
Chair of Network Architectures and Services
Department of Informatics
Technical University of Munich

Measuring High-Performance Packet Processing

Georg Carle, Sebastian Gallenmüller, Dominik Scholz,
Florian Wohlfart, Quirin Scheitle and Paul Emmerich

November 29, 2017

Chair of Network Architectures and Services
Department of Informatics

Technical University of Munich



Chair of Network Architectures and Services
Department of Informatics
Technical University of Munich

Motivation

Reproducibility

Testbed for Reproducibility

High-Performance Packet Processing in Software

libmoon – High-Performance Packet Processing

MoonGen – High-Performance Packet Generation

MoonRoute – High-Performance Router

FlowScope – High-Performance Traffic Analysis

Other Example Running on MoonGen/libmoon

Bibliography

Georg Carle — Measuring High-Performance Packet Processing 2



Motivation
Modern hardware architectures

NIC NIC

RAM RAM

CPU 1 CPU 2

Core 1Core 0

L2

L1

L2

L1

L3 Cache

Core 1Core 0

L2

L1

L2

L1

L3 Cache

Georg Carle — Measuring High-Performance Packet Processing 3



Motivation
Modern software architectures

NIC

User Space Kernel Space

Driver Driver

DPDK OS

Open vSwitch

App

VM

Georg Carle — Measuring High-Performance Packet Processing 4



Motivation
Trends for computer networks

Hardware trends

• Multi-core/many-core CPUs
• Multi-queue NICs

Software trends

• High-performance packet processing frameworks: DPDK, netmap, Snabb, etc.
• Virtualization: Xen, KVM
• Containers: Kernel namespaces, cgroups

Georg Carle — Measuring High-Performance Packet Processing 5



Motivation
Challenges

Complexity of commmunication stack

• Protocols have different mechanisms and parameters
• Multiple layers, complex interaction
• Complex implementation in software and hardware

Measurements

• Topology/configuration/state
• Automation of experiments
• Resource usage (CPU, RAM, energy) of different implementations

Modeling

• Characterisation of wireless stack protocols
• Description of measurements
• Selection of models
• Coverage of relevant parameters

Georg Carle — Measuring High-Performance Packet Processing 6



Reproducibility
MoMeTools - Workshop on Models, Methods and Tools for Reproducible Network Research

Georg Carle, Hartmut Ritter, Klaus Wehrle:
"MoMeTools - Workshop on Models, Methods and Tools for

Reproducible Network Research",
Karlsruhe, Germany, August 2003
in conjunction with ACM SIGCOMM 2003

Olivier Bonaventure, Luigi Iannone, Damien Saucez:
"Reproducibility Workshop (Reproducibility’17)",
Los Angeles, USA, August 2017
in conjunction with ACM SIGCOMM 2017

Despite 14 years have passed the goals are still the same . . .

• Establish methodology for experiments on computer networks
• Discussion about current approaches and improvement
• Initiate a commonly accepted methodology for the scientific fields of computer networks

Q. Scheitle, M. Wählisch, O. Gasser, et al., „Towards an Ecosystem for Reproducible Research in Computer Networking“, in
Proceedings of the Reproducibility Workshop, Reproducibility@SIGCOMM 2017, Los Angeles, CA, USA, August 25, 2017

Georg Carle — Measuring High-Performance Packet Processing 7



Reproducibility
Open questions for network measurements

The problems discussed in both workshops are still relevant today.

• What influences the performance of packet processing?
• Which KPIs are relevant?
• How to measure these relevant KPIs?
• How to build experiment setups measuring these KPIs?
• How to measure in a replicable or even reproducible manner?

Classification according to ACM

• Repeatability: Same people use same setup to repeat results.
• Replicability: Different people use same setup to replicate results.

We provide “artifacts” (scripts, data, documentation) so any other team can easily replicate
our work.

• Reproducibility: Different people use different setup to reproduce results.
We provide a detailed documentation of our approach so other teams can reproduce our
work without using our artifacts.

Georg Carle — Measuring High-Performance Packet Processing 8



Testbed for Reproducibility
pos in Practice: the Baltikum Testbed

Automated reproducible network experiments
• Input: test configuration file
• Boot test machines
• Deploy system image via network
• Deploy host scripts
• Supervise test sequence
• Collection of results
• Output: measurement results

Previous measurements include
• Different wired network setups, also VM setups
• Energy consumption of network nodes
• Different OSes (Linux, FreeBSD, Windows)
• Automated device benchmarking

(RFC 2544, OpenFlow)

Georg Carle — Measuring High-Performance Packet Processing 9



libmoon – High-Performance Packet Processing
libmoon

What is libmoon?

• High performance packet processing framework
• Flexible
• Lua wrapper based on DPDK
• Supporting libraries

Applications powered by libmoon:

• Traffic generation (MoonGen [IMC15])
• Flexible router (MoonRoute [ANCS17_2])
• Incident detection/flow analysis (Flowscope [IFIP17])
• High-performance stack
• ...

Georg Carle — Measuring High-Performance Packet Processing 10



libmoon – High-Performance Packet Processing
Architecture of libmoon Apps

libmoon App

libmoon

DPDK

NIC NIC

Port

q0 q

n

Userscript
slaveUserscript

slave
spawn

Userscript
slave

Userscript
master

config API data API

config API data API

config API data API

Georg Carle — Measuring High-Performance Packet Processing 11



MoonGen – High-Performance Packet Generation
Software vs. Hardware Packet generators

• Hardware packet generators are
• Precise
• Fast

• Software packet generators
• Run on cheap commodity hardware
• Flexible

• Key challenges for software packet generators
• Rate control
• Timestamping

Source: www.spirent.com

Source: www.intel.com

Georg Carle — Measuring High-Performance Packet Processing 12

www.spirent.com
www.spirent.com


MoonGen – High-Performance Packet Generation
MoonGen features and publications

Key features

• Fast: DPDK for packet I/O, explicit multi-core support,
• Flexible: Craft all packets in user-controlled Lua scripts
• Timestamping: Utilize hardware features found on modern commodity NICs
• Rate control: Hardware features and a novel software approach

P. Emmerich, S. Gallenmüller, D. Raumer, et al., „MoonGen: A Scriptable High-Speed Packet Generator“, in Internet Measure-
ment Conference (IMC) 2015, IRTF Applied Networking Research Prize 2017, Tokyo, Japan, Oct. 2015

P. Emmerich, S. Gallenmüller, G. Antichi, et al., „Mind the Gap – A Comparison of Software Packet Generators“, in ACM/IEEE
Symposium on Architectures for Networking and Communications Systems (ANCS 2017), Beijing, China, May 2017

Georg Carle — Measuring High-Performance Packet Processing 13



MoonGen – High-Performance Packet Generation
Rate control - pure software approach

Loadgen

NIC

DuT

NIC
p5

p5 p4 p3 p2 p1 p0

Q

memory

Q

NIC

Wire

• Software pushes packets into buffer in RAM (Q
memory

)
• NICs copy packets eventually from RAM to internal buffers (Q

NIC

)
• NICs put packets stored in internal buffers on wire

: Rate control by limiting the packets available in Q

memory

: Packets are fed one-by-one to the NIC to achieve constant bit rate traffic

Georg Carle — Measuring High-Performance Packet Processing 14



MoonGen – High-Performance Packet Generation
Rate control - pure software approach

0

5

10 netmap pkt-gen

0

5

10

R
el

at
iv

e
pr

ob
ab

ili
ty

[%
]

Pktgen-DPDK

750 1000 1250
0

5

10

Inter-arrival time [ns]

MoonGen (SW)

• Configured for a constant rate: 1 Mpps
• Measurement shows measured inter packet gap (ideal: 1000 ns)

: real IPG from 750 ns to 1250 ns

Georg Carle — Measuring High-Performance Packet Processing 15



MoonGen – High-Performance Packet Generation
Rate control - corrupted CRC approach

Loadgen NIC

NICDuT
p6

p6 p

i

3p5p

i

4 p

i

0p2p

i

1p3p

i

2p4 p1 p0

HW rate control
disabled

p5

Q

memory

Q

NIC

Wire

• In between real packets, invalid packets with incorrect CRC checksums are inserted

: Inter-packet gap controlled by size of corrupted CRC packets

: Packets can be fed in batches to the NIC
• Does not work with all devices under test

Georg Carle — Measuring High-Performance Packet Processing 16



MoonGen – High-Performance Packet Generation
Rate control - corrupted CRC approach

750 1000 1250
0

20

40

Inter-arrival time [ns]

R
el

at
iv

e
pr

ob
ab

ili
ty

[%
] MoonGen (CRC)

• Configured for a constant rate: 1 Mpps
• Measurement shows measured inter packet gap (ideal: 1000 ns)

: real IPG closely meets ideal IPG

Georg Carle — Measuring High-Performance Packet Processing 17



MoonRoute – High-Performance Router
MoonRoute – High-performance Router

Key features

• Flexibility: Adding/removing code anywhere in the packet processing chain

• Code reuse: Mixing existing C libraries with Lua script code

• Performance: Saturating multiple 10 GbE ports with 64-byte packets on a single server

• Scalability: Multi/many-core architecture employing RSS, multi-queue & hardware filters

• Multiple processing paths: High-performance fast path, feature-rich slow path, or fallback
to host OS routing

S. Gallenmüller, P. Emmerich, R. Schönberger, et al., „Building Fast but Flexible Software Routers“, in Proceedings of the
Symposium on Architectures for Networking and Communications Systems, IEEE Press, 2017, pp. 101–102

Georg Carle — Measuring High-Performance Packet Processing 18



MoonRoute – High-Performance Router
Applications of libmoon – MoonRoute

Slow Path

Complex
processing
Complex
processing

Linux

Fast Path

...

config

Fast Path

...

config

Rx Port

PHY
Filter
&
RSS

Tx Port

PHY
CHK-
Sum
O✏oad

Tx Port

PHY
CHK-
Sum
O✏oad

Table TableThread
Processing module
Data structure
Packet flow, high load
Packet flow, medium load
Packet flow, low load
Configuration data flow

Georg Carle — Measuring High-Performance Packet Processing 19



MoonRoute – High-Performance Router

Implementation Src Routing tbl. CPU freq. Throughput [Mpps] rel.
[GHz] reported scaled

MoonRoute — 1 3.2 14.6 14.6 100%
MoonRoute — 220 3.2 14.2 14.2 97%
MoonRoute — 224 3.2 11.6 11.6 79%
6WIND Turbo Router [5] Unknown 2.8 9.6 11.0 75%
FastClick (DPDK 2.2) – 1 3.2 10.4 10.4 72%
FastClick (DPDK 2.2) – 220 3.2 10.4 10.4 70%
Batching Click (PSIO) [6] Unknown 8x 2.66 41.7 6.3 43%
Click (DPDK 2.2) – 1 3.2 4.3 4.3 29%
Click (DPDK 2.2) – 220 3.2 4.2 4.2 28%
FreeBSD 11-routing [7] 2 8x 2.0 9.5 2.0 13%
Route Bricks [8] 218 8x 2.8 12.0 2.0 12%
Linux 3.7 – 1 3.2 1.5 1.5 10%
Click [9] 8 0.7 0.4 1.6 11%
FreeBSD 10.2 [10] 8 4x 2.13 1.8 0.7 5%
Linux 2.2.14 [9] 8 0.7 0.1 0.4 3%

Georg Carle — Measuring High-Performance Packet Processing 20



FlowScope – High-Performance Traffic Analysis
FlowScope – High-Performance Traffic Analysis

Key features

• High-Performance: Recording traffic at 100 Gbit/s or more

• Flexible Filtering: Monitoring/analyzing the traffic with Lua scripts or pcap filters

• Scalability: Multi-thread support by employing separate queues for writers

• Specialized Data Structure (QQ): Designed for high-throughput rather than low latency

P. Emmerich, M. Pudelko, S. Gallenmüller, et al., „FlowScope: Efficient Packet Capture and Storage in 100 Gbit/s Networks“, in
Proceedings of the 16th International IFIP TC6 Networking Conference, IEEE, 2017

Georg Carle — Measuring High-Performance Packet Processing 21



FlowScope – High-Performance Traffic Analysis
Architecture of FlowScope

QQQQQQ

Producer

Producer

NIC

Dumper

Analyzer

Georg Carle — Measuring High-Performance Packet Processing 22



FlowScope – High-Performance Traffic Analysis
Comparison of QQ to Other Queues

Rea
de

rW
rite

rQ
ue

ue

Con
cu

rre
ntQ

ue
ue

Prod
uc

erC
on

su
merQ

ue
ue

MPMCQue
ue

rte
rin

g (D
PDK)

QQ
0

25
50
75

100
125
150
175
200

Pa
ck

et
ra

te
[M

pp
s]

0

25

50

75

100

D
at

a
ra

te
[G

bi
t/s

]

Georg Carle — Measuring High-Performance Packet Processing 23



Other Example Running on MoonGen/libmoon

Name Usage scenario Publication

High-performance applications:
FlowScope Tool for high-performance flow capture and analysis [11], [12]
MoonRoute Extensible high-performance router [4], [13]

Benchmarking tools:
RFC 2544 Modular benchmarking tool [14], [15]
OPNFV VSPERF Automated NFV testing framework [16], [17]
FLOWer High-performance switch benchmarking [18], [19]

Traffic & packet generation:
DNS flood query generator DNS implementation and flooding attack tool [20], [21]
NFVnice Throughput and latency measurements [22]
Verified NAT Throughput and latency measurements [23]
PISCES Throughput measurements [24], [25]

MoonGen / libmoon under test:
MoonGen investigation Precise and accurate rate control and timestamping [3], [26], [27]
MoonGen timestamping Investigation of timestamping for packet generators [28]

Additions to MoonGen / libmoon:
MoonStack Easy-to-use and efficient packet creation [29]

Georg Carle — Measuring High-Performance Packet Processing 24



Other Example Running on MoonGen/libmoon

[1] Q. Scheitle, M. Wählisch, O. Gasser, T. C. Schmidt, and G. Carle, „Towards an
Ecosystem for Reproducible Research in Computer Networking“, in Proceedings of the
Reproducibility Workshop, Reproducibility@SIGCOMM 2017, Los Angeles, CA, USA,
August 25, 2017.

[2] P. Emmerich, S. Gallenmüller, D. Raumer, F. Wohlfart, and G. Carle, „MoonGen: A
Scriptable High-Speed Packet Generator“, in Internet Measurement Conference (IMC)
2015, IRTF Applied Networking Research Prize 2017, Tokyo, Japan, Oct. 2015.

[3] P. Emmerich, S. Gallenmüller, G. Antichi, A. W. Moore, and G. Carle, „Mind the Gap – A
Comparison of Software Packet Generators“, in ACM/IEEE Symposium on Architectures
for Networking and Communications Systems (ANCS 2017), Beijing, China, May 2017.

[4] S. Gallenmüller, P. Emmerich, R. Schönberger, D. Raumer, and G. Carle, „Building Fast
but Flexible Software Routers“, in Proceedings of the Symposium on Architectures for
Networking and Communications Systems, IEEE Press, 2017, pp. 101–102.

[5] 6WIND, 6WIND Turbo Router, http://www.6wind.com/products/6wind-turbo-router/,
Accessed: 2017-01-21.

[6] J. Kim, S. Huh, K. Jang, K. Park, and S. Moon, „The power of batching in the click
modular router“, in Proceedings of the Asia-Pacific Workshop on Systems, ACM, 2012,
p. 14.

Georg Carle — Measuring High-Performance Packet Processing 25

http://www.6wind.com/products/6wind-turbo-router/


Other Example Running on MoonGen/libmoon
[7] O. Cochard-Labbé, fbsd11-routing.r287531,

https://github.com/ocochard/netbenches/tree/master/Xeon_E5-2650-8Cores-

Chelsio_T540-CR/fastforwarding-pf-ipfw/results/fbsd11-routing.r287531,
Accessed: 2017-01-21, 2015.

[8] M. Dobrescu, N. Egi, K. Argyraki, B.-G. Chun, K. Fall, G. Iannaccone, A. Knies,
M. Manesh, and S. Ratnasamy, „RouteBricks: exploiting parallelism to scale software
routers“, in Proceedings of the ACM SIGOPS 22nd symposium on Operating systems
principles, ACM, 2009, pp. 15–28.

[9] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F. Kaashoek, „The Click Modular
Router“, ACM Trans. Comput. Syst., vol. 18, no. 3, pp. 263–297, Aug. 2000, ISSN:
0734-2071. DOI: 10.1145/354871.354874. [Online]. Available:
http://doi.acm.org/10.1145/354871.354874.

[10] B. R. Project, Forwarding performance lab of an IBM System x3550 M3 with 10-Gigabit
Intel 82599EB, http://bsdrp.net/documentation/examples/forwarding_performance_
lab_of_an_ibm_system_x3550_m3_with_10-gigabit_intel_82599eb, Accessed:
2017-01-21, 2015.

[11] P. Emmerich, M. Pudelko, S. Gallenmüller, and G. Carle, „FlowScope: Efficient Packet
Capture and Storage in 100 Gbit/s Networks“, in Proceedings of the 16th International
IFIP TC6 Networking Conference, IEEE, 2017.

[12] FlowScope, https://github.com/emmericp/FlowScope.

Georg Carle — Measuring High-Performance Packet Processing 26

https://github.com/ocochard/netbenches/tree/master/Xeon_E5-2650-8Cores-Chelsio_T540-CR/fastforwarding-pf-ipfw/results/fbsd11-routing.r287531
https://github.com/ocochard/netbenches/tree/master/Xeon_E5-2650-8Cores-Chelsio_T540-CR/fastforwarding-pf-ipfw/results/fbsd11-routing.r287531
https://doi.org/10.1145/354871.354874
http://doi.acm.org/10.1145/354871.354874
http://bsdrp.net/documentation/examples/forwarding_performance_lab_of_an_ibm_system_x3550_m3_with_10-gigabit_intel_82599eb
http://bsdrp.net/documentation/examples/forwarding_performance_lab_of_an_ibm_system_x3550_m3_with_10-gigabit_intel_82599eb
https://github.com/emmericp/FlowScope


Other Example Running on MoonGen/libmoon

[13] MoonRoute, https://github.com/emmericp/MoonRoute-
data/tree/51333dc648ca42f3740f6d09895e1ad4a9f67d69.

[14] D. Raumer, S. Gallenmüller, F. Wohlfart, P. Emmerich, P. Werneck, and G. Carle,
„Revisiting Benchmarking Methodology for Interconnect Devices“, in The Applied
Networking Research Workshop 2016 (ANRW ’16), Berlin, Germany, Jul. 2016.

[15] „RFC 2544 benchmark tool“, Tech. Rep., https://github.com/emmericp/MoonGen/pull/98.

[16] „OPNFV VSPERF“,, http://artifacts.opnfv.org/vswitchperf/docs/index.html.

[17] „VSPERF code repository“,, https://git.opnfv.org/vswitchperf.

[18] P. Emmerich, S. Gallenmüller, and G. Carle, „FLOWer – Device Benchmarking Beyond
100 Gbit/s“, in IFIP Networking Conference (IFIP Networking) and Workshops, 2016,
IEEE, 2016, pp. 109–116.

[19] FLOWer code, https://github.com/emmericp/FLOWer-
scripts/tree/c5bd7cb25c3da1537dad7a44db84d043b442bbb9.

[20] S. R. Rincón, S. Vaton, and S. Bortzmeyer, „Reproducing DNS 10Gbps flooding attacks
with commodity-hardware“, in Wireless Communications and Mobile Computing
Conference (IWCMC), 2016 International, IEEE, 2016, pp. 510–515.

[21] MoonGen DNS code, https://github.com/emmericp/MoonGen/pull/118.

Georg Carle — Measuring High-Performance Packet Processing 27



Other Example Running on MoonGen/libmoon
[22] S. G. Kulkarni, W. Zhang, J. Hwang, S. Rajagopalan, K. Ramakrishnan, T. Wood,

M. Arumaithurai, and X. Fu, „NFVnice: Dynamic Backpressure and Scheduling for NFV
Service Chains“, in Proceedings of the Conference of the ACM Special Interest Group on
Data Communication, ACM, 2017, pp. 71–84.

[23] A. Zaostrovnykh, S. Pirelli, L. Pedrosa, K. Argyraki, and G. Candea, „A Formally Verified
NAT“, in Proceedings of the Conference of the ACM Special Interest Group on Data
Communication, ACM, 2017, pp. 141–154.

[24] M. Shahbaz, S. Choi, B. Pfaff, C. Kim, N. Feamster, N. McKeown, and J. Rexford,
„PISCES: A Programmable, Protocol-Independent Software Switch“, in Proceedings of
the 2016 conference on ACM SIGCOMM 2016 Conference, ACM, 2016, pp. 525–538.

[25] PISCES experiment code, https://github.com/P4-
vSwitch/vagrant/tree/ef197c77505252d1b255c3f1c83b976aae5d7fb7.

[26] MoonGen rate control methods, https://github.com/emmericp/
MoonGen/blob/5388192fa1dc016797fabe8912bbcdfc7713756e/
examples/rate-control-methods.lua.

[27] MoonGen timestamping, https://github.com/emmericp/MoonGen/blob/
5388192fa1dc016797fabe8912bbcdfc7713756e/examples/timestamping-tests/.

[28] M. Primorac, E. Bugnion, and K. Argyraki, „How to Measure the Killer Microsecond“, in
Proceedings of the Workshop on Kernel-Bypass Networks, ACM, 2017, pp. 37–42.

Georg Carle — Measuring High-Performance Packet Processing 28



Other Example Running on MoonGen/libmoon

[29] MoonStack, https://github.com/libmoon/libmoon/tree/
f3013c9ced5d0e4f5344451d2d269233852eb96c/lua/proto.

Georg Carle — Measuring High-Performance Packet Processing 29


	Motivation
	Reproducibility
	Testbed for Reproducibility
	High-Performance Packet Processing in Software
	libmoon – High-Performance Packet Processing
	MoonGen – High-Performance Packet Generation
	MoonRoute – High-Performance Router
	FlowScope – High-Performance Traffic Analysis

	Other Example Running on MoonGen/libmoon
	Bibliography

