Distributed Ledgers

Breakout Session
Participants

• Christian Facci
• Severin Kacianka
• Holger Kinkelin
Questions

• How can we use distributed ledgers for accounting and logging?

• Which technology is best suited for relatively small distributed ledger networks?

 • Which other interesting (academic) problems exist that can be mitigated by this tech?

• What are interesting academic research questions in this field?
Distributed Ledgers / Blockchains

• Blockchain Structure
 + Consensus on latest Block
 + Replication

• = Unerasable/immutable storage

• = Unmodifiable/tamperproof storage

• ==> Good basis for accounting and logging
Accountability for Trustworthy Network Administration

- **Problem:**
 - Administrator can reconfigure systems as he pleases
 - Administrator can modify log information on device + even external syslog server to some extent

- **We want:**
 - Multi-party approval for (proposed) config changes
 - Accountability/traceability of configuration/approval
Approach

• Prohibit „direct“ administration via SSH, Ansible, Puppet, etc. Distribute configuration from trusted repository (= BC)

• Admin *proposes* new signed configuration of device by writing the config into the Config.-BC

• Auditors *review* configuration and write their signed consent/dissent into Config.-BC

• Devices *pull* (and verify) new configuration from Config.-BC and apply them automatically
How is that different to a GIT/SVN/… repo with signed configs?

- Repos are typically hosted on a (central) server, multiple clients have checked out versions only (no fully history, etc.)

- In a BC nodes have full copies of the BC

- ==> Replication is better

- ==> Admin of repo might roll back an older version to cover her tracks
Accountability for Autonomous System Logs (e.g.: Drone Flight Data)

- **Problem:**

 - Autonomous Drones and drone pilots are a threat when they enter „no-fly zones“, etc.

 - ==> We need log data in case an accident occurs

 - Blackbox in the Drone is not feasible as you cannot build the Blackbox sturdy enough so that it survives catastrophic crashes (Drone vs. Airbus fan blades)

 - Blackbox is maybe not accessible to authorities
Approach

• Drone(s) sends stream of inflight data to ground control station(s)

• Ground control station writes drone data into BC
Problems

- Throughput: BC must be reasonably quick
 - We need to look into this matter more
- Trust into input data: Drone might send faked information
 - Trusted component collecting/sending data
- Privacy: A lot of person-related information could be stored in the BC
 - („Lawful interception“) encryption
Problems II

• Consensus protocol based on Proof of Work used by public BC cannot be applied in smaller networks
 • Network can be biased easily, e.g. DoS some honest nodes
 • Possible alternatives that need more investigation
 • Proof of Stake
 • PBFT (practical byzantine fault tolerance)
„Conclusion“

• We think the tech is worth looking into for all sorts of accounting/logging

• We see some advantages compared to other logging solutions

• We must do further research on suitable BC implementations