

5G Service Based Architecture enables universal core

Hannu Flinck, 18.09.2018

Why 5G? New user demands – with extremely diverse requirements

Unleashing the potential of 5G – driven by Service Based Architecture

3 © Nokia 2018

Architectural shifts are underway...

3GPP Control Plane evolution

from boxes to cloud native Network Functions and services

Service Based Architecture (SBA) Scalable core architecture for the 5G era

		5G Universal Adaptive Core Common Data Layer					
5G cellular access			EC Sor	vice Rece	d Control	Diana	
		programmable per slice					
			NRF	UDM	NSSF	NEF	
WLAN access							
<u>نا</u>							
			AMF	AUSF	SMF	PCF	
Wiroling 200055							
	-1	Programmable User Plane Scalable data center & IP/optical network					
	- 1						

Major Changes

- Control Plane User Plane Separation
- Service Based Architecture (SBA)
- Compute Storage Separation

Agile Virtual Edge/Core

- Flexible distribution, scaling of edge and core functions
- Access specific control functions minimized, and contained in edge functions

Common core platforms deliver all services over all forms of access

Network Functions are made out of Network Function Services Service consumers use services over well defined REST-interfaces

- NF service: a functionality exposed by a NF through a service based interface.
- NF services should be self-contained, reusable and independent.
- Within a given communication context, a service may take the role of either service consumer or service producer.

Service Based Architecture Principles of network function and service discovery

NF selection separated from discovery to allow flexible NF-specific selection methods

Microservices design pattern applied to 5G Network Functions How to find optimal size for microservices

- Microservices are an architectural and organizational style to software development.
- Microservices:
 - Unit of distribution with single responsibility.
 - Part of a distributed system.
 - Are loosely-coupled.
 - Have a single bounded context.
 - Contained in their own server (VM or container).
- Challenges:
 - Finding the optimal size of a microservice is an art.
 - Complexity moves to interactions of the microservices.
 - How to design communication across microservice boundaries?
 - A microservice will often use a combination of sync and async communication styles.

Granularity and scalability of Network Functions and their services Modelled as microservices: define the bounded context

granularity Y- functional decomposition 12-data partitioning X - duplication monolith Scale cube

- X-axis scaling:
 - Multiple copies of the service behind a loadbalancer.
 - Provides capacity and high availability.
- Y-axis scaling:
 - Number of microservices.
 - Size measurements: e.g. number of responsibilities, number of files/LOC.
 - Number of interactions.
- Z-axis scaling:
 - Each service/server is responsible for only a subset of the data.

Ideal microservice

Role of Service Framework in 5G Discovery, selection and routing

3GPP model for Rel. 15 – "Centralized discovery"

Centralized discovery and availability monitoring by NRF (Network Repository Function), with distributed selection and message routing.

Service Framework discussions for Rel. 16 – Service Mesh for micro-services

Centralized control plane for discovery, availability monitoring, selection and message routing with distributed user plane ("sidecar")

Use of microservices leads to Service Mesh approach Microservice = unit of distribution with bounded context

- Microservices approach leads to hundreds to thousands of small service instances that may be rescheduling from moment to moment by the orchestrator.
- Each micro service can be written in a different language with different libraries leading to different versions and behavior of protocols.
- Service mesh is a networking abstraction layer above TCP/IP to handle service to service communications.

QUIC vs. HTTP/2

Does QUIC bring any advantages over HTTP/2 in the SBA or microserve settings?

- Connection Setup delay ~ latency
 - 3 RTTs and 1 RTT for reconnect with HTTP/2.
 - QUIC can achieve faster connection establishment by combining encryption and connection handshakes: 1 RTT and 0-RTT.
 - BUT for 0-RTT Data is limited to idempotent requests.
- Stream Multiplexing in both.
 - Helps to avoid head of line blocking. But needs mapping of request–responses to their own parallel streams.
 - BUT what about the bounded context? A shared connection seems to create a shared context!
- Connection Migration.
 - QUIC allows connection migration while a session is in progress. BUT only for client side.
 - Maybe MPQUIC would be helpful here.
- Pluggable Sender Side Congestion Control in QUIC at the application level.
 - Interference with other traffic? May vary between implementations.
- Improved header compression and Improved Recovery and Acknowledgement..
 - Are these useful inside a DC?

Conclusions

- 5G core is being re-designed to be cloud native in the Service Based Architecture.
- Services are currently grouped into Network Functions that expose their contained services to NF consumers. A centralized Network Repository Function offers service discovery.
- The interaction model of the services follows REST client server model that has its own limitations.
- In micro-service philosophy bounded context defines the service granularity. But how to factor in optimal use of HTTP2 and QUIC multiplexing and connections?
- Not clear if QUIC really provides justifiable benefits in this use case.
- How would transition to QUIC happen?
 - HTTP2 over QUIC? A proxy GW?

