarking

Johannes Zerwas, Patrick Kalmbach, Laurenz
Henkel

Technical University of Munich, Germany

Wolfgang Kellerer, Andreas Blenk

Technical University of Munich, Germany

ABSTRACT
Communication networks have not only become a critical infras-
tructure of our digital society, but are also increasingly complex and
hence error-prone. This has recently motivated the study of more
automated and “self-driving” networks: networks which measure,
analyze, and control themselves in an adaptive manner, reacting
to changes in the environment. In particular, such networks hence
require a mechanism to recognize potential performance issues.
This paper presents NetBOA, an adaptive and “data-driven” ap-
proach to measure network performance, allowing the network
to identify bottlenecks and to perform automated what-if analy-
sis, exploring improved network configurations. As a case study,
we demonstrate how the NetBOA approach can be used to bench-
mark a popular software switch, Open vSwitch. We report on our
implementation and evaluation, and show that NetBOA can find
performance issues efficiently, compared to a non-data-driven ap-

Gabor Rétvari
Budapest University of Technology and Economics,
Hungary

Stefan Schmid

Faculty of Computer Science, University of Vienna, Austria

1 INTRODUCTION

Motivated by the complex, manual, and error-prone operation of
today's communication networks, as well as the increasing depend-
ability requirements in terms of availability and performance, the
network community is currently very much engaged in developing
more automated approaches to manage and operate networks. A
particularly interesting vision in this context are self-driving net-
works [10, 17]: rather than aiming for specific optimizations for
certain protocols and objectives, networks should learn to drive
themselves, maximizing high-level goals (such as end-to-end la-
tency), in a “context-aware”, data-driven manner. At the heart of
such self-driving networks hence lies the ability to adaptively mea-
sure, analyze, and control themselves. While over the last years,
many interesting first approaches have been proposed related to
how self-driving networks can control themselves [4, 10, 16], less
is known today about how self-driving networks can analyze and




Use Cases of This Talk: Data Center Network Benchmarking TUTI

(1) Benchmarking Open vSwitch: NetBOA
)

VMware buys Nicira for $1.05 billion

VMware eyes software-defined networking as it aims to take its
virtualization efforts to the network.

. By Larry Dignan for Between the
f In Lines | July 23, 2012 -- 20:11 GMT

(2111 BST) | Topic: Cloud
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gl e’ VMware said Monday that it will buy Nicira in a deal valued at $1.05 billion
' in cash.
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Network Traffic Generation in a Testbed TUTI

VM 1 VM 2

Traffic
Generator

Traffic
Sink

Packets over time - Open

Forward
* DROP

vSwitch

Goal: Find network traffic configuration that maximizes CPU load




Network Benchmarking is Challenging: Complex and Huge TLT]
Configuration Space

How many packets to send? How should headers look like? What protocol to use? When to send
packets? Etc.

_ B

2

0

> >
Packet Inter Arrival Time VLANSs
[1ms — 13ms] [1-5]
4'5 i ,
l\. Human still > >
involved! Number of Network Batch Size

Packets [1000 — 5000] [1-5]
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NetBOA: The Bayesian Optimization Measurement Loop TUTI

(2) Measure until
confidence is reached

Traffic [ H j - Open
>

Traffic

Sink

Generator vSwitch

(3) New measurement

(1) Set configuration

points
NetBOA 1
7
5 5000 30
— Bayesian Optimization < =5
(4) Machine learn 7 %
Acquisition Function performance model C
Maximize Expected Improvement 8 - §
. =
Update Posterior S 10004
Fit Gaussian Process Z 1' T T T T '4 0

Inter arrival times [milliseconds]



OVS Performance for Number of Packets and Inter-arrival Times

NetBOA finds this implementation weak spot! 30% CPU increase!

5000 packets, -
IAT 1 ms o -1 % CPU
4000 pack > ' 030 O
packets, 20 % CPU
0 pacrs, s 70 7 U 025 2
g, 0.20 S
= 0.15 3
Q. o
c 2 0.10 o
g 0.05
T 0.00

|AT

ms]

= Performance models are non-trivial

= Surprising: Sending less network packets over time can lead to significantly higher CPU



Why? Let Us Look At OvS Behavior! TUTI

CIN NN Y N CENE | | e rooke:

triggers 2 times

Drop Drop 1 Drop f
2 Drop 2 Drop a.cos .y.
3 Drop array res_lzmg
operation!
Drop

Time
OvVS rule timeout 10 seconds

= We are using the OvS switch with the Megaflow Cache enabled
= For instance for 5000 packets: We trigger roughly every >2 ms a flow insertion + removal

-> Forcing OvS to continuously run through the array + resizing it
13



Summary TLTI

Adversarial input can harm your systems!

This talk: Data-Driven approach to automatically generate to find
weak spots, security holes ... to make your systems bullet-proof!

Information missing in this talk: measurement details, simulation details, details on the
used machine learning and artificial intelligence algorithms, ... anything else :D?

Next steps:

Use concepts like NetBOA to receive continuous feedback about your Integrating

solutions/implementations

MoonGen



References TUTI
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Thank youl!

Questions?



What Could be Seen as Related TUTI

= Algorithmic complexity attacks (software domain): Why Important?
= SlowFuzz

= PerfFuzz

= Automated Synthesis of Adversarial Workloads for
Network Functions, ACM Sigcomm 2018

= Policy Injection: A Cloud Dataplane DoS Attack, ACM
Sigcomm DEMO 2018
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NetBOA vs Random Search

NetBOA

iteralfon step

24 % higher CPU utilization

Random Search

1 2— 3 4

I I I I
10 30 50 70 90
iteration step
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Bayesian Optimization: NetBOA for Inter Arrival Time (IAT) Parameter TUTI

Update Gaussian iteration 0
Process at )
runtime g p)
Sampling from |2 @.
G§u33|an P_rocess 0.0 _I_ﬁ*"""ﬁl ] ]‘a', nl
gives confidence a

ping criteria
rts search

Expe
Improvi
guides search
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