

An Approach Towards Validation of IPv4 and IPv6 Siblings

Minoo Rouhi

November 25, 2016

Chair of Network Architectures and Services Department of Informatics Technical University of Munich

Chair of Network Architectures and Services Department of Informatics Technical University of Munich

Introduction & Motivation

Problem Statement & Research Questions

Methodology & Ground-truth

Evaluation of TCP Timestamp Fingerprinting

Large-scale Measurements

- Sibling: IPv4 and IPv6 address pair assigned to the same physical machine [1]
- Increasing trend in usage of shared IP infrastructure [1, 2]
- Application areas:
 - Understanding IPv6 and the Internet evolution
 - Understanding correlated failures and loopholes
 - IPv6 geolocation
 - IPv4 vs. IPv6 performance

- Given a pair (IP₄, IP₆), determine whether it is a Sibling
- A common DNS name does not always imply a Sibling relationship [3, 1, 2]
 - Content Distribution Networks
 - Load balancers
 - ...
- Fingerprinting techniques needed to discern Siblings

Methodology & Ground-truth

- 1. Acquiring the Ground-truth:
 - Siblings dataset
 - 458 true associations (Siblings)
 - Non-siblings dataset
 - Pairing unrelated IPv4 and IPv6 addresses
- 2. Evaluating fingerprinting methods against the Ground-truth

Introduction

Terminology:

- Offset: The time difference between the target and reference clock.
- Skew: The frequency difference between the target and the reference clock \rightarrow First derivative of the offset

Introduction

Terminology:

- **Offset**: The time difference between the target and reference clock.
- Skew: The frequency difference between the target and the reference clock \rightarrow First derivative of the offset

Objective:

· Fingerprint devices from their clock skew

ТШ

First Order Filter using TCP Options Signature

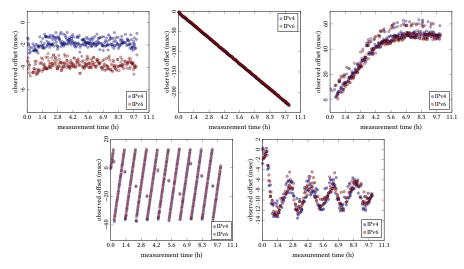
- TCP options are almost always identical for Siblings
- Discriminating factors:
 - Presence of options and their order
 - Value of the window scale option

ТШ

First Order Filter using TCP Options Signature

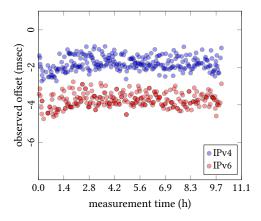
- TCP options are almost always identical for Siblings
- Discriminating factors:
 - Presence of options and their order
 - Value of the window scale option
- ✓ Eliminates \approx 71% of Non-siblings ✓No false negative rate

TCP Timestamp Fingerprinting Obtaining Offsets



Algorithm 1 Obtaining offsets

- 1: Probe IP pair
- 2: Store traces \mathcal{T}_4 and \mathcal{T}_6
- 3: for each $\textit{Packet}_i \in \mathcal{T}_4 \lor \mathcal{T}_6$ do
- 4: Extract TSval_i and ArrivalTime_i
- 5: $\Delta_i \leftarrow TSval_i ArrivalTime_i$
- 6: $Offset_{set} \leftarrow (ArrivalTime_i, \Delta_i)$
- 7: end for
- 8: Plot offset trends from Offsetset

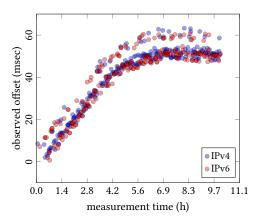


Observation Classes

ТШП

Negligible Skew

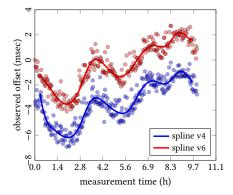
- Skew is negligible
- Metric: |offset_{max}-offset_{min}|
- 1.6% of the Ground-truth


ТШП

Constant Skew

- · Skew is constant
- Metric: Robust Linear regression
- 3.2% of the Ground-truth

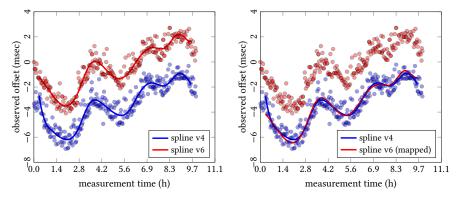
TCP Timestamp Fingerprinting Variable Skew (Drift)


- Skew is variable
- Metric: Polynomial splines

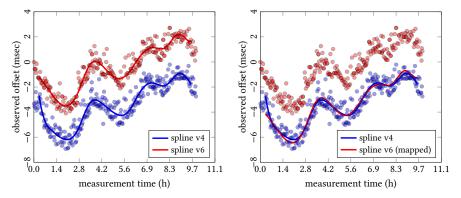
ΠП

• 95.2% of the Ground-truth

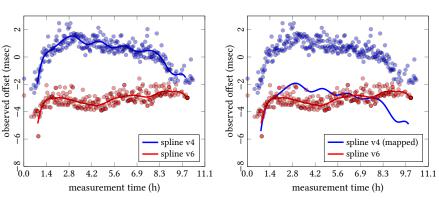
ТШ


Polynomial Splines

1. Calculate splines


Polynomial Splines

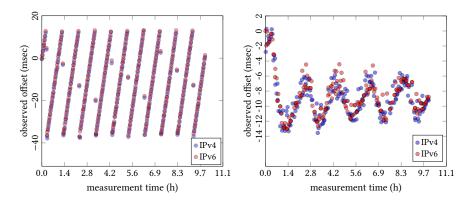
- 1. Calculate splines
- 2. Map splines



Polynomial Splines

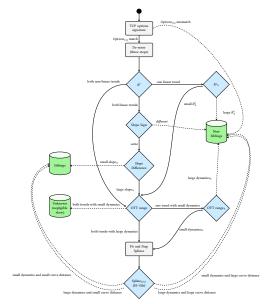
- 1. Calculate splines
- 2. Map splines
- 3. spline_{dist} \leq threshold \rightarrow Sibling

TCP Timestamp Fingerprinting Polynomial Splines



 $\text{spline}_{\textit{dist}} > \text{threshold} \rightarrow \text{Non-Sibling}$

ПΠ



Reset and Adjustment

- Similar skew pattern is observed over different probes
- Metric: Polynomial splines

The Decision Algorithm

Large-scale Measurements

ТШ

- 6.6 M domains from Alexa top 1 M, biz, com,
- 371 k unique sibling candidates
 - \rightarrow *m:n* relationship between domain and IP addresses
 - \rightarrow IP address pairs are frequently shared between several domains (\approx 33%)
- 22% confirmed siblings, 76% non-siblings and 2% unknown
 - \rightarrow low false positive rate
 - \rightarrow web hosters, CDNs, load balancers ...

Thanks for your attention!

Bibliography

- Beverly, Robert and Berger, Arthur.
 Server Siblings: Identifying Shared IPv4/IPv6 Infrastructure via Active Fingerprinting. In International Conference on Passive and Active Network Measurement, pages 149–161. Springer, 2015.
- [2] Beverly, Robert and Campbell, Larry and Berger, Arthur and Weaver, Nicholas. Inferring Internet Server IPv4 and IPv6 Address Relationships. Technical report, Monterey, California: Naval Postgraduate School, 2013.
- Kohno, Tadayoshi and Broido, Andre and Claffy, Kimberly C. Remote Physical Device Fingerprinting. *IEEE Transactions on Dependable and Secure Computing*, 2(2):93–108, 2005.