Self-* Breakout Session
Origins (?): Self-Stabilization

Self-stabilizing algorithms pioneered by Dijkstra (1973): for example self-stabilizing mutual exclusion.

“I regard this as Dijkstra’s most brilliant work. Self-stabilization is a very important concept in fault tolerance.”

Leslie Lamport (PODC 1983)
The Idea

Put simple: Recover from any possible state!
Formally

A self-stabilizing system can be started in any arbitrary configuration and will eventually exhibit a desired “legal” behavior.

That is: convergence and closure (once legal, stay legal)
Examples

Radia Perlman: Vision of “Self-Stabilizing Internet”

E.g., self-stabilizing spanning tree protocols

E.g., self-stabilizing SDN control plane

Convergence != stop: *token ring*

Renaissance: A Self-Stabilizing Distributed SDN Control Plane
Marco Canini, Iosif Salem, Liron Schiff, Elad Michael Schiller, and Stefan Schmid.
38th IEEE International Conference on Distributed Computing Systems (ICDCS), Vienna, Austria, July 2018.

SKIP+: A Self-Stabilizing Skip Graph
Riko Jacob, Andrea Richa, Christian Scheideler, Stefan Schmid, and Hanjo Täubig.
Journal of the ACM (JACM), Volume 61, Number 6, Article 36, November 2014.
Differences in Self-Driving Networks?

- Networks *measure*, control and optimize themselves
- Reconfiguration *triggered by workload/demand* (e.g., traffic): *data / AI* plays an important role
- More *intent/task driven*: high-level goals
- Goal is „*optimization“, not reaching legal state“
The Ideal Self-Driving Network?

• E.g., perfect prediction:
 – Automatically installs a new firewall rule 1sec before it is needed
Issues (1)

- Properties *during convergence* / moving from one configuration (local optimum) to know one?
 - How long and deep can the valley be?
 - How long are we willing to drive?
 - Maybe even illegal / not policy compliant?

- Concept of *empowerment* from robotics: sometimes suboptimal configuration is better than optimal if it comes with *flexibilities to react* efficiently
 - Are there „robust equilibria“, analogous to game theory?
Issues (2)

• Interesting question: can the network notice itself *when it needs more data*? E.g., sensor data?

• Can the network note itself when decision goes *beyond its capabilities*? When is human decision needed? Like in self-driving cars? Or do *crowdsourcing*?
Issues (3)

• At which scale do we envision self-* networks?

• *Internet-wide*: but then what if there are conflicting goals? Can the network at least detect conflict?

• Self-* systems should be modular and composable
Issues (4)

• Which parts of a network can we make self-* first („let go“)? E.g., *queue management*? Something non-critical? Can we have *formal guarantees as well as AI*?

• What is the cost of migrating to such networks? *Incremental deployment*?
Issues (5)

• Use cases:
 – E.g., *community networks*: naturally distributed resource management
 – E.g., self-optimizing *wifi networks* in houses (across tenants): lots of potential
 – Revisit *self-* storage systems*