Chair of Network Architectures and Services Department of Informatics **Technical University of Munich**

Design

SCALABLE ONLINE TCP THROUGHPUT LIMITATION ANALYSIS

Towards Real-time TCP Throughput Root Cause Monitoring

dispersion score

 $< th_1$

False

mixed or

unknown

Introduction

So far:

- Siekkinen et al. [5, 6]: Toolkit for the detection of Application Limited Periods (ALP) and different kinds of network limitations
- Limitation: Approach is based on analysis of full traffic captures \rightarrow only offline analysis

Goal: Develop a tool to perform TCP throughput RCA in real-time

RCA Method:

- Calculate different scores, each indicating another root cause
- Use decision tree to determine actual root cause
- Scores:
 - Dispersion Score
 - Retransmission Score
 - **Receiver Window Score**
 - Burstiness Score

True

unshared

bottleneck

Design goals:

- Scalability and efficient resource consumption
- Modularity

Implementation based on FlowScope [1, 2]

- Capable of processing data rates up to 100 Gbit/s and beyond
- Per packet processing and periodically processing functionality

Modules:

- Position Estimation
- ALP Detection
- **RTT** Estimation
- Capacity Estimation
- RCA Score calculation

Data Set for Evaluation

Capacity Estimation Module

Generated data set for the evaluation of capacity estimation and RCA classification with a TCP measurement framework by Jaeger et al. [4]

- Labeled data and reproducibility
- Allows to analyze a wide spectrum of test cases

Capacity estimati Test Case	on: Varied Parameters	5	Values		<u> </u>	
Cong. Con. Algo. Packet loss Capacity Concurrent flows	TCP Algorithm Loss on the bottleneck Bottleneck bandwidth Number of concurrent flows		Reno, Cubic, BBR 0% - 25% 5 Mbit/s - 100 Mbit/s 1-25	Bottleneck L1 S1 S2 Sender		
RCA estimation:				PCAP generation with	measurement-framework	
Test Case	C.C. Algo.	RTT in m	s Loss in %	Load Generator	Device under Test	
Unshared BN Shared BN Receiver Win.	Reno, Cubic, BBR Reno, Cubic, BBR Reno, Cubic, BBR	10 - 300 10 - 300 50 - 300	0, 0.001, 0.01 0, 0.001, 0.01 0, 0.001, 0.01	PCAP Generation Moongen	3bit/s FlowScope w. RCA Profiling	
Congestion Win.	Reno, Cubic, BBR	150 - 400	0, 0.001, 0.01	Test setup in the testbed		

Implemented a passive capacity estimation module based on former research by En-Najjary et al. [3]

- Works with packet pair dispersion derived from inter-arrival times (IAT)
- Supports estimation near the client and near the server
- More suitable method is selected based on position, to ensure that analyzed packets passed the capacity bottleneck

Test Case	Bottleneck	Acc. (client side)	Acc. (server side)
Flow Duration	10mbit	99.0%	100%
TCP Algorithm	10mbit	96.7%	93.3%
Loss	10mbit	78.1%	77.2%
Capacity	5-100mbit	70.0%	81.4%
Concurrent Flows	10mbit	98.4%	97.6%

Measured accuracy for client and receiver side measurements. Estimate is classified as 'accurate' if the relative error is less than 5%.

Performance Considerations

Analyzed runtime of the expiry check for each module

Capacity estimation is very expensive, big potential for improvement

Potential performance limitations of our tool:

- ▶ Memory: Fix connection state size of $156 \text{ KB} \rightarrow 160 \text{ GB}$ memory required for 1 million concurrent flows
- ► CPU: Measured throughput with one single analyzer thread (without capacity estimation)
 - Significant throughput decline when aggregated connection state size converges LLC size
 - LLC approximately filled with 64 flows

Module	Runtime	1.2 Analyser throughput [Mhit/s] / 600
Connection identification	21 ns	1.0- 550
ALP detection	6 ns	
Position estimation	2 ns	500 ज़
RTT estimation	9 ns	$ \underline{\circ} 0.6 - Duration [s] $

Effectiveness

Distribution of calculated scores for measurements without loss presented as CDFs:

- Score modules return expected values
- Trade-off for threshold values: more false-positives vs. less correct estimates
- Insufficient data sets for test cases limited by the transport layer, due to retransmissions during TCP slow start.

Capacity estimation 15167 ns Dispersion score calculation 94 ns Retransmission score calculation 13 ns 2536 ns Receiver window score calculation Burstiness score calculation 21 ns

[1] P. Emmerich, M. Pudelko, S. Gallenmüller, and G. Carle. Flowscope: Efficient packet capture and storage in 100 gbit/s networks. In 2017 IFIP Networking Conference (IFIP Networking) and Workshops, pages 1–9, June 2017.

- [2] P. Emmerich, M. Pudelko, Q. Scheitle, and G. Carle. Efficient dynamic flow tracking for packet analyzers. pages 1–6, 10 2018.
- [3] T. En-Najjary and G. Urvoy-Keller. Pprate: A passive capacity estimation tool. In 2006 4th IEEE/IFIP Workshop on End-to-End Monitoring Techniques and Services, pages 82–89, April 2006.
- [4] B. Jaeger, D. Scholz, D. Raumer, F. Geyer, and G. Carle. Reproducible Measurements of TCP BBR Congestion Control. Computer Communications, May 2019.
- [5] M. Siekkinen, G. Urvoy-Keller, and E. W. Biersack. On the interaction between internet applications and tcp. In *Proceedings of the 20th International Teletraffic Conference on Managing Traffic* Performance in Converged Networks, ITC20'07, pages 962–973, Berlin, Heidelberg, 2007. Springer-Verlag.
- [6] M. Siekkinen, G. Urvoy-Keller, E. W. Biersack, and D. Collange. A root cause analysis toolkit for tcp. Comput. Netw., 52(9):1846–1858, June 2008.

Simon Bauer, Kilian Holzinger, Benedikt Jaeger, Paul Emmerich and Georg Carle

{ bauer | holzingk | jaeger | emmericp | carle }@net.in.tum.de