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• Available edge nodes resources: GPU, CPU, RAM
• Network conditions and fluctuations
• Application requirements: accuracy, recall, speed
• Impact of multi-tenancy
• Performance impact of sharing a GPU across multiple users
• Heterogeneous devices: Jetson Nano, TX2, server GPUs
• High-precision networks vs quantized optimized networks

• Centralized, cloud-based (overseer) which decides:
• How/which edge node should serve a mobile 

agent in proximity following our heuristic
• when to offload at the edge, when to use the 

cloud or if to just run everything locally
• Edge nodes and mobile agents periodically send 

updates to notify their current status (e.g. position, 
current load)

• Two macro-sets of parameters influence:
• Network and Hardware constraints
• Human Mobility constraints
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Overview
• Computer Vision powers every mobile Augmented 

Reality (AR) application available on mobile devices
• Machine Learning for mobile AR applications increases 

immersiveness (e.g. Pokemon GO, PinAR):
• SLAM (sparse or dense), SIFT
• Image classification
• Object recognition
• Image segmentation
• Panoptic segmentation

• Such models either run directly on the phone 
(downgraded version) or make use of cloud resources

Human Mobility Constraints
• User’s position and network coverage (WiFi/Mobile Network)
• Trajectory prediction for preemptive resource allocations
• Mobility and Data Traffic must show strong correlation*

• Smartphones are either not powerful enough or the 
applications too demanding in terms of energy drain

• Support old smartphone which do not have GPU 
acceleration, AI chips or octa-core CPUs

• Mobile Data Traffic is often expensive
• AR applications are highly demanding on data traffic
• Deep Learning models on mobile devices deliver 

reduced accuracy due to simplifying optimization steps 
like pruning, layers fusion, quantization etc.

• High performance mobile AR experience in a multi-
tenant scenario regardless of mobile devices hardware

• Provide a scheduling algorithm based on a multivariate, 
multi-constrained heuristic with a trifecta target function: 

• maximization of throughput (FPS) 
• minimization of latency
• extension of battery life

• Proactively allocate resources as users move in-and-
out from edge nodes’ coverage area

• Optimize inter-node scheduling for efficient GPU 
sharing

• Exploit nearby infrastructure by offloading computation 
to hardware:

• In the Cloud
• At the Edge

• Optimize for network condition, mobility, available 
hardware resource, required accuracy, etc.

• Centralized decision making for better resource 
allocation
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