

Measuring the Feasibility of Teleoperated Driving in Mobile Networks

Stefan Neumeier, Ermias Andargie Walelgne,16.09.19Vaibhav Bajpai, Jörg Ott, Christian Facchi

Paper presented at TMA 2019

- Introduction
- Requirements
- Setup
- Dataset + Results
- Conclusion

Teleoperated Driving

Remote control of Vehicles

- Vehicles may not solve all situations autonomously
 - Until Level 5 (fully autonomous vehicles)
 - Supporting of non autonomous features
- From Level 5
 - Software/Hardware failures
 - Exceptional situations

Challenges in Teleoperated Driving

- Teleoperated Driving needs Cellular Network
- Bandwidth
 - Variable
 - Probably Low
- Latency
 - Variable
 - Probably High
- Jitter
- No Connection
- -> Leads to problematic situations

Requirements for Teleoperated Driving

Downlink:

٠

•

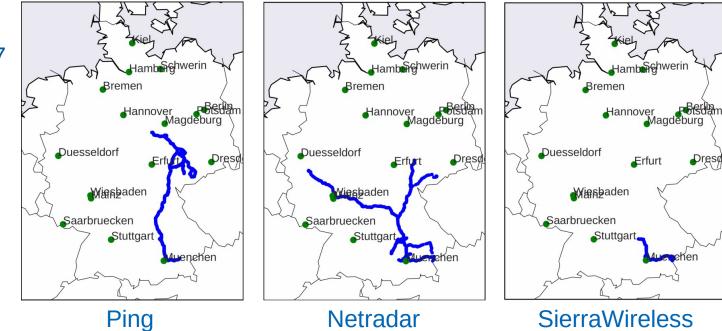
- 0.25 MBit/s

- Based on: Steering command all 10 ms
- Uplink:
 - Min. 3 MBit/s
 - Based on: Resolution 640 x 480; three 90° cameras (front: two, back: one)
 - Latency:
 - Max. 250 ms
 - 300 ms tolerable latency based on user study (- Time for Sensors/Actuators of 50 ms)
 - Jitter max 150 ms

Measurement Setup

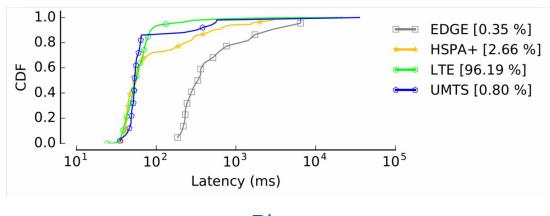
• Hardware

- Lenovo B
- SierraWireless
- Software
 - Ping
 - Netradar
 - Smartphone measurement tool
 - Iperf3

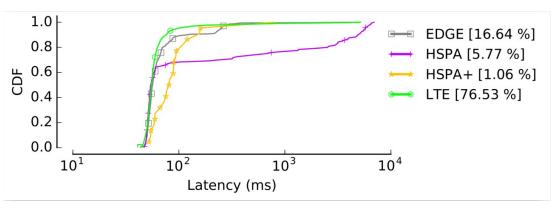

٠

- Two setups for easy use and comparison
 - Availability of test vehicle
 - Easiness in using

- Measurement Period
 - May 2017 end of December 2017
- About 5200 km and 78 h of driving
 - Ping: 2180 km
 - Netradar: 2670 km
 - SierraWireless: 354 km



Results - Latency


Ping

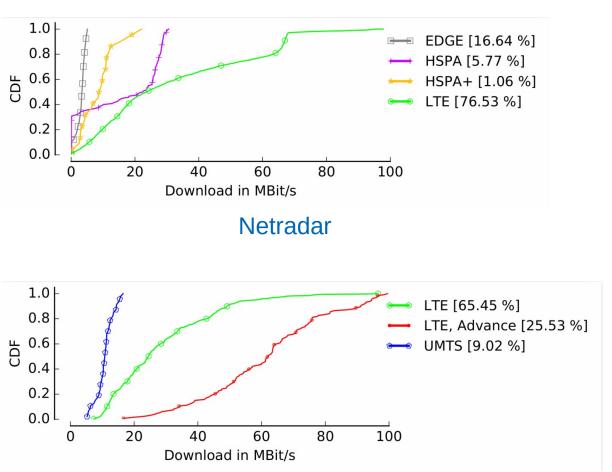
٠

- Median latency of about 55.14 ms
- 96 % below 250 ms
- Median jitter of about 10 ms
- 5 % above 150 ms
- Netradar
 - UDP latency
 - Median latency of about 55 ms
 - 96 % below 250 ms
 - Median jitter of about 2 ms
 - 4 % above 150 ms

Ping

Netradar

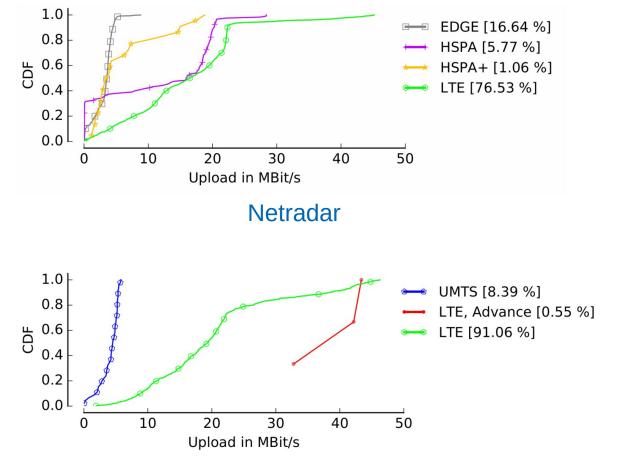
Results – Downlink Throughput


Netradar

٠

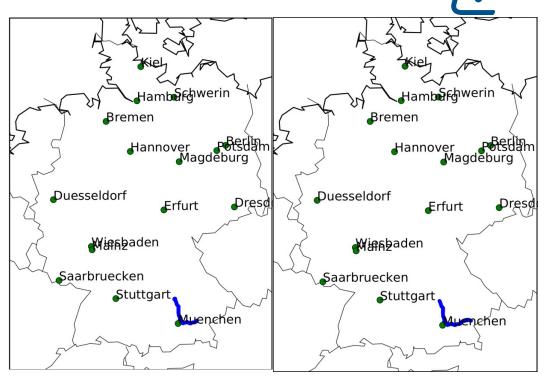
- TCP troughput —
- Median of about 17 MBit/s _
- 95 % above 0.25 MBit/s _
- Median variance of 0.15 MBit/s —

SierraWireless ٠


- Iperf3 throughput _
- Median of about 28 MBit/s _
- 99 % above 0.25 MBit/s _
- Median variance of 0.41 MBit/s _

SierraWireless

Results – Uplink Throughput


- Netradar
 - Median of about 12 MBit/s
 - 87 % above 3 MBit/s
 - Median variance about 0.07 MBit/s
- SierraWireless
 - Median of about 18 MBit/s
 - 98 % above 3 MBit/s
 - Median variance about 0.07 MBit/s

SierraWireless

Results – Identical Routes

- Latency Ping and Netradar
 - Ping: about 57 ms
 - Netradar: about 55 ms
 - \rightarrow Results are roughly comparable with same Hardware
- Throughput Netradar and SierraWireless
 - Downlink: 15 MBit/s (Netradar) ↔ 32 MBit/s (SierraWireless)
 - Uplink: 13 MBit/s (Netradar) ↔ 20 MBit/s (SierraWireless)
 - \rightarrow Most likely attributed to the two antennas

Ping/Netradar

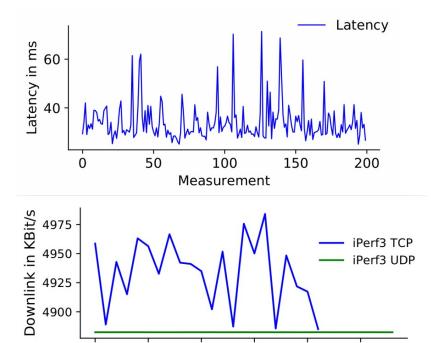
Netradar/SierraWireless

11/15 Measuring the Feasibility of Teleoperated Driving in Mobile Networks (Paper at TMA 2019) | MIR3 | Stefan Neumeier, 16.09.2019

Results – Different Scenarios

Handover

- Latency and Throughput get worse if changing cellular technology (e.g. LTE \rightarrow 3G)
- Median decrease to 15 % of original speed (Throughput)
- Median increase of 15 % in Latency

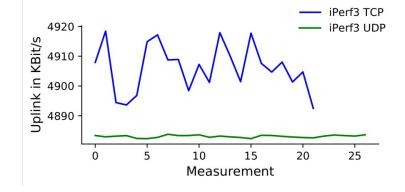

Speed

- 0 150 km/h
- No influence on latency or throughput
- Signal-Strength
 - Better Signal-Strength, higher throughput
 - Latency: No tendency can be seen
- Distance to base station
 - Usually < 5 km
 - No influence can be seen

Results – Whitelisting as possible Approach

• Whitelisting: Teleoperated Driving only in areas

that provide sufficient network performance


10

5

0

15

Measurement

20

25

Limitations

- Amount and type of measurements
- Changes in network are likely to occur
- Results reflect client's perspective
- Network is treated as Black-Box
 - No information on how busy cells were

→ Nevertheless, results can be used to get a first impression if Teleoperated Driving could work at all with contemporary mobile networks.

- Teleoperated Driving may be feasible with contemporary mobile networks
- Whitelisting can work
- However, Teleoperated Driving can not be used in all situations
- Handover can have negative influence
- Signal strength can influence throughput
- Fluctuation of latency can increase with far vehicles (e.g. more than 250 km away of operator)
- Future work has to deal with limitations, e.g. improve the whitelisting
 - If you have further questions: *stefan.neumeier@thi.de*