
© Nokia 20181

Hannu Flinck, 18.09.2018

5G Service Based Architecture enables 
universal core

Public



© Nokia 20182

Why 5G? New user demands – with extremely diverse requirements

Smart Factories
1 PB/day

Devices
1.5 GB/day

Autonomous driving  
1ms  latency

Billions of sensors 
connected Design and architecture principles:

flexible | scalable | automated | cloud native 
software centric | dynamic network slicing

Public



© Nokia 20183

5G Future X

Universal Adaptive Core

Programmable Network OS

Digital Value Platforms

Augmented Cognition Systems

Powerful
Flexible

Intelligent
Efficient

Converged
Edge Cloud

Software-
defined

Massive Scale
Access

Long 
fibers

Converged
Node

Short
waves 
& wires

Emerging Devices 
& Sensors

Smart Network 
Fabric

Autonomously 
optimized coverage
& capacity

Nokia Bell Labs
innovation in action

Unleashing the potential of 5G – driven by Service Based Architecture

Public



© Nokia 20184

Architectural shifts are underway…

NFV

HIGHEST 
PERFORMANCE

LOWEST COST 
PER BIT

MOST 
PERSONALIZED

SDN
Edge 

Cloud/Access
Architectural shift 1:

Virtualizing the Network Architectural shift 2:

Software-Defining the Network 

Architectural shift 3:

Distributing the Core Cloud… in 
the Network

Architectural shift 4:

Distributing the Access Network

• Current radio processing and 
control is distributed.

• Current core is centralized.

• Radio processing and control 
more centralized for scalability.

• Core more distributed for low 
latency.

Today

Target 

BTS

Large
number

Low
number

BTS

Core

Core

Radio
processing

Core
processing

Edge cloud

I                                                            Public



© Nokia 20185

Cloud-native approach for the 5G core network

Public 

Web-scale capacity with programmability

5G Future X

Smart Network
Fabric

Cloud-native architecture

Common SW

Deployment

Service 
architecture

Culture

Microservices

Dev Ops

PlanCode

Build

Test

Functional split

C C C C

Containers

Upgradeability / Scalability



© Nokia 20186

from boxes to cloud native Network Functions and services

3GPP Control Plane evolution

Common Data layer

Control Plane

User Plane

AMF SMF

UE (R)AN UPF DN

NG8

NG11

NG3 NG6

NG2 NG4NG1

AFNG7

DN

NG6

UPF

NG4

NG9

PCF NG5

AUSF NG13 UDM

NG10NG12

NG15

NG core: reference point based 

Source TR 23.799 V2.0

Service Based Architcture using

cloud native Network Functions

UPFRAN DN
N6

N3
N4N2

NG core: Service Based Architecture  



© Nokia 20187

Service Based Architecture (SBA)
Scalable core architecture for the 5G era

Major Changes

• Control Plane – User Plane Separation
• Service Based Architecture (SBA)
• Compute Storage Separation

Common core platforms deliver all services over all forms of access

5G cellular access

WLAN access

Wireline access

5G Universal Adaptive Core

Programmable User Plane

Common Data Layer

Scalable data center & IP/optical network

5G Service-Based Control Plane
programmable per slice 

Agile Virtual Edge/Core

• Flexible distribution, scaling of edge and core functions
• Access specific control functions minimized, and 

contained in edge functions

Public



© Nokia 20188

Service consumers use services over well defined REST-interfaces
Network Functions are made out of Network Function Services

Network 
Function

Service 1

Network Function (NF)

Network 
Function

Service n

Network 
Function

Service 2

…

NF_service1_interface NF_service2_interface NF_service n_interface

Public

• NF service: a functionality exposed by a NF through a service based interface. 

• NF services should be self-contained, reusable and  independent. 

• Within a given communication context, a service may take the role of  either service 
consumer or service producer. 



© Nokia 20189

Service Based Architecture
Principles of network function and service discovery

Consumer
NF

NRF

Producer
NF

Producer
NF

Producer
NF

Producer
NF

1

NF registration:
Network functions register 
services/capabilities to the 

NRF (directly or via OAM)2

NF discovery:
Consumer obtains a list of candidate NFs 

via NRF query; candidates are based 
on NF type, set, network slice, 

required services. 

3

NF selection:
Consumer selects one of the 

candidate producer NFs based 
on criteria such as load, 

location,  and other metadata

NF selection separated from discovery to allow flexible NF-specific selection methods

Consumers should 
cache NRF responses 
to keep NRF load low

 subscribe to NRF updates

Public



© Nokia 201810

How to find optimal size for microservices
Microservices design pattern applied to 5G Network Functions

• Microservices are an architectural and organizational style to software development.

• Microservices: 

– Unit of distribution with single responsibility.

– Part of a distributed system.

– Are loosely-coupled.

– Have a single bounded context.

– Contained in their own server (VM or container).

• Challenges: 

– Finding the optimal size of a microservice is an art.

– Complexity moves to interactions of the microservices.

– How to design communication across microservice boundaries?

– A microservice will often use a combination of sync and async communication styles.

Public

AMF

UPF

V-SMF

Nsmf_PDUSession Nsmf_EventExposureN4

UDSF
topology

UPF  selectionNAS SM message
handling

N3 tunnel
management 

Service area and 
roaming management

NF consumers

Session Manager

Function



© Nokia 201811

Modelled as microservices: define the bounded context
Granularity and scalability of Network Functions and their services

• X-axis scaling:

– Multiple copies of the service
behind a loadbalancer.

– Provides capacity and high
availability.

• Y-axis scaling:

– Number of microservices.

– Size measurements:  e.g. 
number of responsibilities, 
number of files/LOC.

– Number of interactions. 

• Z-axis scaling:

– Each service/server is 
responsible for only a subset 
of the data.

Ideal microservice 
granularity 

Scale cube

Public



© Nokia 201812

Role of Service Framework in 5G

Discovery, selection and routing

Centralized discovery and availability monitoring by NRF (Network 

Repository Function), with distributed selection and message routing.

Centralized control plane for discovery, availability monitoring, selection 

and message routing with distributed user plane (“sidecar”)

3GPP model  for Rel. 15 – “Centralized discovery” Service Framework discussions  for Rel. 16 
– Service Mesh for micro-services

D

BA

C

IP ntw

N

R

F

Service Framework. Could be a sidecar proxy 
(e.g. a utility in Kubernetes Pod) loosely 
coupled to the main application container

D

BA

C

Public



© Nokia 201813

Microservice = unit of distribution with bounded context
Use of microservices leads to Service Mesh approach

• Microservices approach leads to hundreds to thousands of small service instances that may be 
rescheduling from moment to moment by the orchestrator.

• Each micro service  can be written in a different language with different libraries leading to different 
versions and behavior of protocols.

• Service mesh is a networking abstraction layer above TCP/IP to handle service to service 
communications.  

Shared Proxy (ENVOY, Linkered, 
etc.)

Host
POD/Container

Service POD/Container
Service POD/Container

Service 
POD/Container

Service 

Host

POD/Container
Service 

Proxy 

POD/Container
Service 

Proxy 

POD/Container
Service 

Proxy 

In case of more capable 
proxy like Linkerd, this 
deployment will cost 
few hundred MBs of 
memory per pod.

Public



© Nokia 201814

Does QUIC bring any advantages over HTTP/2 in the SBA or microserve settings?
QUIC vs. HTTP/2

• Connection Setup delay ~ latency

• 3 RTTs  and 1 RTT for reconnect with HTTP/2.

• QUIC can achieve faster connection establishment by combining encryption and connection 
handshakes: 1 RTT and 0-RTT. 

• BUT for 0-RTT Data  is limited to idempotent requests. 

• Stream Multiplexing in both.

• Helps to avoid head of line blocking. But needs mapping of request–responses to their own parallel 
streams. 

• BUT what about the bounded context? A shared connection  seems to create a shared context!

• Connection Migration.

• QUIC allows connection migration while a session is in progress. BUT only for client side.

• Maybe MPQUIC would be helpful here.

• Pluggable Sender Side Congestion Control in QUIC at the application level.

• Interference with other traffic? May vary between implementations.

• Improved header compression and Improved Recovery and Acknowledgement..

• Are these useful inside a DC?

Public



© Nokia 201815

Conclusions

• 5G core is being re-designed to be cloud native in the Service Based Architecture.

• Services are currently grouped into Network Functions that expose their contained 
services to NF consumers. A centralized Network Repository Function offers service 
discovery.

• The interaction model of the services follows REST client – server model that has its own 
limitations.

• In micro-service philosophy bounded context defines the service granularity. But how to 
factor in optimal use of  HTTP2 and QUIC multiplexing and connections? 

• Not clear if QUIC really provides justifiable  benefits in this use case.

• How would transition to QUIC happen?

• HTTP2 over QUIC? A proxy GW? 

Public


